浅析特征函数、母函数的概念教学及其应用
- 格式:doc
- 大小:171.79 KB
- 文档页数:3
概率论上的母函数(gen erati ng fucnction)定义:假设随机变量E取非负整数值,且相应的分布列为:(0,1, 2)(P o, P i, P2)那么P k*s k( k从0到无穷)的和为s的函数,此函数称为的母函数。
特征函数(概率论)在概率论中,任何随机变量的特征函数完全定义了它的概率分布。
在实直线上,它由以下公式给出,其中X是任何具有该分布的随机变量:®x(t) = E(e itX)其中t是一个实数,i是虚数单位,E表示期望值。
用矩母函数M x(t)来表示(如果它存在),特征函数就是iX的矩母函数,或X在虚数轴上求得的矩母函数。
「x(t)二M ix (t)二M x(it)与矩母函数不同,特征函数总是存在。
如果F x是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出:E (e itx)= ::e itx dF x(x)在概率密度函数f x存在的情况下,该公式就变为:E (e itx) = . : e itx f x (x)dx如果X是一个向量值随机变量,我们便取自变量t为向量,tx为数量积。
R或R n上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行积分,且对于每一个特征函数都正好有一个概率分布。
一个对称概率密度函数的特征函数(也就是满足f x(x) = f x(-x))是实数,因为从x>0所获得的虚数局部与从x<0所获得的相互抵消。
连续性勒维连续定理勒维连续定理说明,假设(X n)n」"为一个随机变量序列,其中每一个X n都有特征函数-:n,那么它依分布收敛于某个随机变量X :Xn ° > X当n —如果件一巴in^is j cp 当n Too且④(t)在t=0处连续,9是X的特征函数。
莱维连续定理可以用来证明弱大数定律。
反演定理在累积概率分布函数与特征函数之间存在双射。
也就是说,两个不同的概率分布不能有相同的特征函数。
母函数的概念和使用
母函数是组合数学中的一种重要工具,用于描述序列的生成函数。
它可以将序列转化为形式简单的多项式,从而方便地进行计算和推导。
形式上,对于序列$\{a_n\}$,它的母函数可以定义为:
$A(x)=\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+...$
母函数$A(x)$通常被视为$x$的函数,可以进行各种计算操作,比如加法、乘法、求导等。
母函数的使用有以下几个方面:
1. 求序列的常用操作:对于给定的序列,可以通过母函数求导、乘法、加法等操作得到新的序列。
例如,序列的微分对应于母函数的求导,序列的乘法对应于母函数的乘法,序列的加法对应于母函数的加法。
2. 求序列的递推关系:通过构造序列的母函数,可以得到序列的递推关系。
递推关系描述了序列相邻项之间的关系,是解决组合计数问题的关键。
通过求解递推关系,可以得到序列的通项公式,从而得到更深入的结论。
3. 求序列的生成函数:母函数可以将序列转化为一个形式简单的多项式。
通过对母函数进行逆变换,可以得到序列的生成函数,从而用多项式的形式来表示序列。
生成函数是分析序列性
质的一种强有力的工具,可以进行各种计算和推导。
母函数在组合计数、离散数学和概率等领域中具有广泛的应用,可以解决各种组合计数问题,如排列组合、图论、走迷宫等问题。
同时,母函数也是解决一些难题的关键,在一些具有复杂递推关系的序列中起到了重要作用。
特征函数、母函数、矩母函数确定随机变量的概率密度函数/分布律 方便求解独立随机变量和的分布函数一类问题可以通过微分运算求随机变量的数字特征1.特征函数:设随机变量ξ的分布函数为F(x), 概率密度函数为f(x), 称:(){}()()jt jtx jtx t E e e dF x e f x dx ξ∞∞−∞−∞Φ===∫∫ 为随机变量ξ的分布函数的特征函数,或ξ的特征函数,特征函数是概率密度函数的付氏变换。
特征函数的性质:1.特征函数与概率密度函数相互唯一地确定;2.两个相互统计独立的随机变量和的特征函数等于各个随机变量特征函数的积;3.特征函数与随机变量的数字特征的关系:()0()|{}k k k t t j E ξ=Φ=典型随机变量的特征函数1. 两点分布的特征函数:()jt t q pe Φ=+2. 二项式分布的特征函数:()()n jt t q pe Φ=+3. 几何分布:()1jtjtpe t qe Φ=− 4. 泊松分布(λ):(1)()jt e t eλ−−Φ= 5. 正态分布2(,)N σ∂:22()exp{}2t t j t σΦ=∂−6. 均匀分布[0,1]:1()jt e t jt−Φ= 7. 负指数分布:()t jtλλΦ=−2.母函数研究分析非负整值随机变量时,可以采用母函数法:对于一个取非负整数值n=0,1,2,……,的随机变量x ,,其相应的矩生成函数定义为: 0()()n n z p x n z ∞=Φ==⋅∑(1/)z Φ是序列()p x n =的正常的z 变换母函数的性质:1. 两个相互统计独立的随机变量和的母函数等于各个随机变量的母函数的积。
2. 随机个独立同分布的非负整值随机变量和的矩生成函数是原来两个母函数的复合(见附合泊松过程的应用)3.()000(),()!1,2,k k z z z p z k p k ==Φ=Φ=="通过母函数有理分式的幂级数展开等方法,得到随机变量的概率分布表达式。
论特征函数的性质及应用在一般的数学研究当中,经常会遇到随机变量这个重要的内容.随机变量的规律是根据随机变量的分布函数来统计的,在使用的过程中有时会出现分布密度或者是分布函数使用不便等问题,例如,在实际的操作过程中用卷积求分布密度和独立随机变量过于复杂和烦琐.本文主要对特征函数的定义以及性质进行分析,利用定义和性质来对特征函数使用方法进行更便捷的介绍.对特征函数的性质做进一步的分析,在基本定义和性质的引导下,对其应用进行探讨分析.一、特征函数的定义设X是一个随机变量,称φ(t)=Ε(eitX),∞<t> +∞,</t>为X的特征函数.因为|eitX|=1,所以Ε(eitX)总是存在的,即任一随机变量的特征函数总是存在的.当离散随机变量X的分布列为pk=P(X=xk),k=1,2,3,…,则X的特征函数为φ(t)=∑+∞k=1eitxkpk,∞<t> +∞. </t>当连续随机变量X的密度函数为p(x),则X的特征函数为1/ 6φ(t)=∫+∞∞eitxkp(x)dx,∞<t> +∞. </t>其实在特征函数里,随机变量是一个很重要的方法,在分布函数和密度函数里,特征函数是很好的补充和加强,从某种程度上来说,特征函数的应用要更加广泛一些,让证明推理的过程简洁化,这样一个工具可以用来证明中心极限定理,而且非常有分量.结合上面的叙述我们可以得出这样的结论,就是在学习的时候,除了要把分布函数的知识掌握到位,还要了解特征函数,在解决问题过程中实现两者的互补,在互相促进当中将问题解决.二、特征函数的主要性质特征函数主要具有以下几个基本性质:如果两个随机的变量拥有统一的特征函数,那么它们就会具有相同的概率分布;相反,假设两个随机的变量拥有一样的概率分布,那么它们的特征函数很显然也相同.因此,我们可以得出独立随机变量和的特征函数其实就相当于每个随机变量特征函数的乘积.主要性质:两个相互独立的随机变量之和的特征函数等于它们的特征函数之积.利用归纳法,不难把上述性质推广到n个独立随机变量的场合,若ξ1,ξ2,…,ξn是n个相互独立的随机变量,相应的特征函数为Φ1(t),Φ2(t),…,Φn(t),则ξ=∑ni=1ξi的特征函数为Φ(t)=∏ni=1Φi(t).由于这个性质,独立随机变量和的特征函数可以方便地用各2/ 6个特征函数相乘来求得,对于独立和分布函数来说,必须要进行复杂的运算才能计算出来.相对来说,特征函数在进行问题处理的时候就?缘帽冉戏奖?.在概率论的古典问题中,占据重要位置的就是独立和问题,解决这些问题主要是依靠引进特征函数.特征函数里最重要的知识点就是概率论,其不仅可以研究随机现象的统计规律性,还可以很客观地描述分布函数变量的统计规律.在探讨随机变量的时候引入分布函数,这就像在随机现象与数学分析之间搭建了一座桥梁,数学分析这个工具需要通过特征函数引进才能更好地进入到随机现象的研究领域,而特征函数在这种情况之下就会得到飞速的发展,以便于解决实际的各种现象问题.对于特征函数来说,主要是建立在分布函数的基础上,通过分析分布函数来得出相应的随机变量问题,包括其性质以及数字特征等,但是针对那些个性化的问题来说,如果只是依靠分布函数与密度函数是远远不够的.而特征函数就可以去解决那些小众的问题、个性化的问题,毕竟分布函数跟特征函数都是唯一的存在,其过程也比较简单.在概率论中,研究随机变量的时候,特征函数是一种常见的工具,主要是由其特性决定的,每个随机变量都存在特征函数.在概率发展过程中,独立随机变量的地位显得比较重要,要得出独立随机变量的和,就要把它的分布函数计算出来,独立随3/ 6机变量的结果来自于各个随机变量分布律的卷积,在计算的时候并不简单.与此相比,独立随机变量,包括特征函数等,都是它的各被加项的特征函数的乘積,这样的计算难度不大.因此,当特征函数引进之后,古典极限问题就能得到有效的解决.三、特征函数的主要应用众所周知,对于特征函数来说,其实际背景比较广泛,在生产与科学实验中,通过特征函数可以描述很多的随机变量概率.例如,同一个生物体的各种指标、体重和身高等;某一个区域内一年的降水量是多少,与同期进行比较;假设生产条件不会发生变化,产品的一些长度、宽度等指标等.通常情况下,假如很多独立随机因素影响到一个量的情况下,就可以认定这个量具有特征函数.站在理论的角度来论述,特征函数的性质比较良好,运用特征函数可以近似一些概率的分布,像种子的质量,同一个物体的测量误差等.1.分布律与特征函数之间存在一一对应关系.因此,当求出了随机变量的特征函数,便可知其分布律,由特征函数的某些性质,可以推出分布律的某些性质.不仅如此,在分布律的某种收敛意义下的极限分布与特征函数之间也存在着对应关系.因此,由特征函数的极限函数有时可以推知极限分布律,从而推知随机变量序列的极限分布.2.特征函数是一种有界连续函数,比分布函数及分布律更易4/ 6于应用分析的工具.3.独立随机变量,特别是独立随机变量和以及有关的问题在概率的发展中具有重要的地位,要研究独立随机变量和,就要求出它的分布函数,而独立随机变量和的分布律是各随机变量分布律的卷积,计算起来很复杂,但独立随机变量和的特征函数等于它的各被加项的特征函数的乘积,计算和研究都很方便.这就是为什么古典极限问题能在引进特征函数之后很快得到解决的原因.四、特征函数与分布函数的一一对应我们在前文分析了特征函数的含义,对于随机变量来说,其特征函数主要是由分布函数来确定,与之相反,也能够证明由特征函数可唯一地确定它的分布函数,在这样的基础上,特征函数变成了一种数学工具,通过这个数学工具刻画随机变量统计规律,通过特征函数来得出分布函数,就是我们所说的“逆转公式”,也可以叫作勒维定理.勒维定理(逆转公式):设随机变量ξ的分布函数为F(x),特征函数为Φ(t),又x1与x2是F(x)的任意两个连续点(∞<x1> <x2> +∞),则有</x2> </x1>F(x2)-F(x1)=limT→∞12π∫T-Te-itx1-e-itx2itΦ(t)dt.其中,当t=0时,按连续性延拓定义:e-itx1-e-itx2it=x2-x1.5/ 6唯一性定理:随机变量的分布函数由其特征函数唯一确定.五、结论随机变量的分布函数完全描述了随机变量的统计规律性,在有些问题上,如果用分布函数来解决并不容易,因此我们把Fourier变换引入概率中,进而产生了特征函数,利用特征函数与分布函数一一对应的关系,可以简化许多随机变量的研究工作.特征函数既能完全确定分布函数,又在处理独立随机变量和的分布及计算数字特征等方面比分布函数更为方便,这使得有必要进一步讨论特征函数的相关性质及其应用.特征函数虽不如分布函数直观,却有着更好的分析性质,而且能够完全决定分布函数,与分布函数存在一一对应关系.在许多方面,用特征函数比用分布函数做随机变量的研究工具更方便.6/ 6。
多项分布的数学期望、协方差阵、特征函数及母函数多项分布的数学期望、协方差阵、特征函数及母函数 1一、定义与性质设 X 为随机变量, I 是一个包含 0 的 ( 有限或无限的 ) 开区间,对任意t ∈ I ,期望 E e t x 存在设X为随机变量,I是一个包含0的(有限或无限的)开区间,对任意t∈I,期望Ee^{tx}存在设X为随机变量,I是一个包含0的(有限或无限的)开区间,对任意t∈I,期望Eetx存在则称函数M X ( t ) = E ( e t X ) = ∫ − ∞ + ∞ e t x d F ( x ) , t ∈ I 为 X 的矩母函数则称函数M_{X}(t)=E(e^{tX})=\int_{-\infin}^{+\infin}e^{tx}dF(x),t∈I为X的矩母函数则称函数MX(t)=E(etX)=∫−∞+∞etxdF(x),t∈I为X的矩母函数设 X 为任意随机变量,称函数φ X ( t ) = E ( e i t X ) = ∫ − ∞ + ∞ e i t x d F ( x ) 为 X 的特征函数设X为任意随机变量,称函数\varphi_{X}(t)=E(e^{itX})=\int_{-\infin}^{+\infin}e^{itx}dF(x)为X的特征函数设X为任意随机变量,称函数φX(t)=E(eitX)=∫−∞+∞eitxdF(x)为X 的特征函数一个随机变量的矩母函数不一定存在,但是特征函数一定存在。
一个随机变量的矩母函数不一定存在,但是特征函数一定存在。
一个随机变量的矩母函数不一定存在,但是特征函数一定存在。
随机变量与特征函数存在一一对应的关系随机变量与特征函数存在一一对应的关系随机变量与特征函数存在一一对应的关系二、离散型随机变量的分布0、退化分布(Degenerate distribution)若 X 服从参数为 a 的退化分布,那么 f ( k ;a ) = { 1 , k = a 0 , k ≠ a 若X服从参数为a的退化分布,那么f(k;a)=\left\{\begin{matrix} 1,k=a \\ 0,k\neq a \end{matrix}\right. 若X服从参数为a的退化分布,那么f(k;a)={1,k=a0,k=a M ( t ) = e t a M(t)=e^{ta}M(t)=eta φ ( t ) = e i t a \varphi(t)=e^{ita}φ(t)=eita M ′ ( t ) = a e t a M'(t)=ae^{ta}M′(t)=aeta E X = M ′ ( 0 ) = a EX=M'(0)=aEX=M′(0)=a M ′ ′ ( t ) = a 2 e t a M''(t)=a^2e^{ta} M′′(t)=a2eta E X 2 = M ′ ′ ( 0 ) = a 2EX^2=M''(0)=a^2 EX2=M′′(0)=a2 D X = E X 2 − ( E X ) 2 = 0 DX=EX^2-(EX)^2=0 DX=EX2−(EX)2=01、离散型均匀分布(Discrete uniform distribution)若 X 服从离散型均匀分布 D U ( a , b ) , 则 X 分布函数为 F ( k ; a , b ) = ⌊ k ⌋− a + 1 b −a + 1 若X服从离散型均匀分布DU(a,b) ,则X分布函数为F(k;a,b)=\frac{\lfloor k\rfloor -a+1}{b-a+1} 若X服从离散型均匀分布DU(a,b),则X分布函数为F(k;a,b)=b−a+1⌊k⌋−a+1 则矩母函数M ( t ) = ∑ k = a b e t k P ( x = k ) 则矩母函数M(t)=\sum_{k=a}^{b} e^{tk}P(x=k) 则矩母函数M(t)=k=a∑betkP(x=k) = ( ∑ k = a b e t k ) 1 b − a + 1 =(\sum_{k=a}^{b} e^{tk})\frac{1}{b-a+1} =(k=a∑b etk)b−a+11 = e a t − e ( b + 1 ) t ( 1 − e t ) ( b − a + 1 ) =\frac{e^{at}-e^{(b+1)t}}{(1-e^{t})(b-a+1)} =(1−et)(b−a+1)eat−e(b+1)t 特征函数φ ( t ) = ∑k = a b e i t k P ( x = k ) 特征函数\varphi(t)=\sum_{k=a}^{b} e^{itk}P(x=k) 特征函数φ(t)=k=a∑beitkP(x=k) = ( ∑ k = a b e i t k ) 1 b −a + 1 =(\sum_{k=a}^{b} e^{itk})\frac{1}{b-a+1}=(k=a∑beitk)b−a+11 = e a i t − e ( b + 1 ) i t ( 1 − e i t ) ( b − a + 1 ) =\frac{e^{ait}-e^{(b+1)it}}{(1-e^{it})(b-a+1)}=(1−eit)(b−a+1)eait−e(b+1)it M ′ ( t ) = 1 b − a + 1 ( a e a t − ( b + 1 ) e ( b + 1 ) t ) ( 1 − e t ) + ( e a t − e ( b + 1 ) t ) e t ( e t − 1 ) 2M'(t)=\frac{1}{b-a+1}\frac{(ae^{at}-(b+1)e^{(b+1)t})(1-e^t)+(e^{at}-e^{(b+1)t})e^t}{(e^{t}-1)^{2}} M′(t)=b−a+11(et−1)2(aeat−(b+1)e(b+1)t)(1−et)+(eat−e(b+1)t)et t = 0 为M ′ ( t ) 的可去间断点,补充定义M ′ ( 0 ) = lim t → 0 M ′ ( t ) t=0为M'(t)的可去间断点,补充定义M'(0)=\lim_{t\rightarrow0}M'(t) t=0为M′(t)的可去间断点,补充定义M′(0)=t→0limM′(t) E X = M ′ ( 0 ) = lim t → 0 1 b − a + 1 ( a 2 e at − ( b + 1 ) 2 e ( b + 1 ) t ) ( 1 − e t ) + ( e at − e ( b + 1 ) t ) e t 2 ( e t − 1 ) e tEX=M'(0)=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^2e^{at}-(b+1)^2e^{(b+1)t})(1-e^t)+(e^{at}-e^{(b+1)t})e^t}{2(e^{t}-1)e^t}EX=M′(0)=t→0limb−a+112(et−1)et(a2eat−(b+1)2e(b+1)t)(1−et)+(eat−e(b+1)t) et = lim t → 0 1 b − a + 1 ( a 2 e a t − ( b +1 )2 e ( b + 1 ) t ) ( e − t − 1 ) + ( e a t − e ( b + 1 ) t ) 2 ( e t − 1 )=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^2e^{at}-(b+1)^2e^{(b+1)t})(e^{-t}-1)+(e^{at}-e^{(b+1)t})}{2(e^{t}-1)} =t→0limb−a+112(et−1)(a2eat−(b+1)2e(b+1)t)(e−t−1)+(eat−e(b+1)t) = lim t → 0 1 b − a + 1 ( a 3 e a t − ( b + 1 ) 3 e ( b + 1 ) t ) ( e − t − 1 ) − ( a 2 e a t −( b + 1 ) 2 e ( b + 1 ) t ) e − t + ( a e a t − ( b + 1 ) e ( b + 1 ) t ) 2 e t=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^3e^{at}-(b+1)^3e^{(b+1)t})(e^{-t}-1)-(a^2e^{at}-(b+1)^2e^{(b+1)t})e^{-t}+(ae^{at}-(b+1)e^{(b+1)t})}{2e^{t}} =t→0limb−a+112et(a3eat−(b+1)3e(b+1)t)(e−t−1)−(a2eat−(b+1)2e(b+1)t)e−t+(aeat−(b+1)e(b+1)t) = − a 2 + ( b + 1 ) 2 +a − (b + 1 ) 2 ( b − a + 1 ) =\frac{-a^2+(b+1)^2+a-(b+1)}{2(b-a+1)} =2(b−a+1)−a2+(b+1)2+a−(b+1) = − a 2 + ( b + 1 ) 2 2 ( b − a + 1 ) − 1 2 =\frac{-a^2+(b+1)^2}{2(b-a+1)}-\frac{1}{2}=2(b−a+1)−a2+(b+1)2−21 = ( b + 1 − a ) ( b + 1 +a ) 2 (b − a + 1 ) − 1 2 =\frac{(b+1-a)(b+1+a)}{2(b-a+1)}-\frac{1}{2}=2(b−a+1)(b+1−a)(b+1+a)−21 = b + 1 + a 2 − 1 2=\frac{b+1+a}{2}-\frac{1}{2} =2b+1+a−21 = b + a 2=\frac{b+a}{2} =2b+a 由于对M ′ ( t ) 求导得到M ′ ′ ( t ) ,再求M ′ ′ ( 0 ) 的方法比较繁琐,而我们只需要 t = 0 时 M 的二阶导数值,由于对M'(t)求导得到M''(t),再求M''(0)的方法比较繁琐,而我们只需要t=0时M的二阶导数值,由于对M′(t)求导得到M′′(t),再求M′′(0)的方法比较繁琐,而我们只需要t=0时M的二阶导数值,因此可以考虑使用 T a y l o r 公式计算M ′ ′ ( 0 ) 因此可以考虑使用Taylor公式计算M''(0) 因此可以考虑使用Taylor公式计算M′′(0) 令 1 − e t = u , t = 0 时 , u = 0 令1-e^t=u,t=0时,u=0 令1−et=u,t=0时,u=0 M ( t ) = e a t − e ( b + 1 ) t ( 1 − e t ) ( b − a + 1 )M(t)=\frac{e^{at}-e^{(b+1)t}}{(1-e^{t})(b-a+1)}M(t)=(1−et)(b−a+1)eat−e(b+1)t = 1 b − a + 1 u a −u b + 1 u =\frac{1}{b-a+1}\frac{u^a-u^{b+1}}{u}=b−a+11uua−ub+1 = 1 b − a + 1 1 + a 1 ! ( − u ) + a ( a − 1 ) 2 ! u 2 + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 3 ) + o ( u 3 ) − 1 − b + 1 1 ! ( − u ) −( b + 1 ) b 2 ! u 2 − ( b + 1 ) b ( b − 1 ) 3 ! ( −u 3 ) − o ( u 3 ) u =\frac{1}{b-a+1}\frac{1+\frac{a}{1!}(-u)+\frac{a(a-1)}{2!}u^2+\frac{a(a-1)(a-2)}{3!}(-u^3)+o(u^3)-1-\frac{b+1}{1!}(-u)-\frac{(b+1)b}{2!}u^2-\frac{(b+1)b(b-1)}{3!}(-u^3)-o(u^3)}{u} =b−a+11u1+1!a (−u)+2!a(a−1)u2+3!a(a−1)(a−2)(−u3)+o(u3)−1−1!b+1(−u)−2!(b+1)bu2−3!(b+1)b(b−1) (−u3)−o(u3) = 1 b − a + 1 a 1 ! ( − u ) + a ( a −1 ) 2 ! u 2 + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 3 ) + o ( u 3 ) − b + 1 1 ! ( − u ) − ( b + 1 ) b 2 ! u 2 − ( b + 1 ) b ( b − 1 ) 3 ! ( − u 3 ) u=\frac{1}{b-a+1}\frac{\frac{a}{1!}(-u)+\frac{a(a-1)}{2!}u^2+\frac{a(a-1)(a-2)}{3!}(-u^3)+o(u^3)-\frac{b+1}{1!}(-u)-\frac{(b+1)b}{2!}u^2-\frac{(b+1)b(b-1)}{3!}(-u^3)}{u} =b−a+11u1!a(−u)+2!a(a−1)u2+3!a(a−1)(a−2)(−u3)+o(u3)−1!b+1 (−u)−2!(b+1)bu2−3!(b+1)b(b−1)(−u3) = 1 b − a + 1 ( ( b + 1 − a ) + a ( a − 1 ) 2 ! u + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 2 ) + o ( u 2 ) − ( b + 1 ) b2 ! u − ( b + 1 ) b ( b − 1 )3 ! ( − u 2 ) )=\frac{1}{b-a+1}((b+1-a)+\frac{a(a-1)}{2!}u+\frac{a(a-1)(a-2)}{3!}(-u^2)+o(u^2)-\frac{(b+1)b}{2!}u-\frac{(b+1)b(b-1)}{3!}(-u^2)) =b−a+11((b+1−a)+2!a(a−1)u+3!a(a−1)(a−2)(−u2)+o(u2)−2!(b+1)bu−3!(b+1)b(b−1)(−u2)) = 1 + a ( a − 1 ) − ( b + 1 ) b 2 ! ( b − a + 1 ) u + ( b +1 ) b ( b − 1 ) − a ( a − 1 ) ( a −2 )3 ! ( b −a + 1 ) u 2 + o ( u 2 ) =1+\frac{a(a-1)-(b+1)b}{2!(b-a+1)}u+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}u^2+o(u^2) =1+2!(b−a+1)a(a−1)−(b+1)bu+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)u2+o(u2) 而 u = 1 − e t = − t − t 2 2 ! + o ( t 2 ) 而u=1-e^t=-t-\frac{t^2}{2!}+o(t^2) 而u=1−et=−t−2!t2+o(t2) 因此M ( t ) = 1 − a ( a − 1 ) − ( b + 1 ) b 2 ! ( b −a + 1 ) t − a ( a − 1 ) − (b + 1 ) b 2 ! ( b − a + 1 ) t 2 2 ! + ( b + 1 ) b ( b − 1 ) − a ( a − 1 ) ( a − 2 ) 3 ! ( b − a + 1 ) t 2 + o ( t 2 ) 因此M(t)=1-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}t-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}\frac{t^2}{2!}+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}t^2+o(t^2) 因此M(t)=1−2!(b−a+1)a(a−1)−(b+1)bt−2!(b−a+1)a(a−1)−(b+1)b2!t2+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)t2+o(t2) 又因为M ( t ) = M ( 0 ) + M ′ ( 0 ) t + M ′ ′ ( 0 ) 2 ! t 2 + o ( t 2 ) 又因为M(t)=M(0)+M'(0)t+\frac{M''(0)}{2!}t^2+o(t^2) 又因为M(t)=M(0)+M′(0)t+2!M′′(0)t2+o(t2) 因此M ′ ( 0 ) = − a ( a − 1 ) − ( b + 1 ) b 2 ! ( b − a + 1 ) = a + b 2 因此M'(0)=-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}=\frac{a+b}{2} 因此M′(0)=−2!(b−a+1)a(a−1)−(b+1)b=2a+b E X = M ′( 0 ) = a + b 2 EX=M'(0)=\frac{a+b}{2} EX=M′(0)=2a+b 而M ′ ′ ( 0 ) = 2 ! ∗ ( − a ( a − 1 ) − ( b +1 ) b 4 ( b − a + 1 ) + ( b + 1 ) b ( b − 1 ) − a ( a − 1 ) ( a −2 )3 ! ( b − a + 1 ) ) 而M''(0)=2!*(-\frac{a(a-1)-(b+1)b}{4(b-a+1)}+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}) 而M′′(0)=2!∗(−4(b−a+1)a(a−1)−(b+1)b+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)) = a + b 2 + ( b + 1 − a ) ( b 2 + a b − b + a 2 − 2 a ) 3 ( b − a + 1 ) =\frac{a+b}{2}+\frac{(b+1-a)(b^2+ab-b+a^2-2a)}{3(b-a+1)} =2a+b+3(b−a+1)(b+1−a)(b2+ab−b+a2−2a) = a + b 2 + b 2 + a b − b + a 2 − 2 a 3=\frac{a+b}{2}+\frac{b^2+ab-b+a^2-2a}{3} =2a+b+3b2+ab−b+a2−2a = 2 a 2 + 2 b 2 + 2 a b + b − a 6 =\frac{2a^2+2b^2+2ab+b-a}{6} =62a2+2b2+2ab+b−a D X = E X 2 − ( E X ) 2 = M ′ ′ ( 0 ) − ( E X ) 2DX=EX^2-(EX)^2=M''(0)-(EX)^2DX=EX2−(EX)2=M′′(0)−(EX)2 = 2 a 2 + 2 b 2 + 2 a b + b − a 6 − a 2 + 2 a b + b 2 4=\frac{2a^2+2b^2+2ab+b-a}{6}-\frac{a^2+2ab+b^2}{4}=62a2+2b2+2ab+b−a−4a2+2ab+b2 = ( b − a + 1 ) 2 − 1 12 =\frac{(b-a+1)^2-1}{12} =12(b−a+1)2−12、伯努利分布/两点分布(Bernoulli distribution)若 X 服从伯努利分布 B ( 1 , p ) , 则 X 满足 P ( x = 1 ) = p , P ( x = 0 ) = 1 − p = q 若X服从伯努利分布B(1,p) ,则X满足P(x=1)=p, P(x=0)=1-p=q 若X服从伯努利分布B(1,p),则X满足P(x=1)=p,P(x=0)=1−p=q M ( t ) = p e t + 1 − p M(t)=pe^{t}+1-p M(t)=pet+1−p φ ( t ) = p e i t + 1 − p \varphi(t)=pe^{it}+1-pφ(t)=peit+1−p M ′ ( t ) = p e t M'(t)=pe^{t}M′(t)=pet E X = M ′ ( 0 ) = p EX=M'(0)=p EX=M′(0)=pM ′ ′ ( t ) = p e t M''(t)=pe^{t} M′′(t)=pet E X 2 = M ′ ′ ( 0 ) = p EX^{2}=M''(0)=p EX2=M′′(0)=p D X = E X 2 − ( E X ) 2 = p ( 1 − p ) DX=EX^{2}-(EX)^{2}=p(1-p) DX=EX2−(EX)2=p(1−p)3、二项分布(Binomial distribution)若 X 服从二项分布 B ( n , p ) , 则 X 满足 f ( k ; n , p ) = P ( x = k ) = C n k p k ( 1 − p ) n − k ( n 为整数 ) 若X服从二项分布B(n,p) ,则X满足f(k;n,p)=P(x=k)=C_{n}^{k}p^k(1-p)^{n-k} (n为整数) 若X 服从二项分布B(n,p),则X满足f(k;n,p)=P(x=k)=Cnkpk(1−p)n−k(n为整数) 因为服从二项分布的变量可以看作 n 个独立相同的服从伯努利分布的变量之和因为服从二项分布的变量可以看作n个独立相同的服从伯努利分布的变量之和因为服从二项分布的变量可以看作n个独立相同的服从伯努利分布的变量之和因此M ( t ) = ( p e t + 1 − p ) n 因此M(t)=(pe^{t}+1-p)^{n} 因此M(t)=(pet+1−p)n φ ( t ) = ( p e i t + 1 − p ) n \varphi(t)=(pe^{it}+1-p)^{n}φ(t)=(peit+1−p)n M ′ ( t ) = n p ( p e t + 1 − p ) n − 1 e t M'(t)=np(pe^{t}+1-p)^{n-1}e^{t}M′(t)=np(pet+1−p)n−1et E X = M ′ ( 0 ) = n pEX=M'(0)=np EX=M′(0)=np M ′ ′ ( t ) = n ( n − 1 )p 2 ( p e t + 1 − p ) n − 2 e 2 t + n p ( p e t + 1 − p ) n − 1 e t M''(t)=n(n-1)p^{2}(pe^{t}+1-p)^{n-2}e^{2t}+np(pe^{t}+1-p)^{n-1}e^{t}M′′(t)=n(n−1)p2(pet+1−p)n−2e2t+np(pet+1−p)n−1et E X 2 = M ′ ′ ( 0 ) = n ( n − 1 ) p 2 + n pEX^{2}=M''(0)=n(n-1)p^{2}+np EX2=M′′(0)=n(n−1)p2+npD X =E X 2 − ( E X ) 2 = n p ( 1 − p ) DX=EX^{2}-(EX)^{2}=np(1-p) DX=EX2−(EX)2=np(1−p)4、几何分布(Geometric distribution)若 X 服从几何分布 G e ( p ) , 则 X 满足 f ( k ; p ) = P ( x = k ) = ( 1 − p ) k − 1 p ( k = 1 , 2 , 3...... ) 若X服从几何分布Ge(p), 则X满足f(k;p)=P(x=k)=(1-p)^{k-1}p (k=1,2,3......) 若X服从几何分布Ge(p),则X满足f(k;p)=P(x=k)=(1−p)k−1p(k=1,2,3......) M ( t ) = ∑ k = 1 ∞ ( 1 − p ) k − 1 p e t kM(t)=\sum_{k=1}^{\infin}(1-p)^{k-1}pe^{tk}M(t)=k=1∑∞(1−p)k−1petk = p e t ∑ k = 1 ∞ ( ( 1 − p ) e t ) k − 1 =pe^{t}\sum_{k=1}^{\infin}((1-p)e^t)^{k-1} =petk=1∑∞((1−p)et)k−1 = p e t 1 −( 1 − p ) e t =\frac{pe^{t}}{1-(1-p)e^{t}}=1−(1−p)etpet φ ( t ) = ∑ k = 1 ∞ ( 1 − p ) k −1 p e i t k \varphi(t)=\sum_{k=1}^{\infin}(1-p)^{k-1}pe^{itk} φ(t)=k=1∑∞(1−p)k−1peitk = p e i t ∑ k = 1 ∞ ( ( 1 − p ) e i t ) k − 1=pe^{it}\sum_{k=1}^{\infin}((1-p)e^{it})^{k-1}=peitk=1∑∞((1−p)eit)k−1 = p e i t 1 − ( 1 − p ) e i t =\frac{pe^{it}}{1-(1-p)e^{it}} =1−(1−p)eitpeit M ′ ( t ) = p e t ( 1 − ( 1 − p ) e t ) 2M'(t)=\frac{pe^t}{(1-(1-p)e^t)^2}M′(t)=(1−(1−p)et)2pet E X = M ′ ( 0 ) = 1 pEX=M'(0)=\frac{1}{p} EX=M′(0)=p1 M ′ ′ ( t ) = p e t ( e t − p e t + 1 ) ( 1 − ( 1 − p ) e t ) 3M''(t)=\frac{pe^t(e^t-pe^t+1)}{(1-(1-p)e^t)^3}M′′(t)=(1−(1−p)et)3pet(et−pet+1) E X 2 = M ′ ′( 0 ) = 2 − p p 2 EX^{2}=M''(0)=\frac{2-p}{p^2}EX2=M′′(0)=p22−p D X = E X 2 − ( E X ) 2 = 1 − p p 2 DX=EX^{2}-(EX)^{2}=\frac{1-p}{p^2}DX=EX2−(EX)2=p21−p5、负二项分布(Negative binomial distribution)若 X 服从负二项分布 N B ( r , p ) , 则 X 满足 f ( k ; r , p ) = ( k + r − 1 k ) p k ( 1 − p ) r , k = 0 , 1 , 2 , 3...... 若X服从负二项分布NB(r,p), 则X满足f(k;r,p)=\binom{k+r-1}{k}p^{k}(1-p)^{r} ,k=0,1,2,3...... 若X服从负二项分布NB(r,p),则X满足f(k;r,p)=(kk+r−1)pk(1−p)r,k=0,1,2,3...... ( r 可以为实数,此时的分布称为波利亚分布 ) (r可以为实数,此时的分布称为波利亚分布) (r可以为实数,此时的分布称为波利亚分布) M ( t ) = ∑ k = 0 ∞ ( k +r − 1 k ) p k ( 1 − p ) r e t kM(t)=\sum_{k=0}^{\infin}\binom{k+r-1}{k}p^k(1-p)^re^{tk} M(t)=k=0∑∞(kk+r−1)pk(1−p)retk = ∑ k = 0 ∞ ( − 1 ) k ( − r k ) p k ( 1 − p ) r e t k=\sum_{k=0}^{\infin}(-1)^k\binom{-r}{k}p^k(1-p)^re^{tk} =k=0∑∞(−1)k(k−r)pk(1−p)retk = ∑ k = 0 ∞ ( − p e t ) k ( − r k ) ( 1 − p ) r =\sum_{k=0}^{\infin}(-pe^t)^k\binom{-r}{k}(1-p)^r =k=0∑∞(−pet)k(k−r)(1−p)r = ( 1 − p ) r ∑ k = 0 ∞ ( − p e t ) k( − r k ) 1 − r − k =(1-p)^r\sum_{k=0}^{\infin}(-pe^t)^k\binom{-r}{k}1^{-r-k} =(1−p)rk=0∑∞(−pet)k(k−r)1−r−k = ( 1 − p ) r ( 1 − p e t ) −r =(1-p)^r(1-pe^t)^{-r} =(1−p)r(1−pet)−r φ ( t ) = ∑ k = 0 ∞ ( k + r − 1 k ) p k ( 1 − p ) r e i t k \varphi(t)=\sum_{k=0}^{\infin}\binom{k+r-1}{k}p^k(1-p)^re^{itk} φ(t)=k=0∑∞(kk+r−1)pk(1−p)reitk = ∑ k = 0 ∞ ( − 1 ) k ( − r k ) p k ( 1 − p ) r e i t k =\sum_{k=0}^{\infin}(-1)^k\binom{-r}{k}p^k(1-p)^re^{itk} =k=0∑∞(−1)k(k−r)pk(1−p)reitk = ∑ k = 0 ∞ ( − p e i t ) k ( − r k ) ( 1 − p ) r=\sum_{k=0}^{\infin}(-pe^{it})^k\binom{-r}{k}(1-p)^r=k=0∑∞(−peit)k(k−r)(1−p)r = ( 1 − p ) r ∑ k = 0 ∞ ( − p e i t ) k ( − r k ) 1 − r − k =(1-p)^r\sum_{k=0}^{\infin}(-pe^{it})^k\binom{-r}{k}1^{-r-k} =(1−p)rk=0∑∞(−peit)k(k−r)1−r−k = ( 1 − p ) r ( 1 − p e i t ) − r =(1-p)^r(1-pe^{it})^{-r}=(1−p)r(1−peit)−r M ′ ( t ) = ( 1 − p ) r ( − r ) ( 1 − p e t ) − r − 1 ( − p e t ) M'(t)=(1-p)^r(-r)(1-pe^{t})^{-r-1}(-pe^t)M′(t)=(1−p)r(−r)(1−pet)−r−1(−pet) = r p ( 1 −p ) r e t ( 1 − p e t ) − r − 1 =rp(1-p)^re^t(1-pe^t)^{-r-1} =rp(1−p)ret(1−pet)−r−1 E X = M ′( 0 ) = r p 1 − p EX=M'(0)=\frac{rp}{1-p}EX=M′(0)=1−prp M ′ ′ ( t ) = r p ( 1 − p ) r e t ( 1 − p e t ) − r − 1 + r p ( 1 − p ) r e t ( − r − 1 ) ( 1 − p e t ) − r − 2 ( − p e t )M''(t)=rp(1-p)^re^t(1-pe^t)^{-r-1}+rp(1-p)^re^t(-r-1)(1-pe^t)^{-r-2}(-pe^t)M′′(t)=rp(1−p)ret(1−pet)−r−1+rp(1−p)ret(−r−1) (1−pet)−r−2(−pet) E X 2 = r p ( 1 − p ) − 1 + r ( r + 1 ) p 2 ( 1 − p ) − 2 EX^2=rp(1-p)^{-1}+r(r+1)p^2(1-p)^{-2}EX2=rp(1−p)−1+r(r+1)p2(1−p)−2 = r p ( 1 − p ) + r ( r + 1 ) p 2 ( 1 − p ) 2 =\frac{rp(1-p)+r(r+1)p^2}{(1-p)^2} =(1−p)2rp(1−p)+r(r+1)p2 = r p + r 2 p 2 ( 1 − p ) 2 =\frac{rp+r^2p^2}{(1-p)^2}=(1−p)2rp+r2p2 D X = E X 2 − ( E X ) 2 = p r ( 1 −p ) 2 DX=EX^2-(EX)^2=\frac{pr}{(1-p)^2}DX=EX2−(EX)2=(1−p)2pr6、泊松分布(Poisson distribution)若 X 服从泊松分布P ( λ ) , 则 P ( X = k ) = e− λ λ k k ! , k = 0 , 1 , 2...... 若X服从泊松分布P(\lambda),则P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!},k=0,1,2...... 若X服从泊松分布P(λ),则P(X=k)=k!e−λλk,k=0,1,2...... M ( t ) = ∑k = 0 ∞ e − λ λ k k ! e t kM(t)=\sum_{k=0}^{\infin}\frac{e^{-\lambda}\lambda^k}{k!}e^{tk} M(t)=k=0∑∞k!e−λλketk = e − λ ∑ k = 0 ∞ ( λ e t ) k k ! =e^{-\lambda}\sum_{k=0}^{\infin}\frac{(\lambda e^t)^k}{k!} =e−λk=0∑∞k!(λe t)k = e − λ e λ e t =e^{-\lambda}e^{\lambda e^t} =e−λeλet= e λ ( e t − 1 ) =e^{\lambda (e^t-1)} =eλ(et−1) φ ( t ) = ∑ k = 0∞ e − λ λ k k ! e i t k\varphi(t)=\sum_{k=0}^{\infin}\frac{e^{-\lambda}\lambda^k}{k!}e^{itk} φ(t)=k=0∑∞k!e−λλk eitk = e − λ ∑ k = 0 ∞ ( λ e i t ) k k ! =e^{-\lambda}\sum_{k=0}^{\infin}\frac{(\lambdae^{it})^k}{k!} =e−λk=0∑∞k!(λe it)k = e − λ e λ e i t =e^{-\lambda}e^{\lambda e^{it}} =e−λeλeit = e λ ( e i t − 1 ) =e^{\lambda (e^{it}-1)} =eλ(eit−1) M ′ ( t ) = e λ ( e t − 1 ) λ e t M'(t)=e^{\lambda (e^t-1)}\lambda e^t M′(t)=eλ(et−1)λe t E X = M ′ ( 0 ) = λ EX=M'(0)=\lambda EX=M′(0)=λM ′ ′ ( t ) = e λ ( e t − 1 ) λ e t + e λ ( e t − 1 ) λ e tλ e t M''(t)=e^{\lambda (e^t-1)}\lambdae^t+e^{\lambda (e^t-1)}\lambda e^t\lambda e^tM′′(t)=eλ(et−1)λe t+eλ(et−1)λe tλe t E X 2 =M ′ ′ ( 0 ) = λ + λ 2EX^2=M''(0)=\lambda+\lambda^2 EX2=M′′(0)=λ+λ2 D X = E X 2 − ( E X ) 2 = λ DX=EX^2-(EX)^2=\lambdaDX=EX2−(EX)2=λ三、连续型随机变量的分布1、连续型均匀分布(Uniform distribution (continuous))若 X 服从连续型均匀分布 U ( a , b ) , 则 f( x ) = 1 b − a I [ a , b ] ( x ) 若X服从连续型均匀分布U(a,b),则f(x)=\frac{1}{b-a}I_{[a,b]}(x) 若X服从连续型均匀分布U(a,b),则f(x)=b−a1I[a,b](x) M ( t ) = ∫ a b 1 b − a e t x d x M(t)=\int_{a}^{b}\frac{1}{b-a}e^{tx}dx M(t)=∫abb−a1etxdx = 1 b − a ∫ a b e t x d x =\frac{1}{b-a}\int_{a}^{b}e^{tx}dx =b−a1∫abetxdx = 1 b − a ( 1 t e t x ∣ a b ) =\frac{1}{b-a}(\frac{1}{t}e^{tx}\mid_{a}^{b}) =b−a1(t1etx∣ab) = e t b − e t a t ( b − a ) =\frac{e^{tb}-e^{ta}}{t(b-a)} =t(b−a)etb−eta φ ( t ) = ∫ a b 1 b − a e i t x d x \varphi(t)=\int_{a}^{b}\frac{1}{b-a}e^{itx}dxφ(t)=∫abb−a1eitxdx = 1 b − a ∫ a b e i t x d x=\frac{1}{b-a}\int_{a}^{b}e^{itx}dx =b−a1∫abeitxdx = 1 b − a ( 1 i t e i t x ∣ a b ) =\frac{1}{b-a}(\frac{1}{it}e^{itx}\mid_{a}^{b}) =b−a1(it1eitx∣ab) = e i t b − e i t a i t ( b − a ) =\frac{e^{itb}-e^{ita}}{it(b-a)} =it(b−a)eitb−eita M ′ ( t ) = 1 b − a ( b e t b − a e t a ) t − ( e t b − e t a ) t 2 M'(t)=\frac{1}{b-a}\frac{(be^{tb}-ae^{ta})t-(e^{tb}-e^{ta})}{t^2} M′(t)=b−a1t2(betb−aeta)t−(etb−eta) t = 0 为M ′ ( t ) 的可去间断点,补充定义M ′ ( 0 ) = lim t → 0 M ′ ( t ) t=0为M'(t)的可去间断点,补充定义M'(0)=\lim_{t\rightarrow0}M'(t) t=0为M′(t)的可去间断点,补充定义M′(0)=t→0limM′(t) E X = M ′ ( 0 ) = lim t → 0 ( b e t b − a e t a ) + ( b 2 e t b − a 2 e t a ) t − ( b e t b − a e ta ) 2 t (b − a )EX=M'(0)=\lim_{t\rightarrow0}\frac{(be^{tb}-ae^{ta})+(b^2e^{tb}-a^2e^{ta})t-(be^{tb}-ae^{ta})}{2t(b-a)} EX=M′(0)=t→0lim2t(b−a)(betb−aeta)+(b2etb−a2eta)t−(betb−aeta) = lim t → 0 ( b 2 e t b − a 2 e t a ) 2 ( b − a ) =\lim_{t\rightarrow0}\frac{(b^2e^{tb}-a^2e^{ta})}{2(b-a)} =t→0lim2(b−a)(b2etb−a2eta) = b 2 − a 2 2 ( b − a ) =\frac{b^2-a^2}{2(b-a)} =2(b−a)b2−a2 = a + b 2 =\frac{a+b}{2} =2a+b M ′ ′ ( t ) = 1 b − a ( ( b 2 e t b − a 2 e t a ) t + ( b e t b − a e t a ) −( b e t b − a e t a ) ) t − 2 ( ( b e t b − a e ta ) t − ( e tb − e t a ) ) t 3 M''(t)=\frac{1}{b-a}\frac{((b^2e^{tb}-a^2e^{ta})t+(be^{tb}-ae^{ta})-(be^{tb}-ae^{ta}))t-2((be^{tb}-ae^{ta})t-(e^{tb}-e^{ta}))}{t^3} M′′(t)=b−a1t3((b2etb−a2eta)t+(betb−aeta)−(betb−aeta))t−2((be tb−aeta)t−(etb−eta)) = 1 b − a t 2 ( b 2 e t b −a 2 e t a ) − 2 t (b e t b − a e t a ) + 2 ( e t b − e t a ) t 3 =\frac{1}{b-a}\frac{t^2(b^2e^{tb}-a^2e^{ta})-2t(be^{tb}-ae^{ta})+2(e^{tb}-e^{ta})}{t^3} =b−a1t3t2(b2etb−a2eta)−2t(betb−aeta)+2(etb−eta) t = 0 为M ′ ′ ( t ) 的可去间断点,补充定义M ′ ′ ( 0 ) = lim t → 0 M ′ ′ ( t ) t=0为M''(t)的可去间断点,补充定义M''(0)=\lim_{t\rightarrow0}M''(t) t=0为M′′(t)的可去间断点,补充定义M′′(0)=t→0limM′′(t) E X 2 =M ′ ′ ( 0 ) = lim t → 0 1 b − a t 2 ( b 3 e t b − a 3 e t a ) + 2 t ( b 2 e t b − a 2 e t a ) − 2 t ( b 2 e t b − a 2 e t a ) − 2 ( b e t b − a e t a ) + 2 ( b e t b − a e t a ) 3 t 2EX^2=M''(0)=\lim_{t\rightarrow0}\frac{1}{b-a}\frac{t^2(b^3e^{tb}-a^3e^{ta})+2t(b^2e^{tb}-a^2e^{ta})-2t(b^2e^{tb}-a^2e^{ta})-2(be^{tb}-ae^{ta})+2(be^{tb}-ae^{ta})}{3t^2}EX2=M′′(0)=t→0limb−a13t2t2(b3etb−a3eta)+2t(b2etb−a2eta)−2t(b2etb−a2eta)−2(betb−aeta)+2(betb−aeta) = 1 b − a lim t → 0 t 2 ( b 3 e t b − a 3 e t a ) 3 t 2 =\frac{1}{b-a}\lim_{t\rightarrow0}\frac{t^2(b^3e^{tb}-a^3e^{ta})}{3t^2} =b−a1t→0lim3t2t2(b3etb−a3eta) = 1 b − a lim t → 0 ( b 3 e t b − a 3 e t a ) 3=\frac{1}{b-a}\lim_{t\rightarrow0}\frac{(b^3e^{tb}-a^3e^{ta})}{3} =b−a1t→0lim3(b3etb−a3eta) = 1 b − a ( b 3 − a 3 ) 3 =\frac{1}{b-a}\frac{(b^3-a^3)}{3}=b−a13(b3−a3) = b 2 + a b + a 2 3=\frac{b^2+ab+a^2}{3} =3b2+ab+a2 D X = E X 2 − ( E X ) 2 = ( b − a ) 2 12 DX=EX^2-(EX)^2=\frac{(b-a)^2}{12} DX=EX2−(EX)2=12(b−a)22、指数分布(Exponential distribution)若 X 服从指数分布 E ( λ ) ,则 f ( x ) = λ e− λ x I [ 0 , + ∞ ) ( x ) 若X服从指数分布E(\lambda),则f(x)=\lambda e^{-\lambdax}I_{[0,+\infin)}(x) 若X服从指数分布E(λ),则f(x)=λe−λx I[0,+∞)(x) M ( t ) = ∫ 0 + ∞ λ e −λ x e t x d x M(t)=\int_{0}^{+\infin} \lambda e^{-\lambda x}e^{tx}dx M(t)=∫0+∞λe−λx etxdx = λ ∫ 0 + ∞ e ( t − λ ) x d x =\lambda \int_{0}^{+\infin} e^{(t-\lambda)x}dx =λ∫0+∞e(t−λ)xdx = λ t − λ ( e ( t − λ ) x ∣ 0 + ∞ ) =\frac{\lambda}{t-\lambda}(e^{(t-\lambda)x}\mid_{0}^{+\infin}) =t−λλ(e(t−λ)x∣0+∞) t < λ 时,M ( t ) = λ t − λ ( 0 − 1 ) t<\lambda时,M(t)=\frac{\lambda}{t-\lambda}(0-1) t<λ时,M(t)=t−λλ(0−1) = λ λ − t =\frac{\lambda}{\lambda-t} =λ−tλφ ( t ) = λ λ − i t \varphi(t)=\frac{\lambda}{\lambda-it}φ(t)=λ−itλM ′ ( t ) = λ ( λ − t ) 2M'(t)=\frac{\lambda}{(\lambda-t)^2} M′(t)=(λ−t)2λE X = M ′ ( 0 ) = 1 λ EX=M'(0)=\frac{1}{\lambda}EX=M′(0)=λ1 M ′ ′ ( t ) = 2 λ ( λ − t ) 3M''(t)=\frac{2\lambda}{(\lambda-t)^3}M′′(t)=(λ−t)32λ E X 2 = M ′ ′ ( 0 ) = 2 λ 2 EX^2=M''(0)=\frac{2}{\lambda^2} EX2=M′′(0)=λ22 D X = E X 2 − ( E X ) 2 = 1 λ 2 DX=EX^2-(EX)^2=\frac{1}{\lambda^2} DX=EX2−(EX)2=λ213、正态分布(Normal distribution)若 X 服从正态分布N ( μ , σ 2 ) , 则 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 若X服从正态分布N(\mu,\sigma^2),则f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} 若X服从正态分布N(μ,σ2),则f(x)=2πσ1e−2σ2(x−μ)2 引理 1 :∫ − ∞ + ∞ e − t 2 2 d t = 2 π 引理1:\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{2\pi} 引理1:∫−∞+∞e−2t2dt=2π证明:( ∫ − ∞ + ∞ e − t 2 2 d t ) 2 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − x 2 + y 2 2 d x d y 证明:(\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt)^2=\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}e^{-\frac{x^2+y^2}{2}}dxdy 证明:(∫−∞+∞e−2t2dt)2=∫−∞+∞∫−∞+∞e−2x2+y2dxdy = ∫ 0 2 π d θ ∫ 0 + ∞ e − r 2 2 r d r=\int_{0}^{2\pi}d\theta \int_{0}^{+\infin}e^{-\frac{r^2}{2}}rdr =∫02πdθ∫0+∞e−2r2rdr = 2 π ∫ 0 + ∞ e − r 2 2 r d r =2\pi \int_{0}^{+\infin}e^{-\frac{r^2}{2}}rdr =2π∫0+∞e−2r2rdr = 2 π ( − e −r 2 2 ∣0 + ∞ ) =2\pi (-e^{-\frac{r^2}{2}}\mid_{0}^{+\infin}) =2π(−e−2r2∣0+∞) = 2 π =2\pi =2π因此∫ − ∞ + ∞ e − t 2 2 d t = 2 π 因此\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{2\pi} 因此∫−∞+∞e−2t2dt=2πM ( t ) = ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 e t x d x M(t)=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}e^{tx}dx M(t)=∫−∞+∞2πσ1e−2σ2(x−μ)2etxdx = 1 2 π σ ∫ − ∞ + ∞ e −( x − μ ) 2 2 σ 2 + t x d x=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}+tx}dx =2πσ1∫−∞+∞e−2σ2(x−μ)2+txdx 令 w = x − μ σ 令w=\frac{x-\mu}{\sigma} 令w=σx−μ原式= 1 2 π ∫ − ∞ + ∞ e − w 2 2 + t ( w σ + μ ) d w 原式=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+t(w\sigma+\mu)}dw 原式=2π1∫−∞+∞e−2w2+t(wσ+μ)dw = e μ t 1 2 π ∫ − ∞ + ∞ e − w 2 2 + t σ w d w =e^{\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+t\sigma w}dw=eμt2π1∫−∞+∞e−2w2+tσw dw = e μ t 1 2 π ∫ − ∞ + ∞ e − ( w − t σ ) 2 − t 2 σ 2 2 d w =e^{\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-t\sigma)^2-t^2\sigma^2}{2}}dw=eμt2π1∫−∞+∞e−2(w−tσ)2−t2σ2dw = e μ t + t 2 σ 2 2 1 2 π ∫ − ∞ + ∞ e − ( w − t σ ) 2 2 d w=e^{\mut+\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-t\sigma)^2}{2}}dw=eμt+2t2σ22π1∫−∞+∞e−2(w−tσ)2dw = e μ t + t 2 σ 2 2 1 2 π 2 π =e^{\mut+\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\sqrt{2\p i} =eμt+2t2σ22π12π= e μ t + t 2 σ 2 2 =e^{\mu t+\frac{t^2\sigma^2}{2}} =eμt+2t2σ2 φ ( t ) = ∫ − ∞ + ∞ 1 2 π σ e −( x − μ ) 2 2 σ 2 e i t x d x \varphi(t)=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}e^{itx}dx φ(t)=∫−∞+∞2πσ1e−2σ2(x−μ)2eitxdx = 1 2 π σ ∫ − ∞ + ∞ e − ( x − μ ) 2 2 σ 2 + i t x d x=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}+itx}dx=2πσ1∫−∞+∞e−2σ2(x−μ)2+itxdx 令 w = x − μ σ 令w=\frac{x-\mu}{\sigma} 令w=σx−μ原式= 1 2 π ∫ − ∞ + ∞ e − w 2 2 + i t ( w σ + μ ) d w 原式=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+it(w\sigma+\mu)}dw 原式=2π1∫−∞+∞e−2w2+it(wσ+μ)dw = e i μ t 1 2 π ∫ −∞ + ∞ e − w 2 2 + i t σ w d w =e^{i\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+it\sigma w}dw=e iμt2π1∫−∞+∞e−2w2+itσw dw = e i μ t 1 2 π ∫ − ∞ + ∞ e − ( w − i t σ ) 2 + t 2 σ 2 2 d w =e^{i\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-it\sigma)^2+t^2\sigma^2}{2}}dw=e iμt2π1∫−∞+∞e−2(w−itσ)2+t2σ2dw = e i μ t − t 2 σ 2 2 1 2 π ∫ − ∞ + ∞ e − ( w − i t σ ) 2 2 d w =e^{i\mu t-\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-it\sigma)^2}{2}}dw=e iμt−2t2σ22π1∫−∞+∞e−2(w−itσ)2dw = e i μ t − t 2 σ 2 2 12 π 2 π =e^{i\mu t-\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\sqrt{2\pi} =e iμt−2t2σ22π12π= e i μ t − t 2 σ 2 2 =e^{i\mu t-\frac{t^2\sigma^2}{2}} =e iμt−2t2σ2 M ′ ( t ) = eμ t + t 2 σ 2 2 ( μ + σ 2 t ) M'(t)=e^{\mut+\frac{t^2\sigma^2}{2}}(\mu+\sigma^2t)M′(t)=eμt+2t2σ2(μ+σ2t) E X = M ′ ( 0 ) = μEX=M'(0)=\mu EX=M′(0)=μM ′ ′ ( t ) = e μ t + t 2 σ 2 2 ( μ + σ 2 t ) 2 + e μ t + t 2 σ 2 2 σ 2M''(t)=e^{\mut+\frac{t^2\sigma^2}{2}}(\mu+\sigma^2t)^2+e^{\mut+\frac{t^2\sigma^2}{2}}\sigma^2 M′′(t)=eμt+2t2σ2 (μ+σ2t)2+eμt+2t2σ2σ2 E X 2 = M ′ ′ ( 0 ) = μ 2 + σ 2 EX^2=M''(0)=\mu^2+\sigma^2 EX2=M′′(0)=μ2+σ2 D X = E X 2 − ( E X ) 2 = σ 2 DX=EX^2-(EX)^2=\sigma^2 DX=EX2−(EX)2=σ2 特别地 , X 服从标准正态分布 N ( 0 , 1 ) 时特别地,X服从标准正态分布N(0,1)时特别地,X服从标准正态分布N(0,1)时 M ( t )= e t 2 2 M(t)=e^{\frac{t^2}{2}} M(t)=e2t2 φ ( t ) = e − t 2 2 \varphi(t)=e^{-\frac{t^2}{2}} φ(t)=e−2t2 E X = 0 , D X = 1 EX=0,DX=1 EX=0,DX=14、伽马分布(Gamma distribution)若 X 服从伽马分布Γ ( α , β ) ( α , β > 0 ) , 则 f ( x ) = β α Γ ( α ) x α − 1 e − β x I( 0 , + ∞ ) ( x ) 若X服从伽马分布\Gamma(\alpha,\beta)(\alpha,\beta>0),则f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}I_{(0,+\infin)}(x) 若X服从伽马分布Γ(α,β)(α,β>0),则f(x)=Γ(α)βαxα−1e−βx I(0,+∞)(x) 其中,Γ ( α ) = ∫ 0 + ∞ t α − 1 e − t d t , α > 0 其中,\Gamma(\alpha)=\int_{0}^{+\infin}t^{\alpha-1}e^{-t}dt,\alpha>0 其中,Γ(α)=∫0+∞tα−1e−tdt,α>0 指数分布 E ( λ ) 是伽马分布Γ ( 1 , λ ) , χ 2 分布χ n 2 是伽马分布Γ ( n 2 , 1 2 ) 指数分布E(\lambda)是伽马分布\Gamma(1,\lambda),\chi^2分布\chi^2_n是伽马分布\Gamma(\frac{n}{2},\frac{1}{2}) 指数分布E(λ)是伽马分布Γ(1,λ),χ2分布χn2是伽马分布Γ(2n,21) M ( t ) = ∫ 0 + ∞ β α Γ ( α ) x α −1 e − β x e t x d xM(t)=\int_{0}^{+\infin}\frac{\beta^\alpha}{\Gamma(\alp ha)}x^{\alpha-1}e^{-\beta x}e^{tx}dx M(t)=∫0+∞Γ(α)βαxα−1e−βx etxdx = ∫ 0 + ∞ β α Γ ( α ) x α − 1 e ( t − β ) x d x=\int_{0}^{+\infin}\frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1}e^{(t-\beta) x}dx =∫0+∞Γ(α)βαxα−1e(t−β)xdx = β α ∫ 0 + ∞ 1 Γ ( α ) x α− 1 e ( t − β ) x d x=\beta^\alpha\int_{0}^{+\infin}\frac{1}{\Gamma(\alpha) }x^{\alpha-1}e^{(t-\beta) x}dx =βα∫0+∞Γ(α)1xα−1e(t−β)xdx t < β 时,令v = ( β − t ) x ,原式= β α β − t ∫ 0 + ∞ 1 Γ ( α ) ( v β −t ) α − 1 e − v d v t<\beta时,令v=(\beta-t)x,原式=\frac{\beta^\alpha}{\beta-t}\int_{0}^{+\infin}\frac{1}{\Gamma(\alpha)}(\frac{v}{ \beta-t})^{\alpha-1}e^{-v}dv t<β时,令v=(β−t)x,原式=β−tβα∫0+∞Γ(α)1(β−tv)α−1e−vdv = ( β β − t ) α 1 Γ ( α ) ∫ 0 + ∞ v α − 1 e − v d v =(\frac{\beta}{\beta-t})^\alpha\frac{1}{\Gamma(\alpha)}\int_{0}^{+\infin}v^ {\alpha-1}e^{-v}dv =(β−tβ)αΓ(α)1∫0+∞vα−1e−vdv = ( β β − t ) α 1 Γ ( α ) Γ ( α ) =(\frac{\beta}{\beta-t})^\alpha\frac{1}{\Gamma(\alpha)}\Gamma(\alpha)=(β−tβ)αΓ(α)1Γ(α) = ( β β − t ) α=(\frac{\beta}{\beta-t})^\alpha =(β−tβ)αφ ( t ) = ( β β − i t ) α \varphi(t)=(\frac{\beta}{\beta-it})^\alpha φ(t)=(β−itβ)αM ′ ( t ) = β α ( β − t ) − α − 1 α M'(t)=\beta^\alpha(\beta-t)^{-\alpha-1}\alpha M′(t)=βα(β−t)−α−1α E X = M ′ ( 0 ) = α β EX=M'(0)=\frac{\alpha}{\beta}EX=M′(0)=βαM ′ ′ ( t ) = β α ( β − t ) − α − 2 α ( α + 1 ) M''(t)=\beta^\alpha(\beta-t)^{-\alpha-2}\alpha(\alpha+1)M′′(t)=βα(β−t)−α−2α(α+1) E X 2 = α ( α + 1 ) β 2 EX^2=\frac{\alpha(\alpha+1)}{\beta^2}EX2=β2α(α+1) D X = E X 2 − ( E X ) 2 = α β 2。
特征函数与矩母函数特征函数和矩母函数是概率论和数理统计中常用的工具,用于描述随机变量的性质和分布。
它们在统计推断、参数估计、假设检验等方面发挥着重要作用。
本文将详细解释特征函数和矩母函数的定义、用途和工作方式,并给出一些实际应用的例子。
1. 特征函数(Characteristic Function)1.1 定义特征函数是一个复数值函数,对于一个随机变量X,其特征函数定义为:ϕX(t)=E[e itX]其中,t是实数,i是虚数单位。
1.2 用途特征函数可以完整地描述一个随机变量的分布性质。
它包含了所有阶的矩信息,并且唯一地确定了随机变量的分布。
通过特征函数可以计算出随机变量的均值、方差、偏度、峰度等统计量。
1.3 工作方式给定一个随机变量X,我们可以通过求解期望来计算其特征函数。
首先,我们将复指数项展开为正弦和余弦项:e itX=cos(tX)+isin(tX)然后,取期望得到特征函数:ϕX(t)=E[cos(tX)]+iE[sin(tX)]特征函数的实部和虚部分别是随机变量的余弦和正弦分布的特征函数。
2. 矩母函数(Moment Generating Function)2.1 定义矩母函数是一个实数值函数,对于一个随机变量X,其矩母函数定义为:M X(t)=E[e tX]2.2 用途矩母函数同样可以用于描述随机变量的性质和分布。
通过矩母函数可以计算出随机变量的矩信息,如均值、方差、偏度、峰度等统计量。
2.3 工作方式与特征函数类似,我们可以通过求解期望来计算随机变量的矩母函数。
将指数项展开为幂级数:e tX=∑(tX)n n!∞n=0然后取期望得到矩母函数:M X(t)=E[∑(tX)n n!∞n=0]=∑t n E[X n]n!∞n=0矩母函数的n阶导数在t=0处的值等于随机变量的n阶原点矩。
3. 特征函数与矩母函数的关系特征函数和矩母函数之间存在着紧密的联系。
通过特征函数可以推导出矩母函数,反之亦然。
特征函数和矩母函数课件
什么是特征函数?
特征函数是一种连续变量,用来表示给定概率分布的连续特征。
它们借助独特的函数结构来帮助理解该分布的性质。
一般情况下,特征函数被定义为概率密度函数的积分或积分的产物,其中使用的是一组实数序列λ1,λ2,...,λn,称为参数。
它也可以考虑为对概率密度函数的一种广义函数格式的描述。
矩母函数是一种特征函数,用于根据一定的参数描述和控制一组数据的变化模式。
它也被称为矩函数或越积函数,其基本定义为一个有限个参数的多项式,由此引出一组非负实数。
矩母函数拥有独特的性质和拓扑表示,对概率密度函数进行信息可视化具有重要意义。
它也常用于表示一个系统中细胞的状态等普遍现象。
浅析特征函数、母函数的概念教学及其应用
申广君
(安徽师范大学 数学计算机科学学院,安徽 芜湖 241003)
[摘 要] 正确认识和理解基本概念是学好概率论的前提和基础。
本文浅析了对特征函数、母函数的概念的认识和理解,并举例说明了它们在解决问题中的应用。
[关键词 特征函数 母函数 应用
[中图分类号]O174 [文献标识码]A 概率论是研究随机现象统计规律的一门数学分科,用随机变量来描述随机现象,使得概率论从研究定性的事件及其概率扩大为研究定量的随机变量及其分布,从而扩充了研究概率论的数学工具,特别是便于使用经典分析工具,使得概率论真正成为一门数学学科。
分布函数是用来完整地描述随机变量分布规律(取值及取值规律)的最基本的方法,特征函数是概率论中的一个重要分析工具,它和分布函数之间存在一一对应的关系,可以使用特征函数来分析研究随机变量,并且可以大大简化有关随机变量的一些计算和证明,然而在研究仅取非负整数值的随机变量时,以母函数代替特征函数比较方便。
可是在教学过程中发现,不少学生对特征函数和母函数的概念没有正确认识,甚至出现一些错误的认识和理解,从而导致计算的盲目性。
本文主要探讨了对特征函数与母函数的概念的认识和理解,并通过实例介绍了它们的一些应用,以期对学习概率论能起到一定的指导作用。
一、特征函数
(一)特征函数的定义及性质
设X 是一个实值随机变量,其分布函数为)(x F ,则称itX
e
的数学期望itX
Ee
为随机变
量X 或其分布函数)(x F 的特征函数,记为)(t X ϕ,即)()(x dF e Ee
t itX itX
X ⎰+∞∞
-==ϕ,其
中1-=i , R t ∈。
分析 按照定义,特征函数是一个实变量的复值函数。
由于对任意实数R t ∈,都有
1)(sin )(cos ||22=+=tX tX e itX ,所以任何随机变量的特征函数总是存在的。
并且它能把
寻求独立随机变量和的分布的卷积运算(积分运算)转换成乘法运算,还能把求分布的各阶原点矩(积分运算)转换成微分运算,特别地它能把寻求随机变量序列的极限分布转换成一般的函数极限问题。
下面介绍特征函数的主要性质 性质1 如果随机变量n X X X ,...,,21相互独立,则有∏==∑
=n
i X X t t i n
i i
1
)()(1
ϕϕ。
分析 特征函数的这一性质在证明随机变量列的极限问题时将发挥重要作用,然而这一性质的逆不成立。
在教学中我们举如下例子来说明逆不成立,以此来加深学生对此性质的理解。
例1设二维随机变量),(Y X 的联合密度函数为
⎪⎩
⎪⎨⎧<<-+=.,01||,1||)],(1[41
),(22其他;
y x y x xy y x p ,
可以证明Y X +的特征函数等于Y X ,的特征函数的乘积,但是X 与Y 并不相互独立。
性质2 如果随机变量X 有n 阶(原点)矩,则它的特征函数可微分n 次,并且有
n k i EX k X k k ,...,2,1),0()()
(=-=ϕ 成立。
分析 性质2表明,如果已知随机变量的特征函数,且其矩存在,则可以通过对特征函数微分来求得随机变量的矩,这比由分布函数通过积分求矩要简单的多。
(二)特征函数的应用举例
1求独立随机变量和的分布的卷积运算(积分运算)转换成乘法运算
在概率论中,独立随机变量和的问题占有“中心”地位,用卷积公式去处理独立随机变量和的问题是常用的方法但相当复杂,然而可以很方便的运用特征函数相乘求得独立随机变量和的特征函数,由此大大简化了处理独立随机变量和的难度。
例2 设随机变量j X 服从二项分布),(p n B j , j=1,…,m, 且相互独立,求证∑=m
j j
X
1
服
从二项分布),(
1
p n B m
j j ∑=。
分析 可以使用卷积公式通过复杂的计算证明二项分布的上述可加性(例如,参见文献[1]), 现在用特征函数方法可以很方便地证明二项分布的可加性。
证明 因为j X 服从二项分布),(p n B j ,它的特征函数为
.,...,2,1,)()(m j q pe t j
j
n it
X =+=ϕ 由于m X X ,...,1相互独立,所以,根据性质1有∑=m
j j
X 1
的特征函数为∑+==∑==∏=m
j j
j m
j j
n it
m
j X X q pe t t 1
1
)
()()(1
ϕϕ
,由唯一性定理知
∑=m
j j
X
1
服从二项分
布),(
1
p n B m
j j ∑=。
2.求分布的各阶原点矩(积分运算)转换成微分运算
例3 利用特征函数的方法求伽玛分布Ga (λα,)的数学期望和方差。
解 因为伽玛分布Ga (λα,)的特征函数及其一、二阶导数为αλ
ϕ--=)1()(it
t ,
;)0(,)1()(/1/λαϕλλαϕαi
it i t =-=--
;)1()0(,)1()1()(2
//222//
λ
ααϕλλααϕα+-=-+=--it i t 所以,根据性质2有 λ
αϕ=
=
i
EX )
0(/,22
///))0(()0(λαϕϕ=+-=DX .
3.求随机变量序列的极限分布转换成一般的函数极限问题
例4 (辛钦大数定律)]2[ 设,...2,1,=n X n 是独立同分布的随机变量列。
如果n X 的数学期望存在,a EX n =(与n 无关),则对任意的0>ε,有
1)|1(|lim 1
=<-∑=∞→εn
k k n a X n P 。
证明 由于1)|1(|lim 1=<-∑=∞→εn k k n a X n P 等价于∑==n
k k n X n Y 1
1以分布收敛于a 。
再
根据连续性定理,只要证 )()(∞→→n e t iat
Y n ϕ。
设)1(≥n X n 的共同的特征函数为
)(t ϕ。
根据性质2,ia iEX ==1/)0(ϕ,从而 )(t ϕ有泰勒展开式
)(1)()0()0()(/
t o iat t o t t ++=++=ϕϕϕ。
所以∑==n k k n X n Y 1
1的特征函数为
n n n t o n iat n t )](1[)]([++=ϕ。
故有iat n n e n
t =∞→)]([lim ϕ,即)()(∞→→n e t iat Y n ϕ。
二、 母函数
1 母函数的概念及其性质
]
3[
设随机变量X 的分布列为,...)2,1,0)((===k k X P p k ,其中
10
=∑∞
=k k
p
,称
∑∞
===0
)(k k k X
s p Es s P 为随机变量X 的母函数。
性质3 非负整数值随机变量的分布列由其母函数唯一确定。
性质4 独立随机变量之和的母函数等于它们母函数的乘积。
2. 母函数的应用举例
例5 从装有号码为1,2,3,4,5,6的小球的袋中,有放回地抽取5个球,求所得号码总和为15的概率。
解 令i X 为第i 次取得的小球的号码,且i X 相互独立,521...X X X X +++=为所取球号码的总和。
i X 的母函数为 )...(6
1
)(62s s s s P i +++=
,根据性质4有,X 的母函数为556555625)1()1(6
)...(61)(---=+++=s s s s s s s P ,所求概率为)(s P 展开式的15
s 的
系数,因此56
651
)15(==X P 。
分析 针对上述古典概型问题,很多教科书都使用排列、组合的方法来求解,计算比较复杂,而且在有些复杂场合排列、组合的方法难以凑效。
从例5的求解中可以看到,利用母函数求取非负整数值随机变量的概率问题比较简便。
关于利用母函数方法求解古典概率问题,读者可参见文献[4],[5]等。
[参考文献]
[1]茆诗松,程依明,濮晓龙. 概率论与数理统计教程[M]. 北京:高等教育出版社,2004.
[2]丁万鼎,刘寿喜 等. 概率论与数理统计[M]. 上海:上海科学技术出版社,1987. [3]王志刚. 应用随机过程[M]. 合肥:中国科学技术大学出版社,2009. [4]朱松涛,唐秋晶. 利用母函数方法求解古典概率问题[J]. 济宁师专学报, 1997(3): 13-15.
[5]农吉夫. 概率母函数在求非负整数值随机变量分布的应用[J].大学数学, 2009(4):203-206.。