板翅式换热器封头对其流体分配及换热的影响
- 格式:pdf
- 大小:316.98 KB
- 文档页数:5
翅片式管翅式换热器流动换热性能比较研究摘要:随着制冷空调行业的发展,人们已经把注意力集中在高效、节能节材的紧凑式换热器的开发上,而翅片管式换热器正是制冷、空调领域中所广泛采用的一种换热器形式。
对于它的研究不仅有利于提高换热器的换热效率及其整体性能,而且对改进翅片换热器的设计型式,推出更加节能、节材的紧凑式换热器有着重要的指导意义。
由于翅片管式换热器在翅片结构形式和几何尺寸的不同,造成其换热性能和阻力性能上的极大差异。
本文概述目前国内外空调制冷行业中的普遍采用的几种不同翅片类型(平直翅片、波纹翅片、开缝翅片、百叶窗形翅片)的换热及压降实验关联式及其影响因素,对不同翅片形式的管翅式换热器的换热及压降特性的实验关联式进行总结,并对不同翅片的流动换热性能进行了比较。
正确地选用实验关联式及性能指标,将对翅片管式换热器的优化设计及其制造提供可靠的依据。
关键词:翅片形式;管翅式;换热器;关联式;流动换热性能1 绪论1.1课题背景及研究意义换热器是国民生产中的重要设备,其应用遍及动力、冶金、化工、炼油、建筑、机械制造、食品、医药及航空等各工业部门。
例如,过路热力系统中的过热器、省煤器、空气预热器、凝汽器、除氧器、给水加热器、冷却塔等;金属冶炼系统中的热风炉、空气或煤气预热器、废热锅炉等;制冷及低温系统中的蒸发器、冷凝器、回热器等;石油化工工业中广泛采用的加热及冷却设备等,制糖工业和造纸工业的糖液蒸发器和纸浆蒸发器,这些都是换热器应用的大量实例。
它不但是一种广泛应用的通用设备,并且在某些工业企业中占有很重要的地位。
例如在是有化工工厂中,它的投资要占到整个建厂投资的1/5左右,它的重量站工艺设备总重的40%;在年产30万吨的乙烯装置中,它的投资站总投资的25%。
由于世界上燃煤、石油、天然气资源储量有限而面临这能源短缺的局面,各国都致力于新能源的开发,并积极开展预热回收及节能工作,因而换热器的应用又与能源的开发及节约有着密切的联系。
换热器思考题1. 什么叫顺流?什么叫逆流(P3)?2.热交换器设计计算的主要内容有那些(P6)?换热器设计计算包括以下四个方面的内容:热负荷计算、结构计算、流动阻力计算、强度计算。
热负荷计算:根据具体条件,如换热器类型、流体出口温度、流体压力降、流体物性、流体相变情况,计算出传热系数及所需换热面积结构计算:根据换热器传热面积,计算热交换器主要部件的尺寸,如对管壳式换热器,确定其直径、长度、传热管的根数、壳体直径,隔板数及位置等。
流动阻力计算:确定流体压降是否在限定的范围内,如果超出允许的数值,必须更改换热器的某些尺寸或流体流速,目的为选择泵或风机提供依据。
强度计算:确定换热器各部件,尤其是受压部件(如壳体)的压力大小,检查其强度是否在允许的范围内。
对高温高压换热器更应重视。
尽量采用标准件和标准材料。
3. 传热基本公式中各量的物理意义是什么(P7)?4. 流体在热交换器内流动,以平行流为例分析其温度变化特征(P9)?5. 热交换器中流体在有横向混合、无横向混合、一次错流时的简化表示(P20)?一次交叉流,两种流体各自不混合一次交叉流,一种流体混合、另一种流体不混合一次交叉流,两种流体均不混合6. 在换热器热计算中, 平均温差法和传热单元法各有什么特点(P25、26)?什么是温度交叉,它有什么危害,如何避免(P38、76)?7.管壳式换热器的主要部件分类与代号(P42)?8.管壳式换热器中的折流板的作用是什么,折流板的间距过大或过小有什么不利之处(P49~50)?换热器安装折流挡板是为了提高壳程对流传热系数,为了获得良好的效果,折流挡板的尺寸和间距必须适当。
对常用的圆缺形挡板,弓形切口过大或过小,都会产生流动“死区”,均不利于传热。
一般弓形缺口高度与壳体内径之比为0.15~0.45,常采用0.20和0.25两种。
挡板的间距过大,就不能保证流体垂直流过管束,使流速减小,管外对流传热系数下降;间距过小不便于检修,流动阻力也大。
翅片换热器传热系数翅片换热器是一种常见的传热设备,用于增加传热表面积,提高传热效率。
传热系数是评价传热性能的重要参数之一,在翅片换热器设计和优化中起着关键的作用。
本文将详细介绍翅片换热器传热系数的定义、影响因素以及传热系数的计算方法。
翅片换热器传热系数受到多种因素的影响,包括流体性质、流体流速、翅片形状和尺寸等。
首先,流体性质对传热系数有很大的影响。
传热介质的热导率和动力粘度决定了能量传递的速率,因此直接影响传热系数的大小。
其次,流体流速也是影响传热系数的重要因素。
当流体流速增加时,流体与翅片之间的对流传热增强,导致传热系数的增加。
此外,翅片的形状和尺寸也影响传热系数。
翅片的形状决定了翅片与流体之间的传热面积和流动阻力,而翅片的尺寸则决定了翅片之间的间隙大小,直接影响传热效果。
计算翅片换热器传热系数的方法有很多,常用的方法包括经验公式法、数值模拟法和试验测量法。
经验公式法是一种简单而实用的方法,可以用于初步估算传热系数。
常用公式包括Dittus-Boelter公式、Sieder-Tate公式和Gnielinski公式等。
这些公式根据研究者对流动形式和传热机制的理解,通过分析实验数据得到的经验公式,适用于不同的工况和翅片形状。
数值模拟法是一种计算机辅助的方法,可以通过数学模型对流动和传热进行模拟,得到传热系数的数值结果。
这种方法能够更准确地预测传热性能,但需要进行复杂的计算和模拟。
试验测量法是一种直接测量传热系数的方法,通过在实验设备中进行传热实验,测量流体的温度差和传热功率来计算传热系数。
这种方法最为准确,但成本较高且需要一定的实验设备和技术支持。
综上所述,翅片换热器传热系数是衡量传热性能的重要参数,其大小受到多种因素的影响。
通过合理选择流体、优化翅片形状和尺寸等措施,可以提高传热系数,进而提高翅片换热器的传热效率。
在实际应用中,需要综合考虑传热效率、成本和设备运行要求等因素,进行合理的设计和选择。
翅片对流换热系数翅片对流换热系数是指在翅片换热器中,流体通过翅片时与翅片表面之间的热量传递效果的衡量指标。
翅片换热器是一种常用的传热设备,广泛应用于空调、汽车散热器、冷凝器等领域。
翅片的设计和翅片间隙的选择对翅片对流换热系数有着重要的影响。
翅片对流换热系数的大小主要受到以下几个因素的影响:1. 翅片形状和尺寸:翅片的形状和尺寸决定了翅片与流体之间的接触面积和流动阻力。
翅片表面积越大,热量传递面积就越大,对流换热系数也就越大。
同时,翅片的形状对流动阻力也有影响,合理的翅片形状可以减小流动阻力,提高对流换热系数。
2. 翅片材料:翅片的材料对热量传递的效果有很大影响。
一般来说,导热性能好的材料能够更快地将热量传递到翅片表面,提高对流换热系数。
常见的翅片材料有铝、铜、不锈钢等。
3. 流体流速:流体流速是影响对流换热系数的重要因素之一。
流速越大,流体与翅片表面的接触时间就越短,热量传递效果就越差,对流换热系数也就越小。
因此,在设计翅片换热器时,需要根据具体的应用需求和流体性质选择合适的流速范围。
4. 翅片间隙:翅片间隙是指相邻两片翅片之间的距离。
翅片间隙的大小对热量传递有着重要影响。
翅片间隙过大会导致流体在翅片间形成死区,热量传递效果较差,对流换热系数较小;而翅片间隙过小会增加流体的阻力,降低对流换热系数。
因此,在设计翅片换热器时,需要找到一个合理的翅片间隙范围。
5. 翅片间距:翅片间距是指相邻两片翅片之间的距离。
翅片间距的大小也会对热量传递产生影响。
翅片间距过小会影响流体的流动,使得热量传递效果较差,对流换热系数较小;而翅片间距过大会导致流体流速过快,热量传递不充分,同样会降低对流换热系数。
因此,在设计翅片换热器时,需要选择一个合适的翅片间距。
翅片对流换热系数是翅片换热器中非常重要的参数之一,它直接影响着换热器的传热效果。
在实际应用中,需要根据具体的工况和要求,综合考虑翅片的形状、材料、流体流速、翅片间隙和翅片间距等因素,来选择合适的翅片设计和操作条件,以提高翅片对流换热系数,实现高效的热量传递。
翅片式换热器优化设计的探讨翅片式换热器(Finned heat exchanger)是一种常见的热交换设备,被广泛应用于各个领域,如汽车发动机、空调系统等。
它通过增加翅片的表面积,提高了传热效率。
本文将探讨翅片式换热器的优化设计,包括翅片结构的优化、流体流动的优化以及材料的选择优化等方面。
首先,翅片结构的优化是提高热交换效率的关键。
传统的翅片结构是直翅片,但随着科技的进步,新型的翅片结构被提出,如波纹翅片、凹凸翅片等。
这些新型翅片结构可以增加翅片与流体之间的传热面积,提高传热效率。
因此,在设计翅片式换热器时,可以根据具体的传热需求选择合适的翅片结构,以实现更高的传热效率。
其次,流体流动的优化也是提高热交换效率的重要因素。
流体在翅片间的流动方式对传热效率有着直接的影响。
通过优化流体流动的路径、速度和分布等参数,可以改善流体在翅片间的流动状态,减小流体的阻力,提高传热效率。
例如,可以在翅片之间设置适当的腔体,引导流体流动,并通过数值模拟和实验验证确定最优设计方案。
另外,材料的选择优化也是翅片式换热器设计的关键。
传统的翅片材料多为铝合金,它具有良好的热导性和轻质化特点。
但在一些特殊工况下,铝合金可能不能满足要求,此时可以选择合适的材料替代。
例如,对于高温、高压的工况,可以选择耐高温合金或陶瓷材料作为翅片材料,以提高耐温性能和耐腐蚀性能。
此外,辅助设备的优化也是翅片式换热器设计中需要考虑的因素。
例如,在冷却系统中,增加风扇的数量和风速可以提高换热器的冷却效果;对于一些特殊工况,还可以考虑使用辅助冷却设备如水喷淋装置或降低冷却剂的温度等。
这些技术措施可以在满足热交换要求的前提下,进一步提高热交换效率。
总之,翅片式换热器的优化设计从翅片结构、流体流动、材料选择以及辅助设备等多个方面入手,以实现更高的传热效率和更好的工作性能。
优化设计的研究不仅需要理论模拟和实验验证,还需要综合考虑具体的应用场景和经济效益。
随着科技的不断进步,翅片式换热器的优化设计将会得到进一步的完善和发展。
英文名称:plate-fin heat exchanger传热元件由板和翅片组成的换热器。
编辑本段特点:(1)传热效率高,由于翅片对流体的扰动使边界层不断破裂,因而具有较大的换热系数;同时由于隔板、翅片很薄,具有高导热性,所以使得板翅式换热器可以达到很高的效率。
(2)紧凑,由于板翅式换热器具有扩展的二次表面,使得它的比表面积可达到1000㎡/m3。
(3)轻巧,原因为紧凑且多为铝合金制造,现在钢制,铜制,复合材料等的也已经批量生产。
(4)适应性强,板翅式换热器可适用于:气-气、气-液、液-液、各种流体之间的换热以及发生集态变化的相变换热。
通过流道的布置和组合能够适应:逆流、错流、多股流、多程流等不同的换热工况。
通过单元间串联、并联、串并联的组合可以满足大型设备的换热需要。
工业上可以定型、批量生产以降低成本,通过积木式组合扩大互换性。
(5)制造工艺要求严格,工艺过程复杂。
(6)容易堵塞,不耐腐蚀,清洗检修很困难,故只能用于换热介质干净、无腐蚀、不易结垢、不易沉积、不易堵塞的场合。
编辑本段结构:通常由隔板、翅片、封条、导流片组成。
在相邻两隔板间放置翅片、导流片以及封条组成一夹层,称为通道,将这样的夹层根据流体的不同方式叠置起来,钎焊成一整体便组成板束,板束是板翅式换热器的核心,配以必要的封头、接管、支撑等就组成了板翅式换热器。
编辑本段制造工艺:板翅式换热器的制造工艺有如下几种:非焊接的粘接、有溶剂的盐浴钎焊、无溶剂的真空钎焊和气体保护钎焊。
编辑本段应用:用于空分设备的换热器;石油化工的乙烯装置、合成氨装置、天然气液化与分离等装置中;用于深低温的氢、氦、制冷、液化设备中;用于制冷和空调领域;用于汽车和航空工业;值得提出的是,目前在工程机械、通用机械、内燃机车等部门,板翅式换热器被广泛的应用于各种油、水、气体冷却器。
定义英文名称:pla t e-f in he at e xc ha nger传热元件由板和翅片组成的换热器。