2022年中考数学复习:旋转类综合体专项训练(含答案)
- 格式:docx
- 大小:2.44 MB
- 文档页数:50
中考数学复习初中数学旋转专项综合练及答案解析一、旋转1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=1MC,∴EG=CG.2(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.2.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2. 【解析】 【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题. (2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题. 【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形, ∴AD ∥BC ,OB =OD , ∴∠EDO =∠FBO , 在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF , ∴EO =OF ,∵OB =OD , ∴四边形EBFD 是平行四边形, ∵EF ⊥BD ,OB =OD , ∴EB =ED ,∴四边形EBFD 是菱形. ②∵BE 平分∠ABD , ∴∠ABE =∠EBD , ∵EB =ED , ∴∠EBD =∠EDB , ∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°, ∴∠ADB =30°,∠ABD =60°, ∴∠ABE =∠EBO =∠OBF =30°, ∴∠EBF =60°. (2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°, ∴EB =BF =ED ,DE ∥BF , ∴∠JDH =∠FGH , 在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF , ∴DJ =FG ,JH =HF , ∴EJ =BG =EM =BI , ∴BE =IM =BF , ∵∠MEJ =∠B =60°, ∴△MEJ 是等边三角形, ∴MJ =EM =NI ,∠M =∠B =60° 在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===, ∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF , ∴IH ⊥JF ,∵∠BFI +∠BIF =120°, ∴∠MIJ +∠BIF =120°, ∴∠JIF =60°, ∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°, ∴∠FIH =30°,∴IH =3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°, ∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°, ∴∠ADF +∠EDC =45°, ∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG , 在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM , ∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM , ∴∠ECM =90° ∴EC 2+CM 2=EM 2, ∵EG =EM ,AG =CM , ∴GE 2=AG 2+CE 2. 【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.3.如图1,在□ABCD 中,AB =6,∠B = (60°<≤90°). 点E 在BC 上,连接AE ,把△ABE 沿AE 折叠,使点B 与AD 上的点F 重合,连接EF . (1)求证:四边形ABEF 是菱形;(2)如图2,点M 是BC 上的动点,连接AM ,把线段AM 绕点M 顺时针旋转得到线段MN ,连接FN ,求FN 的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.4.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2;(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB=42,∴OM=42﹣x,∵OM2+BN2=MN2.∴(42﹣x)2+x2=(2x)2,解得x=﹣22+26或﹣22﹣26(舍弃)∴MN=﹣42+46.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.5.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°【解析】分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.详解:如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,,,在和中,,≌,,,,,即;在旋转过程中,成为直角有两种情况:Ⅰ由增大到过程中,当时,,在中,sin∠AGO=,,,,,即;Ⅱ由增大到过程中,当时,同理可求,.综上所述,当时,或.如图3,当旋转到A、O、在一条直线上时,的长最大,正方形ABCD的边长为1,,,,,,,此时.点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.6.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】() 13?2①证明见解析3【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O , ∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:3434⨯=()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°,∴∠EOE′=∠BOF,又∵EO=BO,∴∠OEE′=∠OBF=60°,∴△OEE′≌△OBF,∴EE′=BF,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=V.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.7.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.8.如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.(1)若CA=CB,CE=CD①猜想线段BE,AD之间的数量关系及所在直线的位置关系,直接写出结论;②现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2)若CA=8,CB=6,CE=3,CD=4,Rt△ECD绕着点C顺时针转锐角α,如图3,连接BD,AE,计算的值.【答案】(1)①BE=AD,BE⊥AD;②见解析;(2)125.【解析】试题分析:根据三角形全等的判定与性质得出BE=AD,BE⊥AD;设BE与AC的交点为点F,BE与AD的交点为点G,根据∠ACB=∠ECD=90°得出∠ACD=∠BCE,然后结合AC=BC,CD=CE得出△ACD≌△BCE,则AD=BE,∠CAD=∠CBF,根据∠BFC=∠AFG,∠BFC+∠CBE=90°得出∠AFG+∠CAD=90°,从而说明垂直;首先根据题意得出△ACD∽△BCE,然后说明∠AGE=∠BGD=90°,最后根据直角三角形的勾股定理将所求的线段转化成已知的线段得出答案.试题解析:(1)①解:BE=AD,BE⊥AD②BE=AD,BE⊥AD仍然成立证明:设BE与AC的交点为点F,BE与AD的交点为点G,如图1.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=BC CD=CE ∴△ACD≌△BCE∴AD=BE ∠CAD=∠CBF ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD(2)证明:设BE与AC的交点为点F,BE的延长线与AD的交点为点G,如图2.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=8,BC=6,CE=3,CD=4 ∴△ACD∽△BCE∴∠CAD=∠CBE ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD ∴∠AGE=∠BGD=90°∴,.∴.∵,,∴考点:三角形全等与相似、勾股定理.9.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.10.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠B OD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.11.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为. (3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.12.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE,见解析;③PC2=10332.【解析】 【分析】(1)由CD ∥AB ,可得∠C =∠B ,根据∠APB =∠DPC 即可证明△ABP ≌△DCP ,即可得AB =CD ,即可解题.(2)①延长EP 交BC 于F ,易证△FBP ≌△EDP (SAS )可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .②作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,易证△FBP ≌△EDP (SAS ),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2=10+求出2212PC EC ==【详解】(1)解:∵CD ∥AB ,∴∠C =∠B , 在△ABP 和△DCP 中,BP CPAPB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴△ABP ≌△DCP (SAS ), ∴DC =AB . ∵AB =200米. ∴CD =200米, 故答案为:200.(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图1,延长EP 交BC 于F , 同(1)理,可知∴△FBP ≌△EDP (SAS ), ∴PF =PE ,BF =DE , 又∵AC =BC ,AE =DE , ∴FC =EC , 又∵∠ACB =90°,∴△EFC 是等腰直角三角形, ∵EP =FP , ∴PC =PE ,PC ⊥PE .②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF , 同①理,可知△FBP ≌△EDP (SAS ),∴BF =DE ,PE =PF =12EF , ∵DE =AE , ∴BF =AE ,∵当α=90°时,∠EAC =90°, ∴ED ∥AC ,EA ∥BC ∵FB ∥AC ,∠FBC =90, ∴∠CBF =∠CAE , 在△FBC 和△EAC 中,BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△FBC ≌△EAC (SAS ), ∴CF =CE ,∠FCB =∠ECA , ∵∠ACB =90°, ∴∠FCE =90°,∴△FCE 是等腰直角三角形, ∵EP =FP , ∴CP ⊥EP ,CP =EP =12EF . ③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150° 同②可得△FBP ≌△EDP (SAS ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP=2, 在Rt △AHE 中,∠EAH =30°,AE =DE =1, ∴HE =12,AH又∵AC =AB =3, ∴CH =∴EC 2=CH 2+HE 2=10+∴PC 2=212EC =【点睛】本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.13.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故22【详解】(1)结论:AD=BE,AD⊥BE.理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD , ∠ACB=∠ACD=90°, 在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠EBC=∠CAD 延长BE 交AD 于点F , ∵BC ⊥AD , ∴∠EBC+∠CEB=90°, ∵∠CEB=AEF , ∴∠EAD+∠AEF=90°, ∴∠AFE=90°,即AD ⊥BE . ∴AD=BE ,AD ⊥BE . 故答案为AD=BE ,AD ⊥BE . (2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°, ∴ACD=∠BCE , 在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===, ∴△ACD ≌△BCE (SAS ), ∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH , ∴∠BOH+∠OBH=90°, ∴∠OHB=90°, ∴AD ⊥BE , ∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP , ∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值=PB-PE=5-32, 图3-2中,当P 、E 、B 共线时,BE 最大,最大值=PB+PE=5+32, ∴5-32≤BE≤5+32, 即5-32≤PC≤5+32.【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.14.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长.【答案】(1)BQ =CP ;(2)成立:PC =BQ ;(3)434-. 【解析】试题分析:(1)结论:BQ =CP .如图1中,作PH ∥AB 交CO 于H ,可得△PCH 是等边三角形,只要证明△POH ≌△QPB 即可;(2)成立:PC =BQ .作PH ∥AB 交CO 的延长线于H .证明方法类似(1);(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .设CE =CO =a ,则FC =FP =2a ,EF 3,在Rt △PCE 中,表示出PC ,根据PC +CB =4,可得方程62)24a a +=,求出a 即可解决问题;试题解析:解:(1)结论:BQ =CP . 理由:如图1中,作PH ∥AB 交CO 于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠OPB =∠OPQ +∠QPB =∠OCB +∠COP ,∵∠OPQ =∠OCP =60°,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ . (2)成立:PC =BQ .理由:作PH ∥AB 交CO 的延长线于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠POH =60°+∠CPO ,∠QPO =60°+∠CPQ ,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF . ∵∠OPC =15°,∠OCB =∠OCP +∠POC ,∴∠POC =45°,∴CE =EO ,设CE =CO =a ,则FC =FP =2a ,EF 3a ,在Rt △PCE 中,PC 22PE CE +22(23)a a a ++=62)a ,∵PC +CB =4,∴(62)24a a =,解得a =4226,∴PC =434,由(2)可知BQ =PC ,∴BQ =434.点睛:此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.15.小明合作学习小组在探究旋转、平移变换.如图△ABC ,△DEF 均为等腰直角三角形,各顶点坐标分别为A (1,1),B (2,2),C (2,1),D (2,0),E(22, 0),F (322,22-).(1)他们将△ABC 绕C 点按顺时针方向旋转450得到△A 1B 1C .请你写出点A 1,B 1的坐标,并判断A 1C 和DF 的位置关系;(2)他们将△ABC 绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线2y 22x bx c =++上.请你求出符合条件的抛物线解析式;(3)他们继续探究,发现将△ABC 绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线2y x =上,则可求出旋转后三角形的直角顶点P 的坐标.请你直接写出点P 的所有坐标.【答案】解:(1)222222b c 0{3232222b c 222+=⎛++= ⎝⎭. A 1C 和DF 的位置关系是平行.(2)∵△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,∴①当抛物线经过点D、E时,根据题意可得:(22c0{c0++=++=,解得b12{c=-=∴2y12x=-+②当抛物线经过点D、F时,根据题意可得:22c0{b c222++=⎛++=⎝⎭,解得b11{c=-=∴2y11x=-+③当抛物线经过点E、F时,根据题意可得:(22c0{c++=+=⎝⎭,解得b13{c=-=∴2y13x=-+(3)在旋转过程中,可能有以下情形:①顺时针旋转45°,点A、B落在抛物线上,如答图1所示,易求得点P坐标为(0,12).②顺时针旋转45°,点B、C落在抛物线上,如答图2所示,设点B′,C′的横坐标分别为x1,x2,易知此时B′C′与一、三象限角平分线平行,∴设直线B′C′的解析式为y=x+b.联立y=x2与y=x+b得:x2=x+b,即2x x b0--=,∴1212x x1x x b+==-,.∵B′C′=1,∴根据题意易得:12x x2-=,∴()2121x x2-=,即()212121x x4x x2+-=.∴114b2+=,解得1b8=-.∴21x x08-+=,解得2x4+=x或2x4-=.∵点C′的横坐标较小,∴2x 4=.当x =时,2y x ==∴P ③顺时针旋转45°,点C 、A 落在抛物线上,如答图3所示, 设点C′,A′的横坐标分别为x 1,x 2.易知此时C′A′与二、四象限角平分线平行,∴设直线C′A′的解析式为y x b =-+. 联立y=x 2与y x b =-+得:2x x b =-+,即2x x b 0+-=,∴1212x x 1x x b +=-=-,.∵C′A′=1,∴根据题意易得:12x x 2-=,∴()2121x x 2-=,即()212121x x 4x x 2+-=. ∴114b 2+=,解得1b 8=-.∴21x x 08++=,解得2x 4-+=x 或2x 4-=.∵点C′的横坐标较大,∴2x 4-=.当x =时,2y x ==∴P (24-+,38-). ④逆时针旋转45°,点A 、B 落在抛物线上.因为逆时针旋转45°后,直线A′B′与y 轴平行,因为与抛物线最多只能有一个交点,故此种情形不存在.⑤逆时针旋转45°,点B 、C 落在抛物线上,如答图4所示,与③同理,可求得:P ). ⑥逆时针旋转45°,点C 、A 落在抛物线上,如答图5所示,与②同理,可求得:P ).综上所述,点P 的坐标为:(0,12),(24-,38-),P (24-+,3228-,(224+,3228+).【解析】(1)由旋转性质及等腰直角三角形边角关系求解.(2)首先明确△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,然后分三种情况进行讨论,分别计算求解.(3)旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A 和点B 、点B 和点C 、点C 和点D 三种可能,因此共有六种可能的情形,需要分类讨论,避免漏解.考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.。
2022年数学中考试题汇编图形的旋转一、选择题1.(2022·湖南省益阳市)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC//C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )A. ①②③B. ①②④C. ①③④D. ②③④2.(2022·广西壮族自治区河池市)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A′B′C′.在此旋转过程中Rt△ABC所扫过的面积为( )A. 25π+24B. 5π+24C. 25πD. 5π3.(2022·内蒙古自治区包头市)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转得到△A′B′C,其中点A′与点A是对应点,点B′与点B是对应点.若点B′恰好落在AB边上,则点A到直线A′C的距离等于( )A. 3√3B. 2√3C. 3D. 24.(2022·广西壮族自治区南宁市)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,BB′⏜的长是( )A. 2√33π B. 4√33π C. 8√39π D. 10√39π5.(2022·内蒙古自治区赤峰市)如图,AB是⊙O的直径,将弦AC绕点A顺时针旋转30°得到AD,此时点C的对应点D落在AB上,延长CD,交⊙O于点E,若CE=4,则图中阴影部分的面积为( )A. 2πB. 2√2C. 2π−4D. 2π−2√26.(2022·天津市)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A. AB=ANB. AB//NCC. ∠AMN=∠ACND. MN⊥AC7.(2022·贵州省遵义市)在平面直角坐标系中,点A(a,1)与点B(−2,b)关于原点成中心对称,则a+b的值为( )A. −3B. −1C. 1D. 38.(2022·湖南省娄底市)如图,等边△ABC内切的图形来自我国古代的太极图,等边三角形内切圆中的黑色部分和白色部分关于等边△ABC的内心成中心对称,则圆中的黑色部分的面积与△ABC的面积之比是( )A. √3π18B. √318C. √3π9D. √399.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.10.(2022·湖南省娄底市)下列与2022年冬奥会相关的图案中,是中心对称图形的是( )A. B.C. D.11.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.12.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.13.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.14.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.15.(2022·湖南省)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.16.(2022·上海市)有一个正n边形旋转90°后与自身重合,则n为( )A. 6B. 9C. 12D. 15二、填空题17.(2022·青海省西宁市)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E=______.18.(2022·湖北省随州市)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为,DH的长为.19.(2022·吉林省)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为______度.(写出一个即可)20.(2022·辽宁省盘锦市)如图,在△ABC中,AB=AC,∠ABC=30°,点D为BC的中点,将△ABC绕点D逆时针旋转得到△A′B′C′,当点A的对应点A′落在边AB上时,点C′在BA的延长线上,连接BB′,若AA′=1,则△BB′D的面积是______.21.(2022·湖南省永州市)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O顺时针旋转90°后,端点A的坐标变为______.三、解答题22.(2022·广西壮族自治区河池市)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.23.(2022·吉林省)图①,图②均是4×4的正方形网格,每个小正方形的顶点称为格点.其中点A,B,C均在格点上,请在给定的网格中按要求画四边形.(1)在图①中,找一格点D,使以点A,B,C,D为顶点的四边形是轴对称图形;(2)在图②中,找一格点E,使以点A,B,C,E为顶点的四边形是中心对称图形.24.(2022·江苏省常州市)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA’,那么点A’的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A’的位置可以表示为______;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A’A、A’B.求证:A’A=A’B.25.(2022·湖北省武汉市)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG//BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.26.(2022·四川省广安市)数学活动课上,张老师组织同学们设计多姿多彩的几何图形,如图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.(规定:凡通过旋转能重合的图形视为同一种图形),1.【答案】B【解析】解:①∵△ABC绕A点逆时针旋转50°得到△AB′C′,∴BC=B′C′.故①正确;②∵△ABC绕A点逆时针旋转50°,∴∠BAB′=50°.∵∠CAB=20°,∴∠B′AC=∠BAB′−∠CAB=30°.∵∠AB′C′=∠ABC=30°,∴∠AB′C′=∠B′AC.∴AC//C′B′.故②正确;③在△BAB′中,AB=AB′,∠BAB′=50°,∴∠AB′B=∠ABB′=12(180°−50°)=65°.∴∠BB′C′=∠AB′B+∠AB′C′=65°+30°=95°.∴CB′与BB′不垂直.故③不正确;④在△ACC′中,AC=AC′,∠CAC′=50°,∴∠ACC′=12(180°−50°)=65°.∴∠ABB′=∠ACC′.故④正确.∴①②④这三个结论正确.故选:B.2.【答案】A【解析】解:∵∠ACB=90°,AC=6,BC=8,∴AB=10,∴Rt△ABC所扫过的面积=90⋅π×102360+12×6×8=25π+24,故选:A.3.【答案】C【解析】解:连接AA′,如图,∵∠ACB =90°,∠BAC =30°,BC =2, ∴AC =√3BC =2√3,∠B =60°, ∵将△ABC 绕点C 顺时针旋转得到△A′B′C , ∴CA =CA′,CB =CB′,∠ACA′=∠BCB′, ∵CB =CB′,∠B =60°,∴△CBB′为等边三角形,∴∠BCB′=60°,∴∠ACA′=60°,∴△CAA′为等边三角形,过点A 作AD ⊥A′C 于点D ,∴CD =12AC =√3,∴AD =√3CD =√3×√3=3, ∴点A 到直线A′C 的距离为3, 故选:C . 4.【答案】B【解析】解:根据题意可得, AC′//B′D ,∵B′D ⊥AB ,∴∠C′AD =∠C′AB′+∠B′AB =90°, ∵∠C′AD =α,∴α+2α=90°,∴α=30°,∵AC =4,∴AD =AC ⋅cos30°=4×√32=2√3, ∴AB =2AD =4√3,∴BB′⏜的长度l =nπr 180=60×π×4√3180=4√33.【解析】解:连接OE,OC,BC,由旋转知AC=AD,∠CAD=30°,∴∠BOC=60°,∠ACE=(180°−30°)÷2=75°,∴∠BCE=90°−∠ACE=15°,∴∠BOE=2∠BCE=30°,∴∠EOC=90°,即△EOC为等腰直角三角形,∵CE=4,∴OE=OC=2√2,∴S阴影=S扇形OEC−S△OEC=90π×(2√2)2360−12×2√2×2√2=2π−4,故选:C.6.【答案】C【解析】解:A、∵AB=AC,∴AB>AM,由旋转的性质可知,AN=AM,∴AB>AN,故本选项结论错误,不符合题意;B、当△ABC为等边三角形时,AB//NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,∵AM=AN,AB=AC,∴∠ABC=∠AMN,∴∠AMN=∠ACN,本选项结论正确,符合题意;D、只有当点M为BC的中点时,∠BAM=∠CAM=∠CAN,才有MN⊥AC,故本选项结论错误,不符合题意;【解析】解:∵点A(a,1)与点B(−2,b)关于原点成中心对称,∴a =2,b =−1,∴a +b =1,故选:C .8.【答案】A【解析】解:作AD ⊥BC 于点D ,作BE ⊥AC 于点E ,AD 和BE 交于点O ,如图所示,设AB =2a ,则BD =a ,∵∠ADB =90°,∴AD =√AB 2−BD 2=√3a , ∴OD =13AD =√33a , ∴圆中的黑色部分的面积与△ABC 的面积之比是:π×(√33a)2×122a⋅√3a2=√3π18, 故选:A . 9.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形,故本选项错误;B .不是轴对称图形,是中心对称图形,故本选项错误;C .既是轴对称图形,又是中心对称图形,故本选项正确;D .是轴对称图形,不是中心对称图形,故本选项错误.故选C .10.【答案】D【解析】解:A.不是中心对称图形,故此选项不合题意;B .不是中心对称图形,故此选项不合题意;C .不是中心对称图形,故此选项不合题意;D .是中心对称图形,故此选项符合题意;故选:D .11.【答案】D【解析】解:A.是中心对称图形,不是轴对称图形,故此选项不合题意;B .不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.12.【答案】D【解析】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.13.【答案】C【解析】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.既是轴对称图形又是中心对称图形,故此选项符合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.14.【答案】C【解析】解:A.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,故此选项符合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:C.15.【答案】C【解析】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.是中心对称图形,不是轴对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,故此选项符合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:C.16.【答案】C【解析】解:A.正6边形旋转90°后不能与自身重合,不合题意;B.正9边形旋转90°后不能与自身重合,不合题意;C.正12边形旋转90°后能与自身重合,符合题意;D.正15边形旋转90°后不能与自身重合,不合题意;故选:C.17.【答案】3√3−3【解析】解:在△ABC中,∵∠C=90°,∠B=30°,AB=6,∴AC=3,BC=3√3,∠CAB=60°,∵将△ABC绕点A逆时针方向旋转15°得到△AB′C′,∴△ABC≌△AB′C′,∠C′AE=45°,∴AC=AC′=C′E=3,BC=B′C′=3√3,∴B′E=B′C′−C′E=3√3−3.先在含30°锐角的直角三角形中计算出两条直角边,再根据旋转性质得到对应边相等、对应角相等得到AC=AC′=C′E=3,BC=B′C′=3√3,即可解答.18.【解析】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.∵∠EAF=∠BAD=90°,∴∠DAF=∠BAE,∵AFAD =AEAB=12,∴AFAE =ADAB,∴△DAF∽△BAE,∴∠ADF=∠ABE,∵∠DOH=∠AOB,∴∠DHO=∠BAO=90°,∴∠BHD=90°,∵AF=3,AE=4,∠EAF=90°,∴EF=√32+42=5,∵EF⊥AD,∴12⋅AE⋅AF=12⋅EF⋅AJ,∴AJ =125,∴EJ =√AE 2−AJ 2=√42−(125)2=165, ∵EJ//AB ,∴OJ OA =EJ AB ,∴OJOJ+125=1658, ∴OJ =85, ∴OA =AJ +OJ =125+85=4, ∴OB =√AB 2+AO 2=√42+82=4√5,OD =AD −AO =6−4=2,∵cos∠ODH =cos∠ABO ,∴DH OD =AB BO , ∴DH 2=4√5, ∴DH =4√55. 故答案为:90°,4√55. 19.【答案】72(答案不唯一).【解析】解:360°÷5=72°,则这个图案绕着它的中心旋转72°后能够与它本身重合,故答案为:72(答案不唯一). 20.【答案】3√34【解析】解:如下图所示,设A′B′与BD 交于点O ,连接A′D 和AD ,∵点D 为BC 的中点,AB =AC ,∠ABC =30°,∴AD ⊥BC ,A′D ⊥B′C′,A′D 是∠B′A′C′的角平分线,AD 是∠BAC ,∴∠B′A′C′=120°,∠BAC=120°,∴∠BAD=∠B′A′D=60°,∵A′D=AD,∴△A′AD是等边三角形,∴A′A=AD=A′D=1,∵∠BA′B′=180°−∠B′A′C′=60°,∴∠BA′B′=∠A′AD,∴A′B′//AD,∴A′O⊥BC,∴A′O=12A′D=12,∴OD=√1−14=√32,∵A′B′=2A′D=2,∵∠A′BD=∠A′DO=30°,∴BO=OD,∴OB′=2−12=32,BD=2OD=√3,∴S△BB′D=12×BD×B′O=12×√3×32=3√34.先证明△A′AD是等边三角形,再证明A′O⊥BC,再利用直角三角形30°角对应的边是斜边的一半分别求出A′B′和A′O,再利用勾股定理求出OD,从而求得△BB′D的面积.21.【答案】(2,−2)【解析】解:线段OA绕原点O顺时针旋转90°如图所示,则A′(2,−2),则旋转后A点坐标变为:(2,−2),故答案为:(2,−2).22.【答案】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点B2的坐标为(−4,−6);【解析】(1)根据关于y轴对称的点的坐标得到A1、B1、C1的坐标,然后描点即可;(2)把A、B、C的坐标都乘以−2得到A2、B2、C2的坐标,然后描点即可.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.也考查了轴对称变换.23.【答案】解:(1)作点B关于直线AC的对称点D,连接ABCD,四边形ABCD为筝形,符合题意.(2)将点A向右平移1个单位,再向上平移1个单位可得点D,连接ABCD,AD//BC且AD= BC,∴四边形ABCD为矩形,符合题意.24.【答案】(1)解:由题意,得A′(a,n°),∵a=3,n=37,∴A′(3,37°),故答案为:(3,37°);(2)证明:如图:∵A′(3,74°),B(3,74°),∴∠AOA′=37°,∠AOB=74°,OA=OB=3,∴∠A′OB=∠AOB−∠AOA′=74°−37°=37°,∵OA′=OA′,∴△AOA′≌△BOA′(SAS),∴A′A=A′B.25.【答案】解:(1)如图(1)中,点F,点G即为所求;(2)如图(2)中,线段AH,点Q即为所求.26.【答案】解:图形如图所示:【解析】利用轴对称图形,中心对称图形的性质,画出图形即可.本题考查利用作图设计图案,等边三角形的判定和性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
中考数学——初中数学旋转的综合压轴题专题复习含详细答案一、旋转1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题2.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3125;(4)BD=102114. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB =22AC BC -=6.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE =22AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD =125.故答案为125. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =22AM ME +=57,由(2)可知DB AE =223,∴BD =2114. 故答案为210或2114.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.3.如图,矩形OABC 的顶点A 在x 轴正半轴上,顶点C 在y 轴正半轴上,点B 的坐标为(4,m )(5≤m≤7),反比例函数y =16x(x >0)的图象交边AB 于点D . (1)用m 的代数式表示BD 的长;(2)设点P 在该函数图象上,且它的横坐标为m ,连结PB ,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16,x∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.4.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.【答案】(1)①补图见解析;②;(2)【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得∴在Rt△BCN中,“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.5.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)(1)当OC∥AB时,旋转角α=度;发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.应用:(3)当A、C、D三点共线时,求BD的长.拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC的最大值与最小值.【答案】(1)60或240;(2) AC=BD,理由见解析;(3)13+1 2或1312-;(4)PC的最大值=3,PC的最小值=3﹣1.【解析】分析:(1)如图1中,易知当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.(2)结论:AC=BD.只要证明△AOC≌△BOD即可.(3)在图3、图4中,分别求解即可.(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.详解:(1)如图1中,∵△ABC是等边三角形,∴∠AOB=∠COD=60°,∴当点D在线段AD和线段AD的延长线上时,OC∥AB,此时旋转角α=60°或240°.故答案为60或240;(2)结论:AC=BD,理由如下:如图2中,∵∠COD=∠AOB=60°,∴∠COA=∠DOB.在△AOC和△BOD中,OA OBCOA DOBCO OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△BOD,∴AC=BD;(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=12,OH3Rt△AOH中,AH22OA OH-13,∴BD=AC=CH+AH113+.如图4中,当A、C、D共线时,作OH⊥AC于H.易知AC=BD=AH﹣CH=131-.综上所述:当A、C、D三点共线时,BD的长为131+或131-;(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.6.(12分)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.(1)观察猜想:图1中,△PMN的形状是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN的形状不发生改变,仍然为等边三角形,理由见解析;(3)6【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.7.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =AD +AF =DF =DE ,即AD +BE =DE ;(2)解:如图②,在AD 上截取DF =DE .∵CD ⊥AE ,∴CE =CF ,∴∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =∠DCE +∠DCF =90°,∴∠BCE +∠BCF =∠ECF =90°.又∵∠ACB =90°,∴∠ACF +∠BCF =90°,∴∠ACF =∠BCE .在△ACF 和△BCE 中,∵CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD =AF +DF =BE +DE ,即AD =BE +DE ;故答案为:AD =BE +DE .(3)∵∠DCE =∠DCF =∠PCQ =45°,∴∠ECF =45°+45°=90°,∴△ECF 是等腰直角三角形,∴CD =DF =DE =6.∵S △BCE =2S △ACD ,∴AF =2AD ,∴AD=112+×6=2,∴AE =AD +DE =2+6=8.点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.8.如图1,菱形ABCD ,AB 4=,ADC 120∠=o ,连接对角线AC 、BD 交于点O ,()1如图2,将AOD V 沿DB 平移,使点D 与点O 重合,求平移后的A'BO V 与菱形ABCD重合部分的面积.()2如图3,将A'BO V 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=; ②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3② 【解析】 【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论; (2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论; (3)借助①的结论即可得出结论. 【详解】()1Q 四边形为菱形,ADC 120∠=o ,ADO 60∠∴=o ,ABD ∴V 为等边三角形,DAO 30∠∴=o ,ABO 60∠=o ,∵AD//A′O , ∴∠A′OB=60°,EOB ∴V 为等边三角形,边长OB 2=,∴重合部分的面积:343⨯=,()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°, ∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°, ∴△OEE′≌△OBF , ∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF ,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=V.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.9.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△C P′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.10.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.11.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB 的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)(1)如图2,当0°<α<90°,且DF′∥AB时,求α;(2)如图3,当α=120°,求证:AF′=BE′.【答案】(1)15°;(2)见解析.【解析】试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,∴△ADF′≌△BDE′,∴AF′=BE′.考点:①旋转性质;②全等三角形的判定和性质.12.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD 的关系式为∵图象过点B (0,4),D (4,)∴,解得∴直线BD 的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.13.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
中考数学总复习《旋转综合题(面积问题)》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________1.【问题初探】(1)如图1,P 为等边三角形内一点,满足1PB =,2PA =和3PC =,试求BPA ∠的大小.李明同学的思路是:将BPC △绕点B 逆时针旋转60°,点P 的对应点为P ',画出旋转后的图形,再连接PP '.将求BPA ∠分成求BPP ∠'和APP '∠的和即可.请你按照李明同学给出的旋转的思路,求BPA ∠的大小;【问题解决】(2)如图2,在正方形ABCD 中,E ,F 分别为BC ,CD 边上的点,满足45EAF ∠=,若3AB =,5BE DF +=求AEF △的面积;【问题拓展】(3)如图3,在四边形ABCD ,2AB BC ==和45ABC ADC ∠=∠=,AC AD ⊥求BD 的长.2.在ABC 和CDE 中90ACB CDE ∠=∠=︒,BC AC =和DC DE =,若4BC = 32CE .(1)如图1,当点D 在线段AC 上时,连接BE ,求tan BEC ∠;(2)如图2.将图1中CDE 绕着点C 旋转,使点D 在ABC 的内部,连接AD ,BD .线段CE ,AD 相交于点F ,且AF DF =,此时CDB ∠=_______︒;(3)如图3,在CDE 绕着点C 旋转过程中,当点D 落在线段AB 上时,过点B 作BG DE ∥交直线CE 于点G ,直接写出BCG 的面积.3.如图1,矩形ABCD 中,3AB =和4BC =,将矩形ABCD 绕着点B 顺时针旋转,得到矩形BEFG .(1)当点E 落在BD 上时,则线段DE 的长度等于 ; (2)如图2,当点E 落在AC 上时,求BCE 的面积;(3)如图3,连接AE 、CE 和AG 、CG 判断线段AE 与CG 的位置关系且说明理由; (4)在旋转过程中,请直接写出BCE ABG S S +△△的最大值.4.如图1,正方形ABCD 中,点O 是对角线AC 的中点,过点O 作OE BC ⊥,垂足为点E .(1)AOBE=________________;直线AO 与直线BE 所夹锐角的度数为_______________°; (2)将OEC △绕点C 旋转到如图2所示,请探究(1)中结论是否仍然成立?并说明理由; (3)若正方形边长为2,在旋转过程中,当A 、E 、O 三点共线时,请直接写出ABES 的值.5.如图1 Rt ABC △中 90ABC ∠=︒ 5AC = 4AB = 将ABC 绕点B 顺时针旋转得到A BC ''△ 其中A '是点A 的对应点 且0360ABA '︒<∠<︒ 连接AA ' CC '.CC'37.如图① 在①ABC 中 AB =AC =4 ①BAC =90° AD ①BC 垂足为D .(1)S △ABD = .(直接写出结果)(2)如图① 将①ABD 绕点D 按顺时针方向旋转得到①A′B′D 设旋转角为α (α<90°) 在旋转过程中:探究一:四边形APDQ 的面积是否随旋转而变化?说明理由; 探究二:当α=________时 四边形APDQ 是正方形.8.如图 在等腰Rt ABC 和等腰Rt CDE 中 90ACB DCE ∠=∠=︒.(1)观察猜想:如图1 点E 在BC 上 线段AE 与BD 的关系是_________;(2)探究证明:把CDE 绕直角顶点C 旋转到图2的位置 (1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE 绕点C 在平面内转动一周 若10AC BC == 5CE CD == AEBD 交于点P 时 连接CP 直接写出BCP 最大面积_________.9.如图1 在Rt △ABC 中 ①A =90° AB =AC 点D E 分别在边AB AC 上 AD =AE 连接DC 点M P N 分别为DE DC BC 的中点.(1)观察猜想:图1中 请判断线段PM 与PN 的数量关系和位置关系 并说明理由; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置 连接MN BD CE 判断△PMN 的形状 并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转 若AD =3 AB =7 请直接写出△PMN 面积的最大值.10.如图在Rt ABC 中 90,A AB AC ∠=︒= 点D E 分别在边,AB AC 上 AD AE = 连接DC DE 点M P N 分别为,,DE DC BC 的中点 连接MP NP .(1)图1中 线段PM 与PN 的数量关系是___________;位置关系是____________. (2)将ADE 绕点A 按逆时针方向旋转到图2位置 连接,,MN BD CE 判断PMN 的形状 并说明理由.(3)将ADE 绕点A 在平面内自由旋转 若4,7AD AB == 请直接写出PMN 面积的最大值.11.如图1 将三角形纸片ABC (90BAC ∠=︒)进行以下操作:第一步:折叠三角形纸片ABC 使点C 与点A 重合 得到折痕DE 然后展开铺平;第二步:将DEC 绕点D 顺时针方向旋转得到DFG 点E C 的对应点分别是点F G 直线GF 与边AC 交于点M (点M 不与点A 重合) 与边AB 交于点N .(1)已知6,8AB AC ==.①在DEC 绕点D 旋转的过程中 试判断MF 与ME 的数量关系 并证明你的结论; ①如图2 在DEC 绕点D 旋转的过程中 当直线GF 经过点B 时 求AM 的长; (2)如图3 若直角三角形纸片ABC 的两直角边4AB AC == 在点G 从点C 开始顺时针旋转45︒的过程中 设DFG 与ABC 的重叠部分的面积为S 则S 的最小值为________.12.定义:两个顶角相等且顶角顶点重合的等腰三角形组合称为“相似等腰组”.如图1 等腰①ABC 和等腰①ADE 即为“相似等腰组”.(1)如图2 将上述“相似等腰组”中的①ADE 绕看点A 逆时针旋转一定角度 判断①ABD 和①ACE 是否全等 并说明理由;(2)如图3 等腰①ABC 和等腰①ADE 是“相似等腰组” 且①BAC =90° DC 和BE 相交于点O 判断DC 和BE 的位置及大小关系 并说明理由;(3)如图4 在等边①ABC 中 D 是①ABC 内部一点 且3AD = 4BD = 5CD = 直接写出①ABC 的面积.13.在①ABC 中 CA =CB ①ACB =a 将①CAD 绕点C 按逆时针方向旋转角a 得到①CBE 点A D 的对应点分别为点B E .(1)如图1 若A D E 三点在同一直线上 则①CDE = (用含a 的代数式表示); (2)如图2 若A D E 三点在同一直线上 a =60° 过点C 作CF ①AE 于点F 然后探究线段CF AE BE 之间的数量关系 并证明你的结论;(3)图3中 若CA =23 CD =2 将①DCE 绕点C 旋转 当 时 ①CAD 的面积最大 最大面积是 .14.在①ABC 中 AB =AC ①BAC =90° D 为平面内的一点.(1)如图1 当点D 在边BC 上时 且①BAD =30° 求证:AD =2BD .(2)如图2 当点D 在①ABC 的外部 且满足①BDC−∠ADC =45° 求证:BD =2AD . (3)如图3 若AB =4 当D E 分别为AB AC 的中点 把①DAE 绕A 点顺时针旋转 设旋转角为α(0<α≤180①) 直线BD 与CE 的交点为P 连接P A 直接写出①P AC 面积的最大值____________.15.如图1 矩形ABCD 中 15,20AB BC == 将矩形ABCD 绕着点A 顺时针旋转 得到矩形BEFG .求BCE 的面积; 判断线段ABG S +△的最大值.将DBP 绕点得到DEF .设点(3)当点F 在ABC 内部时 求t 的取值范围.(4)当线段DP 将ABC 的面积分成1:2的两部分时 直接写出t 的值为 ___________.17.如图 等腰直角三角形ABC 中 AB BC = 90ABC ∠=︒ 点D 是AB 边上的中点 点E 是平面内一点 连接DE 将DE 将DE 绕着点D 逆时针旋转90︒ 得到DF 连接FA FE BE .(1)如图1 若点E 在线段AC 上 3AE EC = 4AB = 求DEF 的面积;(2)如图2 若E 点在直线BC 下方 点G 是AC 中点 连接DG EG EC 若CEF AFD ∠=∠ 求猜想线段AF BE CE 的长度关系 并证明你的结论.(3)如图3 在(2)的条件下 作点E 分别关于直线BC 和AB 的对称点M N 连接MN MD ND 当2MDN BEC S S =△△时 直接写出EF AF的值.18.已知ABC 是正三角形 D 为BC 边上一点 连接AD .(1)如图1 在AC 上截取点E 使得CE BD = 连接BE 交AD 于点F 若2FD = 8BE = 求点A 到BE 的距离;(2)如图2 在(1)的条件下 连接CF 取AB 的中点G 连接FG 证明2CF FG =;(3)如图3 点P 为ABC 内部一点 连接AP 将线段AC 绕点A 逆时针旋转得到线段AQ .CAQ BAP ∠=∠.将ABP 沿AP 翻折到同一平面内的ATP 在线段AQ 上截取AM AP = 连接MT .已知6MT = 8PT = 10AM =.直接写出APT △的面积.19.已知ABC 和ADE 都是等腰三角形 AB AC AD AE BAC DAE ==∠=∠,,.(1)如图① 当点D 在ABC 外部 点E 在ABC 内部时 求证:DB EC =.(2)如图① ABC 和ADE 都是等腰直角三角形 90BAC DAE ∠=∠=︒ 点C D E 在同一直线上 AM 为ADE 中DE 边上的高.求CDB ∠的度数;判断线段AM BD CD ,,之间的数量关系 并说明理由.(3)如图① ABC 和ADE 都是等腰直角三角形 90BAC DAE ∠=∠=︒ 将ADE 绕点A 逆时针旋转 连结BE CD ,.当52AB AD ==,时 在旋转过程中 ADE 与ADC △的面积和是否存在最大值?若存在 写出计算过程;若不存在 请说明理由.20.【动手操作】某班数学课外兴趣小组将直角三角板DOE (90DOE ∠=︒ 30E ∠=︒)的直角顶点O 放置在另一块直角三角板ABC (90ACB ∠=︒ AC BC =)的斜边AB 的中点处 并将三角板DOE 绕点O 任意旋转.(1)【发现结论】当三角板DOE 的两边DO EO ,分别与另一块三角板的边AC BC 交于点P Q ,时:①如图1 当OD AC ⊥时 OP 与OQ 的数量关系为______;①小组成员发现当OD 与AC 不垂直时(如图2所示) OP 与OQ 之间仍然存在①中数量关系 请你说明理由;①小组成员嘉淇认为在旋转过程中 四边形OPCQ 的面积1S 与ABC 的面积2S 之间始终保持一种不变的关系 他们之间的关系是______ 并说明理由;(2)【探究延伸】如图3 连接CD 直角三角板DOE 在绕点O 旋转一周的过程中 若12cm AB = 14cm DE = 直接写出线段CD 长的最小值和最大值.参考答案: 得到BP A ' 连接则BPP '为等边三角得到1,PP '=用勾股定理逆定理得到APP '是直角三角形从而得到150BPA PP '∠==︒)将ABE 绕A 得到MF BE DF =+证明(SAS AEF AMF ≌352MF AD ⨯=; )证明ADC △是等腰直角三角形AEC 连接EB 则ABE 为等腰直角三角形90CBE =︒ 用勾股定理得到CE 23CE ==.)如图 将BPC △得到BP A ' 连接 PC AP =①BPP '为等边三角形APP '是直角三角形BPA BPP ∴∠=∠(2)由正方形的性质得:AB BC CD AD === 90ABC BCD ADC BAD ∠=∠=∠=∠=︒ 如图 将ABE 绕A 点逆时针旋转90︒得到ADM △90,ADM B DM BE ∴∠=∠=︒= BAE DAM ∠=∠ AM AE =①90EAM BAE DAE DAM DAE BAD ∠=+∠=+∠=∠=︒∠∠5MF DM DF BE DF ∴=+=+=45,EAF ∠=︒45FAM ∴∠=︒①AF AF = AEF AMF ∠=∠ AM AE =()SAS AEF AMF ∴≌113535222AEF AMF S S MF AD ∴==⨯⨯=⨯⨯=△△ (3)①45ADC ∠= AC AD ⊥①ADC △是等腰直角三角形 AC AD =如图 将ABD △绕A 点顺时针旋转90︒得到AEC △ 连接EB .则2AB AE == 90ABE ∠=︒ BD CE =ABE ∴为等腰直角三角形.2222BE AE AB ∴=+= =45ABE ∠︒又45ABC ∠=︒(3)BCG 的面积为【分析】(1)过点的值;2)过点D F AGF DH ≌ 得到然后证明H CAG BC ≌ 得到=90AGC CHB ∠=∠(3)当点E 在AC 作EN AB ⊥于点N ED 交BC 于点T 利用CMD DNE ≌和N CJM EJ ∽逐步求出JM J CDT CM 证明∽再 求得的值 最后再利用相似三角形的性质即可求得答案.)如图1 过点B 作交EC 的延长线于点F90ACB CDE ∠==︒ CB =DE45ECD CAB ∴∠==︒BCF ∴∠=BF CE ⊥CBF ∴是等腰直角三角形CF BF ∴=EF EC ∴=在Rt FBE 中 222tan 552BF BEC EF ;(2)如图2 过点D 作DH CE ⊥于点H 过点A 作AG CE ⊥于点G连结BH=90AGF DHF ∴∠=∠︒AFG DFH ∠=∠ AF DF =()AGF DHF AAS ∴≌AG DH ∴=45ECD ∠=︒ DH CE ⊥CH DH ∴=AG CH ∴=AG CE ⊥=90CAG ACG ∴∠+∠︒90ACB ∠=︒=90ACG BCH ∴∠+∠︒CAG BCH ∴∠=∠又AC BC =()CAG BCH SAS ∴≌=90AGC CHB ∴∠=∠︒∴点D 在BH 上45CDH ∠=︒18045=135CDB ∴∠=︒-︒︒故答案为:135.AC BC =AM BM ∴=CDE ∠=32CEDC DE ∴=22)1DM ∴==CMD ∠=CDM ∴∠=EDN ∴∠DC DE =()CMD DNE AAS ∴≌1EN DM ∴== DN EN CM ∥JN CJM E ∴∽2CJJMCMEJ JN EN ∴===242127CJ -∴= =45DCE MCB ∠=∠DCT MCJ ∴∠=∠CMJ ∠=MJ CDT C ∴∽CDCTDTCM CJ MJ ∴==322242121821677CT DT∴==--36927CT-∴=271227DT-=ET BG∥GBCET C∴∽2CETCGBS CTS CB⎛⎫∴= ⎪⎝⎭212712236923(3)2774CGBS⎛⎫--⨯⨯+ ⎪⎪∴=⎪⎪⎝⎭解得641629CBGS+=;当点E在AC右下方时(如图4)同理可求得242+127CJ∴=182+167MJ=36+927CT=27+1227DT=641629CBGS-=;综上所述BCG的面积为641629+或641629-.【点睛】本题属于几何变换综合题主要考查了图形的旋转等腰直角三角形的性质全等三角形的判定与性质相似三角形的判定与性质勾股定理三角函数的定义等知识构造全等三角形和相似三角形是解答本题的关键.3.(1)2(2)4225BCES=(3)AE CG⊥理由见解析(4)BCE ABGS S+△△的最大为12从而求出BCE的面积;N AE与BC利用ABE和CBGBAE BCG∠=∠2∠得出G作EQ⊥直线12BCECH=⋅最大从而得出2222345AC AB BC =+=+=,①ABC 是直角三角形 BM AC ⊥①1134=22BM AC ⨯⨯⋅⋅, ①125BM = 在Rt BME △中 由勾股定理得:2222129=355ME BE BM ⎛⎫-=-= ⎪⎝⎭ 在Rt BMC △中 由勾股定理得:22221216455MC BC BM ⎛⎫=-=-= ⎪⎝⎭ ①1697555CE MC ME =-=-= ①1171242225525BCE S CE BM ∆=⋅⋅=⨯⨯=; (3)解:AE CG ⊥ 理由如下:证明:连接AC EG 设AE 与CG 相交于点N AE 与BC 相交于点P由旋转的性质知:ABE CBG ∠=∠ AB BE BC BG ==,①在等腰ABE 和等腰CBG 中得到:1802ABE EAB ︒-∠∠=1802CBG BCG ︒-∠∠= ①EAB BCG ∠=∠①12∠=∠①90CNP ABP ∠=∠=︒即AE CG ⊥;(4)解:过点C 作CH ⊥直线BE 于点H 过点G 作EQ ⊥直线AB 于点Q11通过证明()SAS BEC GEO ≌ABGO 是平行四边形(3)根据题意 进行分类讨论:①当AE 在AC 下方时 延长BE 过点A 作AM BE ⊥于点M 易得22AC = 1CE = 1OE CE == 根据勾股定理得出7AE = 则71AO AE OE =-=- 22BE AO = 根据勾股定理求出142AM = 根据12ABE BE AM S =⋅ 即可求解;①当AE 在AC 上方时 过点A 作AN BE ⊥于点N 用同样的方法即可求解.【详解】(1)解:①四边形ABCD 是正方形①,90AB BC ABC =∠=︒根据勾股定理可得:222AC AB BC BC =+=①点O 是对角线AC 的中点①1222AO AC BC == 连接BO①点O 是对角线AC 的中点 90ABC ∠=︒①12BO OC AC ==①OE BC ⊥①12BE CE BC == ①22212BC AO BE BC == ①,90AB BC ABC =∠=︒①()118090452ACB ∠=︒-︒=︒ 故答案为:2 45;(2)解:将BE 绕点E 逆时针旋转90︒得到GE 连接,OG BG在BEC 和△BE GE BEC CE OE =∠=∠=①()SAS BEC GEO ≌BC GO = EGO ∠BC AB =AB GO =90ABE EBC ∠+∠=①2AO BE = 45AFB ∠=︒①2AO BE= ,AO BE 夹角为45︒. 即(1)中结论仍成立;(3)解:①当AE 在AC 下方时 延长BE 过点A 作AM BE ⊥于点M①四边形ABCD 为正方形①2,90AB BC ABC ==∠=︒根据勾股定理可得:2222AC AB BC =+=由(1)可得:112CE BC == ①OEC △为等腰直角三角形 A E O 三点共线①1OE CE == 227AE AC CE =-=则71AO AE OE =-=-由(2)中结论可得:45AEB ∠=︒2AO BE = ①AM BE = 214222BE AO -== 设AM EM x ==根据勾股定理可得:222AM EM AE += 即()2227x x += 解得:142x =①142AM =①11142147722224ABE BE S AM --=⋅=⨯⨯=;S=ABE综上:774ABE S +=或774-. 【点睛】本题主要考查了勾股定理 正方形的性质 三角形全等的判定和性质 旋转的性质 等腰直角三角形的性质 解题的关键是正确作出辅助线 构造全等三角形和等腰直角三角形.5.(1)见解析(2)10825(3)4【分析】(1)通过证明BCC BAA '' 可得结论;(2)先求出AA B '的面积 由相似三角形的性质可求解;(3)先确定点D 在以AC 为直径的圆上运动 由三角形中位线定理可求EP 的长即可求解.【详解】(1)①在Rt ABC △ 90ABC ∠=︒ 5AC = 4AB =①223BC AC AB =-=①将ABC 绕点B 顺时针旋转得到A BC ''△①CBC ABA BC BC AB A B ''''∠=∠==,,,①BC BCAB BA ''=①BCC BAA ''①34CC CBAA AB '='=;(2)如图2 过点B 作BH AA '⊥于H①将ABC 绕点B 顺时针旋转得到A BC ''△①34BC BC AB A B ''====,''A C BS =3BH =A H '='A BA S =①BCC BAA '' 916BCC BAA SS ''= 10825BC C S '=; (3)如图3①BCC BAA ''BAA BCC ''∠=∠180BAD BAA '∠+∠=BCC BAD '∠+∠=180ABC ADC ∠+∠=90ADC ∠=︒①1322PE BC == ①53422DE =+= ①DE 的最大值为4.【点睛】本题主要考查相似三角形的判定和性质 旋转的性质 勾股定理等知识 添加恰当辅助线构造直角三角形是解题的关键.6.(1)见解析(2)6(3)DN BM MN =+ 证明见解析【分析】(1)将ABM △绕点A 逆时针旋转90︒ 得到ADM '△ 证明AMN AM N '△≌△ 即可得证;(2)利用全等得出AMN AM N ABM ADN S S S S '==+△△△△ 用正方形的面积减去2AMN S △即可求出CMN △的面积;(3)将ABM △绕点A 逆时针旋转90︒ 得到ADM '△ 证明AMN AM N '△≌△ 即可得证. 【详解】(1)解:如图 将ABM △绕点A 逆时针旋转90︒ 得到ADM '△则:ABM ADM '△≌△①,,AM AM BM DM BAM DAM '''===∠∠①四边形ABCD 为正方形①90BAD ∠=︒①45MAN ∠=︒①45MAB NAD ∠+=︒∠①45M AD NAD M AN ''∠+==︒∠∠①MAN M AN '∠=∠又①,AM AM AN AN '==①AMN AM N '△≌△(SAS )①=+=MN M N M D DN BM DN ''=+;【点睛】本题考查旋转的性质 全等三角形的判定和性质综合应用.熟练掌握旋转的性质 正方形的性质 利用旋转构造全等三角形是解题的关键.7.(1)4(2)四边形APDQ 的面积不会随旋转而变化 理由见详解;当45α=︒时 四边形APDQ 是正方形.【分析】(1)根据等腰三角形的性质 由AD BC ⊥得BD CD = 则142ABD ABC S S ∆∆==; (2)①在ABC ∆中 根据等腰直角三角形的性质得45B C ∠==︒∠ 易得45BAD DAC ∠=∠=︒ BD AD = 再利用等角的余角相等得到BDP ADQ ∠=∠ 于是可判断BPD AQD ∆∆≌ 所以4APD AQD APD BPD ABD APDQ S S S S S S ∆∆∆∆∆=+=+==四边形 即可判断四边形APDQ 的面积不会随旋转而变化;①由于90PAQ ∠=︒ 则当DP AB ⊥时 四边形APDQ 为矩形 加上PA PD = 于是可判断四边形APDQ 是正方形 此时45BDP ∠=︒ 即45α=︒.【详解】(1)解:4AB AC == 90BAC ∠=︒ AD BC ⊥BD CD ∴=1111144422222ABD ABC S S AC BC ∆∆∴==⨯⋅=⨯⨯⨯=; 故答案为4;(2)解:①四边形APDQ 的面积不会随旋转而变化.理由如下:在ABC ∆中 AB AC = 90BAC ∠=︒45B C ∴∠=∠=︒AD BC ⊥45BAD DAC ∴∠=∠=︒45B DAQ BAD ∴∠=∠=∠=︒ BD AD =又BDP∠+BDP∴∠=∠BPD∆和B DAQ BD ADBDP∠=∠=∠=∠PAQ∠=∴当DP⊥而PDQ∠∴四边形PAD∠= PA PD∴=∴四边形换即可得90AHD ∠=︒即可;(2)先根据三角形全等的判定定理与性质可得AE BD = EACDBC ∠=∠ 再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒ 然后根据对顶角相等 等量代换可得90BOH DBC ∠∠+=︒ 从而可得90OHB ∠=︒即可;(3)如图:由题意可知点P 在以AB 为直径的O 上运动 点D 在C 上运动 观察图形 可知当BP 与C 相切时 BCP 面积最大;此时 四边形CDPE 为正方形 5PD CD ==;然后在Rt BDC 运用勾股定理求出BD 进而求出BP 的最大值 最后运用三角形的面积公式求解即可.【详解】(1)解:AE BD = AE BD ⊥ 理由如下:如图1 延长AE 交BD 于H由题意得:AC BC = 90ACE BCD ∠=∠=︒ CE CD =①()ACE BCD SAS ≅①AE BD = EAC DBC ∠=∠①90DBC BDC ∠+∠=︒①90EAC BDC ∠+∠=︒①0)9018(EAC BD A D C H ∠+∠∠︒==-︒ 即AE BD ⊥故答案为:AE BD = AE BD ⊥.(2)解:结论仍成立 仍有:AE BD = AE BD ⊥;理由如下:如图2 延长AE 交BD 于H 交BC 于O①90ACB ECD ∠=∠=︒①ACB BCE ECD BCE ∠-∠=∠-∠ 即ACE BCD ∠=∠在ACE △和BCD △中AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩①()ACE BCD SAS ≅AE BD = EAC ∠=90ACB ∠=︒90EAC AOC ∠+∠=AOC BOH ∠=∠为直径的O 上运动在C 上运动 可知当与C 相切时BCP 面积最大四边形CDPE 为正方形 5PD CD =.Rt BDC 中 223BD BC CD -=.当BCP 的面积最大时53BP BD DP ==+22【点睛】本题主要考查了三角形全等的判定与性质 勾股定理等 旋转变换以及几点共圆等知识点 正确作出辅助线并能综合应用所学知识是解答本题的关键.9.(1)PM =PN PM ①PN .理由见解析(2)△PMN 是等腰直角三角形.理由见解析(3)S △PMN 最大=252【分析】(1)利用三角形的中位线得出11,,22PM CE PN BD ==由,BD CE =可得出,PM PN =再根据三角形的中位线知//,//,PM CE PN BD 得到DPN ADC ∠=∠,DPM DCA ∠=∠, 由90BAC ∠=︒,从而得出90ADC ACD ∠+∠=︒,即可得到结论.(2)先判断出,ABD ACE ≌得出,BD CE =同(1)类似方法即可得出结论.(3)先判断出BD 最大时 PMN 的面积最大 而BD 最大是3710,AB AD +=+=即可得出结论.【详解】(1)PM PN PM PN =⊥,.理由:①点P N 是BC CD 的中点1//,,2PN BD PN BD ∴= ①点P M 是CD DE 的中点1//CE,CE,2PM PM ∴= ①AB =AC AD =AE①BD =CE①PM =PN//,PN BD①①DPN =①ADC//,PM CE①①DPM =①DCA①①BAC =90°①①ADC +①ACD =90°①①MPN =①DPM +①DPN =①DCA +①ADC =90°,PM PN ⊥)把ADE绕点由(2)知△PMN是等腰直角三角形PM=PN=12BD ①PM最大时△PMN面积最大①点D在BA的延长线上①BD=AB+AD=10①PM=5①S△PMN最大=12PM2=12×52=252【点睛】本题主要考查了三角形的中位线定理等腰直角三角形的判定和性质全等三角形的判定和质属于几何变换综合题熟练掌握这些性质和判定是解此题的关键.10.(1)PM=PN PM①PN(2)等腰直角三角形理由见解析(3)121 8【分析】(1)利用三角形的中位线得出PM=12CE PN=12BD进而判断出BD=CE即可得出结论再利用三角形的中位线得出PM∥CE得出①DPM=①DCA最后用互余即可得出结论;(2)先判断出△ABD①①ACE得出BD=CE同(1)的方法得出PM=12BD PN=12BD即可得出PM=PN同(1)的方法即可得出结论;(3)先判断出BD最大时△PMN的面积最大而BD最大是AB+AD=10 即可得出结论.【详解】(1)解:①点P N是BC CD的中点①PN∥BD PN=12BD(3)解:由(2)知 △PMN 是等腰直角三角形 PM =PN =12BD①PM 最大时 △PMN 面积最大①点D 在BA 的延长线上①BD =AB +AD =11①PM =5①S △PMN 最大=12PM 2=12×(112)2=1218. 【点睛】本题属于几何变换综合题 主要考查了三角形的中位线定理 等腰直角三角形的判定和性质 全等三角形的判定和性质 直角三角形的性质的综合运用;解(1)的关键是判断出PM =12CE PN =12BD 解(2)的关键是判断出△ABD ①①ACE 解(3)的关键是判断出MN 最大时 △PMN 的面积最大.11.(1)①ME MF = 见解析;①74AM =(2)1263-【分析】(1)①连接DM 根据HL 证()RtDEM RtDFM HL ≌ 即可得出结论;①根据//DE AB 得1CD CE BD AE== 可得CD BD = MB MC = 设AM x = 则8MC MB x ==- 在Rt ABM 中 226(8)x x +=- 即可得到答案;(2)设DG 交AC 边于R 根据旋转过程中①GMR 的面积逐渐变大 故当旋转角为30°时①GMR 的面积最大 此时S 有最小值 求出此时的S 值即可.【详解】(1)①ME MF =①折叠三角形纸片ABC 使点C 与点A 重合 得到折痕DE①DE AC ⊥.①90DEM ∠=︒.如图连接DM设AM x = 则8MC MB x ==- 在Rt ABM 中 226(8)x x +=-解得74x = 即74AM =; (2)1263-.理由如下:当①DEC 绕点D 顺时针旋转30°时 所得的①DFG 与①ABC 的重叠部分的面积S 最小,理由如下若①DEC 绕点D 顺时针旋转后 所得的三角形为①DF’G’.设FG F’G’ DG DG’交AC 分别于点M M’ P P’由题意可知 MF =ME M’F’=M’E .由于S =12(MF +ME +EP )×DE =2ME +EP .同理 S’=2M’E +EP’①如图1 若旋转的角度等于(30°+α)则S’-S =(2M’E +EP’)-(2ME +EP )=2MM’-PP’.由题意知 ①DMP 是等腰三角形 且直线DE 是其对称轴于是作MM’关于直线DE的对称线段PR.连接DR作①EDP的平分线交AC于点Q 由题意知①PDP’=①FDF’=α①EDF’=60°+α因而①EDM’=30°+α①MDM’=α.所以①RDP=①PDQ=①P’DQ=α在DP DR上分别取点P'' Q'使得DP''=DP',DQ'=DQ连接QP'',PQ'则QP''=QP'PQ'=QP因为①QP''P=①QP'G'=①DPP'+①PDP'>DPP'所以QP>QP''同理PR>QP因而2MM’=2PR>QP+QP'=PP' 从而S'>S①如图2 若旋转的角度等于(30°-α)则S'-S=(2M'E+EP')-(2ME+EP)=PP'-2MM'在DQ DP'上分别取点R' P''使DR'=DR.DP''=DP连接PR' QP''则PR'=PR QP''=QP因为①QP ''P '=①QPG =①DP 'P +①PDP '>①DP 'P .所以QP '>QP ''同理QP >PRS '>S因而2MM '=2PR <QP +QP '=PP '.从而S '>S综上所述 当①CDG =30°时 四边形DFMP 的面帜最小如下图所示:①AB =AC =4①DE =DF =2延长DF 交AC 于T 则①TDE =30° ①DTM =60°①43cos303DT DE =÷︒=即4323FT DT DF =-=-①3•tan 6042FM FT =︒=-①3284MR FM ==-①2113332428412262DFM DMR S S S =+=⨯⨯-+⨯⨯-=-()()故答案为:1263-.【点睛】本题主要考查几何变换的综合题 熟练掌握全等三角形的判定和性质勾股定理等腰直角三角形的性质等知识是解题的关键.12.(1)全等;理由见解析(2)DC BE =;DC BE ⊥(3)25394+①DC ①BE ;(3)解:将①ABD 绕点A 逆时针旋转60°得①ACE 如图所示:①AD =AE ①DAE =60° CE =BD =4①①ADE 是等边三角形①DE =AD =3 ①AED =60°①22223425DE CE +=+= 22525CD ==①222DE CE CD +=①①CED =90°①①AEC =①AED +①DEC =60°+90°=150°过点C 作CF ①AE 交AE 的延长线于F①CF =12CE =2 EF =23①323AF AE EF =+=+在Rt ①ACF 中 ()22222323225123AC AF CF =+=++=+ ①()233253251239444ABC S AC ==⨯+=+. 【点睛】本题主要考查了等边三角形的性质 全等三角形的判定与性质 勾股定理以及逆定理等知识 解题的关键是运用旋转将分散条件集中到一个三角形中进行求解.13.(1)1802α︒- (2)AE =BE +233CF ;证明见解析 (3)CD ①AC ;23【分析】(1)由旋转的性质可得CD =CE ①DCE =α 即可求解;(2)由旋转的性质可得AD =BE CD =CE ①DCE =60° 可证①CDE 是等边三角形 由等边①S△ACD=1AC•DF=3DF2①当DF取得最大值时①CAD面积最大又①在①CFD中DF<CD①只有当CD旋转到与AC垂直时FD才能取得最大值即FD=CD=2①①CAD的面积最大最大面积是23故答案为:CD①AC;23.【点睛】本题属于几何变换综合题考查了等腰三角形的性质全等三角形的判定和性质解直角三角形等知识解题的关键是理解题意灵活运用所学知识解决问题.14.(1)见解析;(2)见解析;(3)223【分析】(1)如图1 将①ABD沿AB折叠得到①ABE连接DE由折叠的性质可得AE =AD BE=BD①EBD=①ABD=45° ①BAD=①BAE=30° 可得①DBE=90° ①DAE=60° 由等腰直角三角形的性质和等边三角形的性质可得结论;(2)如图2 过点A作AE①AD且AE=AD连接DE由“SAS”可证①BAE①①CAD可得①ACD=①ABE由“ASA”可证①DOB①①DOE可得DB=DE由等腰直角三角形的性质可得结论;(3)作PG①AC交AC所在直线于点G求出PG的最大值即可求解.【详解】解(1)如图1 将①ABD沿AB折叠得到①ABE连接DE①AB=AC①BAC=90°①①ABC=45°①将①ABD沿AB折叠得到①ABE①D E在以A为圆心AD为半径的圆上当CE所在直线与①A相切时直线BD与CE的交点P到直线AC的距离最大此时四边形ADPE是正方形AD=PD=2则CE=224223-=①①ACP=30°①PC=223+①点P到AC所在直线的距离的最大值为:PG=13+.①①PAC的面积最大值为12AC×PG=223+.【点睛】本题是几何变换综合题主要考查了全等三角形的性质和判定勾股定理的应用以及直线与圆的位置关系,作出辅助线是解本题的关键.15.(1)10;(2)42;(3) AE①CG理由见解析221250CE AG=+;(4)300【分析】(1)利用勾股定理求出BD即可得出结论;(2)先利用三角形的面积求出BM再根据勾股定理求出AM进而得出AE最后用三角形的面积之差即可得出结论;(3)先利用等腰三角形的性质和三角形的内角和定理判断出①BAE=①BCG进而判断出①CQP=①ABC=90° 最后用勾股定理即可得出结论;(4)如下图证明①BCE①①BGE'得出S△BCE=S△BGE'进而得出S△BCE+S△ABG=3GH即可得出结论.【详解】解:(1) 如图12222152025ADAB BCAC BM 15201225AB BCBM AC 中 由勾股定理可知:222215129AMAB BM =2×9=18BCE S =故BCE 的面积为(3)AE ①CG。
中考数学总复习《旋转》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )A.菱形B.等边三角形C.平行四边形D.直角三角形2.如图,将△ABC绕顶点A顺时针旋转60∘后,得到△ABʹCʹ,且Cʹ为BC的中点,则CʹD:DBʹ=( )A.1:2B.1:2√2C.1:√3D.1:33.如图所示,将一个含30∘角的直角三角板ABC绕点A逆时针旋转,点B的对应点是点Bʹ,若点Bʹ,A,C在同一条直线上,则三角板ABC旋转的度数是( )A.60∘B.90∘C.120∘D.150∘4.如图,在Rt△ABC中∠ACB=90∘,∠ABC=30∘,将△ABC绕点C顺时针旋转至△AʹBʹC,使得点Aʹ恰好落在AB上,则旋转角度为( )A.30∘B.60∘C.90∘D.150∘5.如图,将Rt△ABC绕直角顶点C顺时针旋转90∘,得到△AʹBʹC,连接AAʹ,若∠1=25∘,则∠BAAʹ的度数是( )A.55∘B.60∘C.65∘D.70∘6.如图,O是正△ABC内一点OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60∘得到线段BOʹ,下列结论:①△BOʹA可以由△BOC绕点B逆时针旋转60∘得到;②点O与Oʹ的距离为4;③∠AOB=150∘;=6+3√3;④S四边形AOBOʹ√3.⑤S△AOC+S△AOB=6+94其中正确的结论是( )A.①②③B.①②③④C.①②③⑤D.①②③④⑤7.如图,边长为8a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60∘得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是( )a A.4a B.2a C.a D.138.如图,在Rt△ABC中AC=BC=2,将△ABC绕点A逆时针旋转60∘,连接BD,则图中阴影部分的面积是( )A.2√3−2B.2√3C.√3−1D.4√3二、填空题(共5题,共15分)9.如图所示,△ABC中∠BAC=33∘,将△ABC绕点A按顺时针方向旋转50∘,对应得到△ABʹCʹ,则∠BʹAC的度数为.10.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30∘后,得到正方形EFCG,EF交AD于点H.则DH=.11.如图,将边长为2的正方形ABCD绕点A按逆时针方向旋转,得到正方形ABʹCʹDʹ,连接BBʹ,BCʹ,在旋转角从0∘到180∘的整个旋转过程中,当BBʹ=BCʹ时,△BBʹCʹ的面积为.12.如图,在等腰△ABC中AB=AC,∠B=30∘.以点B为旋转中心,旋转30∘,点A,C分别落在点Aʹ,Cʹ处,直线AC,AʹCʹ交于点D,那么AD的值为.AC13.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180∘得到△AʹOBʹ,则点Bʹ的坐标是.三、解答题(共3题,共45分)14.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按照顺时针方向旋转m度后得到△DEC,点D刚好落在AB边上,求m的值.15.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′,并求BA边旋转到BA′位置时所扫过图形的面积;(2)请在网格中画出一个格点△A″B″C″,使△A″B″C″∽△ABC,且相似比不为1.16.如图是10×8的网格,网格中每个小正方形的边长均为1,A、B、C三点在小正方形的顶点上,请在图①、②中各画一个凸四边形,使其满足以下要求:(1)请在图①中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是中心对称图形,但不是轴对称图形;(2)请在图形②中取一点D(点D必须在小正方形的顶点上),使以A、B、C、D为顶点的四边形是轴对称图形,但不是中心对称图形.参考答案1. 【答案】A2. 【答案】D3. 【答案】D4. 【答案】B5. 【答案】C6. 【答案】C7. 【答案】B8. 【答案】C9. 【答案】17°10. 【答案】√311. 【答案】2+√3或2−√312. 【答案】√3−1或2−√313. 【答案】(−2,−2√3)14.【答案】解:∵∠ACB=90°,∠B=30°∴AB=2AC;∠A=60°;由题意得:AC=DC∴△DAC 为等边三角形∴∠ACD=60°∴m=60°.15.【答案】解;(1)如图所示:△A ′BC ′即为所求 ∵AB=√32+22=√13∴BA 边旋转到BA ″位置时所扫过图形的面积为:90π×(√13)2360=13π4(2)如图所示:△A ″B ″C ″∽△ABC ,且相似比为2.16.【答案】解:(1)如图所示:四边形ABCD 即为所求;(2)如图所示:四边形ABCD 即为所求.。
中考数学复习《旋转》专题训练--附带参考答案一、选择题1.下列四个图形中,可以由一个“基本图案”连续旋转45°得到的是()A. B. C. D.2.点(3,−2)关于原点对称的点的坐标是()A.(3,−2)B.(−3,2)C.(−3,−2)D.(2,−3)3.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,将△ABC绕点A逆时针旋转至△AB'C',使CC'∥AB,若∠CAB=70°,则旋转角的度数是()A.35°B.40°C.50°D.70°5.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D6.如图,在△ABC中∠BAC=138°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′刚好落在BC 边上,且AB′=CB′,则∠C的度数为()A.14°B.15°C.16°D.17°7.如图所示,在长方形ABCD中,AC是对角线.将长方形ABCD绕点B顺时针旋转90°到长方形GBEF位置,H是EG的中点.若AB=6,BC=8,则线段CH的长为()A.2√5B.√41C.2√10D.√218.如图,在平面直角坐标系中,四边形OABC的顶点O在原点上,OA边在x轴的正半轴上AB⊥x轴AB=CB= 2,OA=OC,∠AOC=60°将四边形OABC绕点O逆时针旋转,每次旋转90°,则第2023次旋转结束时,点C的坐标为()A.(−3,√3)B.(3,−√3)C.(−√3,1)D.(1,−√3)二、填空题9.已知M(a,3)和N(-4,b)关于原点对称,则a+b=.10.如图,将△ABC绕点A顺时针旋转30°得到△ADE,点B的对应点D恰好落在边BC上,则∠ADE=.11.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A,E在同一条直线上AB=1,BC=2则AD=.12.如图所示,将四边形ABCD绕顶点A按顺时针方向旋转45°至四边形AB′C′D′的位置,若AB=16cm,则图中阴影部分的面积为cm.13.如图,△AOB与△OOD关于点O成中心对称,已知∠BAO=90°,AB=4,AO=3,则AD的长为三、解答题14.在△ABC中∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图.(1)旋转中心是.(2)求出∠BAE的度数和AE的长.15.如图,△BAD是由△BEC在平面内绕点B逆时针旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状.并说明理由.16.如图,△ABC在平面直角坐标系中,A,B,C三点的坐标依次为(−2,3),(−5,2),(−1,1)根据题意,解答下列问题.(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)把△ABC绕点M(1,0)顺时针旋转90°得到△A2B2C2;(3)连接CC1,CC2和C1C2,直接写出△CC1C2的面积.17.△ABC与△DCE均为等边三角形,D在边AC上,连接BE.(1)如图1,若AB=4,CE=2求BE的长;(2)如图2,若AB>DC,在平面内将图1中△DCE绕点C顺时针旋转α(0°<α<120°),连接BD、AE交于点O,连接OC,在△CDE运动过程中,猜想线段AO,OC,BO之间存在的数量关系,并证明你的猜想. 18.如图①所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至长方形CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图②,G为BC中点,且0°<α<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.参考答案1.B2.B3.B4.B5.B6.A7.B8.B9.110.75°11.√712.32π13.2√1314.(1)A(2)解:∵在△ABC中∠B+∠ACB=30°∴∠BAC=180°−(∠B+∠BAC)=150°∵△ABC逆时针旋转一定角度后与△ADE重合∴△ABC≅△ADE∴∠BAC=∠DAE=150°,AB=AD=4∴∠BAE=360°−∠BAC−∠DAE=60°∵C是AD的中点∴AC=CD=2∵△ABC≅△ADE∴AE=AC=2∴∠BAE=60°,AE=2.15.(1)证明:∵由旋转可知,AB=EB,AD=EC,BD=BC,∠ABD=∠EBC,∠ABE=∠DBC=60°∵AB⊥BC∴∠ABC=90°∴∠ABD=90°-60°=30°,∠DBE=60°-30°=30°∴∠ABD=∠EBC=∠DBE=30°在△BDE和△BCE中{BD=BC∠DBE=∠CBEBE=BE∴△BDE≌△BCE.(SAS).(2)解:结论:四边形ABDE是菱形.理由:∵△BDE≌△BCE∴DE=CE∵BE=CE,AB=EB,AD=EC∴AB=EB=DE=AD∴四边形ABED是菱形.16.(1)解:∵△ABC和△A1B1C1关于原点O成中心对称A,B,C三点的坐标依次为(−2,3),(−5,2),(−1,1)∴A1、B1、C1三点的坐标依次为(2,−3),(5,−2)△A1B1C1即为所求作;(2)解:∵△ABC绕点M(1,0)顺时针旋转90°得到△A2B2C2 A,B,C三点的坐标依次为(−2,3),(−5,2),(−1,1)∴A2、B2、C2三点的坐标依次为(4,3),(3,6),(2,2)△A2B2C2即为所求作;(3)解:417.(1)解:如图,过点E作EH⊥BC交BC的延长线于H∵△ABC与△DCE均为等边三角形∴AB=BC=4,∠ACB=∠DCE=60°∴∠ECH=180°−∠ACB−∠DCE=60°∴∠CEH=30°∴CH=12CE=1∴EH=√CE2−CH2=√3∵BH=BC+CH=5在Rt△BEH中BE=√BH2+EH2=√25+3=2√7;(2)解:BO=AO+CO,理由如下:如图,过点C作CP⊥AE于P,CF⊥BD于F,在BO上截取OH=OC,连接CH∵△ABC与△DCE均为等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠BCD=∠ACE在△BCD和△ACE中{BC=AC ∠BCD=∠ACE CD=CE∴△BCD≌△ACE(SAS)∴∠CBD=∠CAE,AE=BD,S△ACE=S△BCD∴12×AE⋅CP=12×BD⋅CF∴CP=CF又∵CP⊥AE,CF⊥BD∴OC平分∠BOE∵∠ABC+∠BAC=120°∴∠ABO+∠CBO+∠BAC=120°∴∠ABO+∠CAO+∠BAC=120°∴∠AOB=60°∴∠BOE=120°∵OC平分∠BOE∴∠BOC=∠EOC=60°∵HO=CO∴△CHO是等边三角形∴CH=HO=CO,∠HCO=60°=∠ACB∴∠BCH=∠ACO在△BCH和△ACO中{∠CBD=∠CAE BC=AC∠BCH=∠ACO∴△BCH≌△ACO(ASA)∴BH=AO∴BO=BH+OH=AO+CO.18.(1)解:根据题意得:CE=1,CD′=2∴在Rt△CED′中∠CD′E=30°∵矩形CDEF,CD∥EF∴∠α=∠CD′E=30°;(2)证明:∵G为BC中点∴CG=1∴CG=CE∵长方形CEFD绕点C顺时针旋转至CE′F′D′∴∠D′CE′=∠DCE=90°,CE=CE′=CG∴∠GCD′=∠DCE′=90°+α在△GCD′和△E′CD中∵{CD′=CD∠GCD=∠DCE′CG=CE′∴△GCD′≌△E′CD(SAS)∴GD′=E′D;(3)135°或315°。
中考数学复习专项强化练习:旋转(人教版)一、选择题(本大题共10道小题)1. (2022·湖北黄石)如图,△OAB中,∠AOB=60°,OA=4,点B的坐标为(6,0),将△OAB绕点A逆时针旋转得到△CAD,当点O的对应点C落在OB上时,点D的坐标为( )。
A. (7,33)B. (7,5)C. (53,5)D. (53,33)2. (2022·湖北黄石)如图,Rt△OAB的斜边OA在y轴上,∠AOB=30°,OB将Rt△AOB绕原点顺时针旋转90°,则A的对应点A1的坐标为( )。
A. (1,3)B. (﹣1,3)C. (2,0)D. (﹣2,0)3. (2022·湖北黄石)如图,正方形OABC将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为( )。
D. (0,2)4. (2022•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()。
A. (0,4)B. (2,﹣2)C. (3,﹣2)D. (﹣1,4)5. (2022•天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()。
A. AC=DEB. BC=EFC. ∠AEF=∠DD. AB⊥DF6. (2021·湖北黄石)如图,△ABC的三个顶点都在方格纸的格点上,其中A点的坐标是(-1,0),现将△ABC绕A点按逆时针方向旋转90o,则旋转后点C的坐标是( )。
A. (2,-3)B. (-2,3)C. (-2,2)D. (-3,2)7. (2022•菏泽)如图,将△ABC绕点A顺时针旋转角α,得到△ADE,若点E恰好在CB的延长线上,则∠BED等于()。
一、旋转真题与模拟题分类汇编(难题易错题)1.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.2.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB=,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)12354 55(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P (,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题3.(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【答案】(1)相等和垂直;(2)成立,理由见试题解析;(3).【解析】试题分析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.∵BF=DF,∴∠DBF=∠BDF.∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明如下:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB.∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形.∵DF=GF,∴DF=CF,DF⊥CF.(3)如图,延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°.∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.∵AC=,在Rt△ABC中,由勾股定理,得AB=4.∵AD=1,∴ED=BH=1.∴AH=3.在Rt△HAD中,由勾股定理,得DH=,∴DF=,∴CF=.∴线段CF的长为.考点:1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.4.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.5.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.(1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,时,求∠CBD的大小;(3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.【答案】(1)30°;(2)30°;(3)α=120°-m°,α=60°或α=240-m°.【解析】试题分析:(1)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,旋转角为α,α=60°时△ACD是等边三角形,且AC=AD=AB=CD,知道∠BAD的度数,进而求得∠CBD的大小.(2)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,连结DF、BF.AF=FC=AC,∠FAC=∠AFC=60°,∠ACD=20°,由∠DCB=20°案.依次证明△DCB≌△FCB,△DAB≌△DAF.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,求得答案.试题解析:(1)30°;(2)30°;(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD,AC=FC,∴DC=FC.②∵BC=BC,③∴由①②③,得△DCB≌△FCB,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.(3)α=120°-m°,α=60°或α=240-m°.考点:1.全等三角形的判定和性质;2.等边三角形的判定和性质.6.已知:一次函数的图象与x轴、y轴的交点分别为A、B,以B为旋转中心,将△BOA逆时针旋转,得△BCD(其中O与C、A与D是对应的顶点).(1)求AB的长;(2)当∠BAD=45°时,求D点的坐标;(3)当点C在线段AB上时,求直线BD的关系式.【答案】(1)5;(2)D(4,7)或(-4,1);(3)【解析】试题分析:(1)先分别求得一次函数的图象与x轴、y轴的交点坐标,再根据勾股定理求解即可;(2)根据旋转的性质结合△BOA的特征求解即可;(3)先根据点C在线段AB上判断出点D的坐标,再根据待定系数法列方程组求解即可.(1)在时,当时,,当时,∴;(2)由题意得D(4,7)或(-4,1);(2)由题意得D点坐标为(4,)设直线BD的关系式为∵图象过点B(0,4),D(4,)∴,解得∴直线BD的关系式为.考点:动点的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.7.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB 交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE,见解析;③PC21033.【解析】【分析】(1)由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB =CD,即可解题.(2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.②作BF∥DE,交EP延长线于点F,连接CE、CF,易证△FBP≌△EDP(SAS),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2=10+求出2212PC EC == 【详解】(1)解:∵CD ∥AB ,∴∠C =∠B ,在△ABP 和△DCP 中, BP CP APB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ABP ≌△DCP (SAS ),∴DC =AB .∵AB =200米.∴CD =200米,故答案为:200.(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图1,延长EP 交BC 于F ,同(1)理,可知∴△FBP ≌△EDP (SAS ),∴PF =PE ,BF =DE ,又∵AC =BC ,AE =DE ,∴FC =EC ,又∵∠ACB =90°,∴△EFC 是等腰直角三角形,∵EP =FP ,∴PC =PE ,PC ⊥PE .②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE .理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,同①理,可知△FBP ≌△EDP (SAS ),∴BF =DE ,PE =PF =12EF , ∵DE =AE ,∴BF =AE ,∵当α=90°时,∠EAC =90°,∴ED ∥AC ,EA ∥BC∵FB ∥AC ,∠FBC =90,∴∠CBF =∠CAE ,在△FBC 和△EAC 中,BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△FBC ≌△EAC (SAS ),∴CF =CE ,∠FCB =∠ECA ,∵∠ACB =90°,∴∠FCE =90°,∴△FCE 是等腰直角三角形,∵EP =FP ,∴CP ⊥EP ,CP =EP =12EF . ③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150°同②可得△FBP ≌△EDP (SAS ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP =22CE , 在Rt △AHE 中,∠EAH =30°,AE =DE =1,∴HE =12,AH =3, 又∵AC =AB =3, ∴CH =3+3, ∴EC 2=CH 2+HE 2=1033+∴PC 2=2110332EC +=【点睛】本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.8.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.【答案】(1)BE=DF;(2)四边形BC1DA是菱形.【解析】【分析】(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.【详解】(1)解:BE=DF.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,在△ABE和△C1BF中,∴△ABE≌△C1BF,∴BE=BF(2)解:四边形BC1DA是菱形.理由如下:∵AB=BC=2,∠ABC=120°,∴∠A=∠C=30°,∴∠A1=∠C1=30°,∵∠ABA1=∠CBC1=30°,∴∠ABA1=∠A1,∠CBC1=∠C,∴A1C1∥AB,AC∥BC1,∴四边形BC1DA是平行四边形.又∵AB=BC1,∴四边形BC1DA是菱形【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.。
2022年中考数学专题复习:旋转综合题专项训练1.如图,在ABC ∆和DCE ∆中,,,90AC BC DC EC ACB DCE ==∠=∠=︒,将DCE ∆绕点C 旋转(其中0180ACD ︒<∠<︒),连接BD 和AE ,BD 与AE AC 、分别交于点O 和点H .(1)求证:BCD ACE ∆≅∆;(2)试确定线段BD 和AE 的数量关系和位置关系;(3)连接AD 和BE ,在旋转过程中,ACD ∆的面积记为1S ,BCE ∆的面积记为2S ,试判断1S 和2S 的大小,并给予证明.2.如图1,在等边△ABC 中,AB =2,过点C 作CE △AB ,垂足为E ,P 为CE 上任意一点(点P 与点C 不重合),把AP 绕点A 顺时针旋转60°,点P 的对应点为点D ,分别连接BD 、PD 、ED .(1)求证:BD =CP ;(2)当点P 与点E 重合时,请你按照题干要求,在图2中作出图形,并延长CE 交BD 于点F ,求出BF 的长; (3)直接写出线段DE 长度的最小值.3.已知正方形ABCD 中,点E 是边CD 上一点(不与C 、D 重合),将△ADE 绕点A 顺时针旋转90°得到△ABF ,如图1,连接EF分别交AC、AB于点P、G.(1)请判断△AEF的形状;(2)求证:2PA PG PF=•(3)如图2,当点E是边CD的中点时,PE=1,求AG的长.4.已知等边△ABC,点D为BC上一点,连接AD.(1)如果点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,如图1,求出△APE的大小.(2)将(1)中AD绕点A逆时针旋转120°,得到AF,连接BF交AC与点Q,如图2,用等式表示线段AQ和CD 的数量关系_______.5.如图,将矩形ABCD绕点C旋转得到矩形FECG,点E在AD上,延长ED交FG于点H.(1)求证:△EDC △△HFE ; (2)连接BE 、CH .△四边形BEHC 是怎样的特殊四边形?证明你的结论;△若BC 长为AB 的长为 时,四边形BEHC 为菱形.6.在等腰三角形ABC 中,顶角BAC α∠=,D 是CA 延长线上一点,连接DB ,将线段DB 绕点D 逆时针旋转,旋转角为α,得到线段DE ,连接CE ,BE .(1)如图△,当60α=︒时,线段AD 与CE 的数量关系是__________;(2)如图△,当90α=︒时,线段AD 与CE 有怎样的数量关系?写出你的猜想,并给予证明; (3)如图△,当120α=︒时,线段AD 与CE 有怎样的数量关系?写出你的猜想,不必证明.7.(1)问题发现:如图1,在Rt ABC 中,2AB AC ==,90BAC ∠=︒,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为______; (2)拓展探究:在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE 、CE 、AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明; (3)问题解决:当正方形CDEF 旋转到B 、E 、F 三点共线时候,直接写出线段AF 的长.8.[问题发现](1)如图1,在Rt△ABC 中,AB AC =,90BAC ∠=︒,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 与点A 重合,已知ACF BCE ∆∆∽.请直接写出线段BE 与AF 的数量关系;[实验研究](2)在(1)的条件下,将正方形CDEF 绕点C 旋转至如图2所示的位置,连接BE ,CE ,AF .请猜想线段BE 和AF 的数量关系,并证明你的结论;[结论运用](3)在(1)(2)的条件下,若ABC ∆的面积为8,当正方形CDEF 旋转到B ,E ,F 三点共线时,请求出线段AF 的长.9.ABC 为等边三角形,AB =8,AD △BC 于点D ,E 为线段AD 上一点,AE =AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点.(1)如图1,EF 与AC 交于点G ,连接NG ,BE ,直接写出NG 与BE 的数量关系;(2)如图2,将AEF 绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30120α︒<<︒时,猜想△DNM 的大小是否为定值,如果是定值,请写出△DNM 的度数并证明,如果不是,请说明理由; (3)连接BN ,在AEF 绕点A 逆时针旋转过程中,请直接写出线段BN 的最大值.10.如图,AB =AC △BAC =α,连接BC ,点D 在边BC 上(点D 不与B ,C 重合),连接AD ,将线段AD 绕点A 逆时针旋转α得到线段AE ,连接CE ,DE .(1)求证:△ABD △△ACE ;(2)若α=90°,且AD 与BD 的数量关系满足AD =BD +2,求△DCE 的面积; (3)若α=60°,连接BE ,试说明△ABE 的面积是一个定值,并求出该定值.11.在ABC 中,AB AC =,BAC α∠=,点P 是平面内不与点B ,C 重合的一动点,连接PC ,将线段PC 绕点P 顺时针旋转α得到线段PQ ,连接BQ ,CQ ,AP ,点M ,N 分别是线段CB ,CQ 的中点,连接MN .(1)【观察猜想】如图1,当点P 与点B 在直线CA 两侧,60α=︒时,MNPA的值是______,直线MN 与直线P A 所成的锐角的度数是______;(2)【类比探究】如图2,当点P 与点B 在直线CA 两侧,120α=︒时,求MNPA的值及直线MN 与直线P A 所成的锐角的度数;(3)【解决问题】当点P 在直线BC 上方,90α=︒,且点A ,P ,Q 在同一条直线上时,连接BP ,已知12BCP BCA S S =△△,请直接写出MN PA的值.12.如图1,在Rt ABC 中,90BAC ∠=︒,60ACB ∠=︒,2AC =,点1A ,1B 分别为边AC ,BC 的中点,连接11A B ,将11A B C 绕点C 逆时针旋转()0360αα︒≤≤︒.(1)如图1,当0α=︒时,11BB AA =__________,1BB ,1AA 所在直线相交所成的较小夹角的度数为_________. (2)将11A B C 绕点C 逆时针旋转至图2所示位置时,(1)中结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)当11A B C 绕点C 逆时针旋转过程中, △请直接写出1ABA S的最大值;△当1A ,1B ,B 三点共线时,请直接写出线段1BB 的长.13.如图1,在Rt ABC 中,90ACB ︒∠=,AC BC =.点D 、E 分别在AC 、BC 边上,DC EC =,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 ;(2)将DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立?如果成立,请写出证明过程;若不成立,请说明理由;(3)若6CB =,2CE =,在将图1中的DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度.14.如图1,△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =2,△BAC =△DEF =90°,固定△ABC ,将△DEF 绕点A 顺时针旋转,DE ,DF 或它们的延长线分别交BC (或它的延长线)于G ,H 点,设旋转角为()090αα︒<<︒.(1)问题发现:当045α︒<<︒时,如图2,可得△H =45°-△CAH =△GAC .这时与△AGC 相似的三角形有______及______;(2)类比探究:当4590α︒<<︒时,如图3,(1)中的结论还成立吗?如果成立,请选取一种情况说明理由; (3)问题解决:当△AGH 是等腰三角形时,直接写出CG 的长.15.在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段P绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.=;(1)如图1,求证:BP DQ∠的度数;(2)如图2,若点P,B,D三点共线,3AD=,BM=,求DPQ(3)若BP AD=,求证:P,Q,C三点共线.16.射线AB与直线CD交于点E,△AED=60°,点F在直线CD上运动,连接AF,线段AF绕点A顺时针旋转⊥于点H.60°得到AG,连接FG,EG,过点G作GH AB(1)如图1,点F和点G都在射线AB的同侧时,EG与GH的数量关系是______;(2)如图2,点F和点G在射线AB的两侧时,线段EF,AE,GH之间有怎么样的数量关系?并证明你的结论;(3)若点F和点G都在射线AB的同侧,1EF=,请直接写出HG的长.AE=,217.在ABC 中,AB AC =,点D 在AC 上(不与点A ,C 重合),在AC 右侧作CED ,使EC ED =,DCE ACB α∠=∠=,连接AE ,BD .(1)如图△,当60α=︒时,填空: △BD 与AE 的数量关系是______;△直线BD 与直线AE 相交所成的锐角的度数是______;(2)如图△,当45α=︒时,请写出BD 与AE 的数量关系以及直线BD 与直线AE 相交所成的锐角的度数,并说明理由,(3)在(2)的条件下,若3AC =,2CD =,将DCE 绕点C 旋转,当点A 在线段CD 的垂直平分线上时,请直接写出BD 的长.18.如图,点E ,F 分别在正方形ABCD 的边CD ,BC 上,且DE =CF ,点P 在射线BC 上(点P 不与点F 重合).将线段EP 绕点E 顺时针旋转90︒得到线段EG ,过点E 作GD 的垂线QH ,垂足为点H ,交射线BC 于点Q .(1)如图△,若点E 是CD 的中点,点P 在线段BF 上,则线段BP ,QC ,EC 的数量关系为_______;(2)如图△,若点E 不是CD 的中点,点P 在线段BF 上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由;(3)若正方形ABCD 的边长为6,AB =3DE ,CQ =1,请直接写出线段BP 的长.19.(1)如图(1),点E 、F 分别在正方形ABCD 的边BC 、CD 上,△EAF =45°,连接EF ,则EF =BE +DF ,说明理由.(2)在四边形ABCD 中,点E 、F 分别在BC 、CD 上,当AB =AD ,△B +△D =180,△EAF =12△BAD 时,EF =BE +DF 成立吗?请直接写出结论.20.在等边ABC 中,点D 是BC 边上一点,点E 是直线AB 上一动点,连接DE ,将射线DE 绕点D 顺时针旋转120︒,与直线AC 相交于点F .(1)若点D 为BC 边中点.△如图1,当点E 在AB 边上,且DE AB ⊥时,请直接写出线段DE 与DF 的数量关系________;△如图2,当点E 落在AB 边上,点F 落在AC 边的延长线上时,△中的结论是否仍然成立?请结合图2说明理由;(2)如图3,点D 为BC 边上靠近点C 的三等分点.当:3:2AE BE =时,直接写出CFAF的值.参考答案:1.(1)证明:△90ACB DCE ∠=∠=︒,△ACB ACD DCE ACD ∠+∠=∠+∠,△BCD ACE ∠=∠,在BCD ∆与ACE ∆中BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩,△()BCD ACE SAS ∆≅∆;(2)解:△BCD ACE ∆≅∆,△BD AE =,DBC EAC ∠=∠,△AHO BHC ∠=∠,△90AHO EAC BHC DBC ∠+∠=∠+∠=︒△90AOH =︒∠,△BD AE ⊥.(3)解:如图,作DM AC ⊥于M ,EN BC ⊥于N ,90,ACB DCE∴ 90MCD DCN ∠+∠=︒,90ECN DCN ∠+∠=︒,△MCD NCE ∠=∠,在DCM ∆和ECN ∆中90MCD ECN DMC ENC DC EC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()DCM ECN AAS ∆≅∆,△DM EN =, △112S AC DM =,212S BC EN =, △AC BC =,△12S S .2.(1)证明:△△ABC 是等边三角形,△AB =AC ,△BAC =60°,由旋转知,△AD =AP ,△DAP =60°,△△DAB +△BAP =△BAP +△CAP ,△△DAB =△CAP ,△△DAB △△P AC (SAS ),△BD =CP ;(2)解:如图2,由旋转知,AD =AP ,△DAP =60°,△△ADP 是等边三角形,△当点P 与点E 重合时,有AE =DE ,△AED =60°,△CE △AB ,△AE =BE =DE ,△BCE =12△ACB =30°, △△EBD =30°,△△DBC =90°,在Rt △BCF 中,△BC =2,tan△BCE =BF BC ,△BF (3)解:DE 长度的最小值是12, 理由是:如图3,由(1)知:△DAB △△P AC ,△取AC 的中点H ,连接PH ,则PH =DE ,△PH 长度的最小值就是DE 长的最小值,过点F 作HG △CE 于G ,垂足G 就是PH 最小时点P 的位置,此时PH =12, 故DE 长度的最小值是12. 3.(1)由旋转的性质可知,AF =AE ,DAE BAF ∠=∠,△四边形ABCD 是正方形,△90DAB ∠=︒,△90DAE BAE ∠+∠=︒,△90BAF BAE ∠+∠=︒,△△F AE =90°,△△AEF 是等腰直角三角形。
中考数学总复习《旋转》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(共12题,共36.0分)1.(3分)下列曲线中既是轴对称图形又是中心对称图形的是()A. 心形线B. 蝴蝶曲线C. 四叶玫瑰线D. 等角螺旋线2.(3分)在直角坐标系中,A(a+b,-2)关于原点对称的点A'(4,a-b),则a,b的值为()A. a=-1,b=-3 B. a=1,b=3 C. a=0,b=2 D. a=2,b=03.(3分)下列图形中,是中心对称图形,但不是轴对称图形的是()A. B.C. D.4.(3分)如图,△ABC绕点A旋转一定角度后得到△ADE,则下列说法不正确的是()A. △DAB=△EACB. △D=△BC. AD=ABD.△DEA=△BAC5.(3分)如图,在平面直角坐标系中,△ABC的顶点A、B均在y轴上,点C在x轴上,将△ABC 绕着顶点B旋转后,点C的对应点C′落在y轴上,点A的对应点A′落在反比例函数y=在第一象限的图象上.如果点B、C的坐标分别是(0,-4)、(-2,0),那么点A′的坐标是()A. (3,2) B. (,4)C. (2,3)D. (4,)6.(3分)如图,将三角形AOB绕点O按逆时针方向旋转45°后得到三角形A'OB',若△AOB=15°,则△AOB′的度数是()A. 60°B. 30°C. 15°D. 45°7.(3分)如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B旋转后的对应点D恰好在直线BC上,则下列结论不一定正确的是()A. △ACD=△EADB. △ABC=△ADCC. △EAC=αD. △EDC=180°-α8.(3分)如图,将△ABC绕点C逆时针旋转一定的角度得到△A′B′C′,此点A在边B′C上,若BC=5,AC=3,则AB′的长为()A. 5B. 4C. 3D. 29.(3分)如图,在正方形ABCD中,AB=4,点E在对角线AC上任意一点,将正方形绕点B逆时针旋转90°后,点E的对应点为E',则点B到线段EE′距离的最小值为()A. 1B.C. D. 210.(3分)如图,在矩形ABCD中AB=10,BC=8,以CD为直径作△O.将矩形ABCD绕点C旋转,使所得矩形A1B1C1D1的边A1B1与△O相切于点E,则BB1的长为()A. B. 2C. D.11.(3分)如图,点E是正方形ABCD的边BC上一点,将△ABE绕着顶点A逆时针旋转90°,得△ADF,连接EF,P为EF的中点,则下列结论正确的是()△AE=AF;△EF=2EC;△△DAP=△CFE;△△ADP=45°;△PD△AF.A. △△△B. △△△C. △△△D. △△△12.(3分)如图,△ABC的顶点B在单位圆的圆心上,A,C在圆周上,△ABC=α(0<α<).现将△ABC在圆内按逆时针方向依次作旋转,具体方法如下:第一次,以A为中心,使B落在圆周上;第二次,以B为中心,使C落在圆周上;第三次,以C为中心,使A落在圆周上.如此旋转直到第100次.那么A点所走过路程的总长度为()A. 22π(1+sinα)-66αB. 22π(1+sin)-33αC. 22π(+sinα)-66αD. 33π-66α二、填空题(共4题,共12.0分)13.(3分)如图,△ABC与△DEC关于点C成中心对称,AB=3,AE=5,△D=90°,则AC=_____.14.(3分)在平面直角坐标系中,点A(-3,2),连接OA,把线段OA绕原点O逆时针旋转90°得到线段OA′,则点A'的坐标是_____.15.(3分)如图,在平面直角坐标系xOy中,△OCD可以看成是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△OCD的过程_____.16.(3分)如图,在菱形ABCD中,△ABC=60°,AB=8,点E为AD边上一点,且AE=2,在BC边上存在一点F,CD边上存在一点G,线段EF平分菱形ABCD的面积,则△EFG周长的最小值为_____.三、解答题(共8题,共72.0分)17.(9分)如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,得到△A1B2C2,在网格中画出旋转后的△A1B2C2.18.(9分)如图,已知y=kx和双曲线y=(m>0),点A(a,b)(a>0)在双曲线y=上(1)当a=b=2时,△直接写出m值_____△若k=-2,将直线y=kx平移至双曲线y=只有一个交点,求平移后的直线解析式(2)将直线y=kx绕原点O旋转,设旋转后直线与双曲线y=交于B、C两点(点B在第一象限)直线AB、AC分别与x轴交于D、E两点,写出与之间的数量关系?并说明理由.19.(9分)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形,且点C在格点上.(画出一个即可)(2)在图2中画出以为边的菱形,且点D,E均在格点上.20.(9分)如图,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在图(1),图(2),图(3)中分别画出满足以下各要求的图形.(用阴影表示)(1)使得图形既是轴对称图形,又是中心对称图形.(2)使得图形成为轴对称图形,而不是中心对称图形;(3)使得图形成为中心对称图形,而不是轴对称图形.21.(9分)在初中阶段的函数学习中,我们运用了列表、描点、连线的方法画函数图象,并结合图象研究了函数性质.以下是我们研究函数y=2x(|x|-3)性质及其应用的部分过程,请按要求完成下列各小题.(1)如表是该函数部分x,y的对应值,利用表中数据补全该函数图象;x…-4-3-2-101234…y=2x (|x|-3)…-80440-4-408…(2)根据函数图象,下列说法正确的是_____;(填写序号)△该函数图象是中心对称图形,它的对称中心是原点△该函数有最大值,没有最小值△若x<0,则函数值y随x的增大而增大△若关于x的方程2x(|x|-3)=m有两个不相等的实数根,则m=±.(3)方程x(|x|-3)=-2 的根为_____;(4)当时,函数的最大值与最小值的差为5,求t的值.22.(9分)小明与小刚约好下午4:30在书店门口集合,一同去买课外用书.当小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),却没有见到小刚.他怀疑自己迟到了,于是朝书店墙上的时钟一看,只见钟面上的时针与分针刚好重合在一起.请你运用学过的数学知识计算一下,这时的准确时间是多少?23.(9分)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.24.(9分)问题提出已知△ABC是等边三角形,将等边三角形ADE(A,D,E三点按逆时针排列)绕顶点A旋转,且平移线段AD使点A与顶点C重合,得到线段CF,连接BE,EF,BF.观察发现(1)如图1,当点E在线段AB上,猜想△BEF的形状_____;探究迁移(2)如图2,当点E不在线段AB上,(1)中猜想的结论是否依然成立,请说明理由;拓展应用(3)若AB=2 ,在△ADE绕着点A旋转的过程中,当EF△AC时,求线段AF的长.参考答案1.【答案】C【解析】中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.根据定义即可判断.解:A.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;B.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;C.该图形既是轴对称图形又是中心对称图形,故此选项符合题意;D.该图形既不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C.2.【答案】A【解析】根据关于原点对称的点的横坐标与纵坐标都互为相反数列方程组求解即可.解:△A(a+b,-2)关于原点对称的点A'(4,a-b)△解得故选:A.3.【答案】B【解析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:B.4.【答案】D【解析】由旋转的意义可得,将△ABC绕点A逆时针旋转一个角度后得到△ADE,此时对应边为:AC=AE,AB=AD,CB=ED,旋转角为△CAE或△BAD,以此逐个进行判断,得出答案.解:由旋转的性质得:对应边为:AC=AE,AB=AD,CB=ED,对应角△B=△D,△DEA=ACB,旋转角为△CAE或△BAD故A、B、C正确,不符合题意;D不正确,符合题意.故选:D.5.【答案】A【解析】根据题意求得D的坐标,然后根据待定系数法即可求得直线A′B的解析式,与反比例函数解析式联立,解方程组即可求得A′的坐标.解:设A′B与x轴的交点为D,由题意可知D(2,0)设直线A′B的解析式为y=kx-4把D(2,0)代入得0=2k-4解得k=2△直线A′B的解析式为y=2x-4由解得或△点A′的坐标是(3,2)故选:A.6.【答案】B【解析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.解:△将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′△△A′OA=45°,△AOB=△A′OB′=15°△△AOB′=△A′OA-△A′OB′=45°-15°=30°故选:B.7.【答案】A【解析】先根据旋转的性质得到△ABC△△DAE,△ABC=△ADE,△BAD=△EAC=α,AB=AD,则可对C选项进行判断;由△ABC△△DAE得到△EAD=△CAB,再根据三角形外角性质得到△ACD>△CAB,于是可对A选项进行判断;由AB=AD得到△ABC=△ADC,则可对B选项进行判断;由于△EDC=△ADE+△ADC,△ADE=△ABC,则利用等量代换和三角形内角和得到△EDC=180°-α,则可对D选项进行判断.解:△将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE△△ABC△△DAE,△ABC=△ADE,△BAD=△EAC=α,AB=AD,所以C选项不符合题意;△△ABC△△DAE△△EAD=△CAB△△ACD>△CAB△△ACD>△EAD,所以A选项符合题意;△AB=AD△△ABC=△ADC,所以B选项不符合题意;△△EDC=△ADE+△ADC而△ADE=△ABC△△EDC=△ABC+△ADC=180°-△BAD=180°-α,所以D选项不符合题意.故选:A.8.【答案】D【解析】先根据旋转的性质得到CB′=CB=5,然后计算CB′-CA即可.解:△△ABC绕点C逆时针旋转一定的角度得到△A′B′C′,点A在边B′C上△CB′=CB=5△AB′=CB′-CA=5-3=2.故选:D.9.【答案】D【解析】连接BE,BE′,EE′,由旋转可得AE′=CE,BE=BE′,△EBE′=90°,△D′AA′=△DCA=45°,证明△BEE′是等腰直角三角形,△A′AC=90°,过点B作BM△EE′于点M,根据直角三角形斜边上的中线等于斜边的一半可得BM=EE′,要求BM的最小值,只需求EE′的最小值,设AE=x,则AE′=CE=4-x,根据勾股定理求出x的值,进而可以解决问题.解:如图,连接BE,BE′,EE′△四边形ABCD是正方形,AB=4△△DAC=△DCA=45°,AC=4由旋转可知:AE′=CE,BE=BE′,△EBE′=90°,△D′AA′=△DCA=45°△△BEE′是等腰直角三角形,△A′AC=90°过点B作BM△EE′于点M△BM=EE′△要求BM的最小值,只需求EE′的最小值设AE=x,则AE′=CE=4-x,在Rt△AEE′中,根据勾股定理得:EE′2=AE2+AE′2△EE′2=x2+(4-x)2=2(x-2)2+16当x=2时,EE′2有最小值,最小值为16此时,EE′=4△BM=EE′=2则点B到线段EE′距离的最小值为2.故选:D.10.【答案】C【解析】连接EO并延长交线段CD1于点F,过点B1作B1G△BC于点G,由题意可得:四边形B1EFC为矩形,则EF=B1C=8,由勾股定理可求线段CF的长;由旋转的性质可得:△OCF=△B1CG,则sin△OCF=sin△B1CG=,cos△OCF=cos△B1CG=;利用直角三角形的边角关系可求B1G和CG,最后利用勾股定理可得结论.解:连接EO并延长交线段CD1于点F,过点B1作B1G△BC于点G,如图△边A1B1与△O相切于点E△OE△A1B1.△四边形A1B1C1D1是矩形△A1B1△B1C,B1C△CD1.△四边形B1EFC为矩形.△EF=B1C=8.△CD为△O的直径△OE=DO=OC=AB=5.△OF=EF-OE=3.△A1B1△CD1,OE△A1B1△OF△CD1.△CF==4.由旋转的性质可得:△OCF=△B1CG.△sin△OCF=sin△B1CG=,cos△OCF=cos△B1CG=.△sin△OCF=,cos△OCF=△,.△B1G=,CG=.△BG=BC-CG=.△BB1===.故选:C.11.【答案】C【解析】△根据旋转的性质推即可得AE=AF;△在直角△CEF中,根据“30度角所对的直角边等于斜边的一半”进行判断;△、△点A、P、D、F在以AF为直径的圆上,所以由圆周角定理进行证明;△利用反证法.利用△的结论推知点P在对角线BD上,所以通过旋转的角度、正方形的性质来证明线段PD与AF不平行.解:△△△ABE绕着顶点A逆时针旋转90°得到△ADF△△ABE△△ADF,△FAE=90°△AE=AF,即△AFE是等腰直角三角形,故△正确;△如图,连接CP.△△ABE绕着顶点A逆时针旋转90°得到△ADF△△ADF=△ABC=90°△△ADF+△ADC=180°△C、D、F在一条直线上△△ECF=90°△当△CFE=30°时,EF=2EC.即EF不一定等于2EC.故△不正确;△△P为EF的中点,AE=AF△△APF=90°.△△APF=△ADF=90°△点A、P、D、F在以AF为直径的圆上△△DAP=△DFP,即△DAP=△CFE,故△正确;△△△AFE是等腰直角三角形△△AEF=AFE=45°.又△点A、P、D、F在以AF为直径的圆上△△ADP=△AFP,即△ADP=△AFE=45°,故△正确;△如图,连接AC、BD交于点O.△△ADP=45°△点P在正方形ABCD的对角线BD上.假设PD△AF.△△PAE=90°,即FA△AE△DP△AE.又△AC△BD△AE与AC重合,这与已知图形相矛盾△PD与AE不平行,故△错误.综上所述,正确的说法有△△△.故选:C.12.【答案】B【解析】探究一个循环中,点A运动两段弧,第一段旋转角是,半径是1,第二段旋转角是,半径是AC=2•sin,进一步得出结果.解:如图△△ABB11和△BB1C2是等边三角形△△AB1B=60°=,△BB1C2=60°=△△AB1C2=△AB1B+△BB1C2=△△AB1A1=△AB1C2-△A1B1C2=△l=△△A1C2A2=△B1C2B=60°=,A1C2=AC=2△l==△33•()+33×=22π(1+sin)-33α故选:B.13.【答案】2【解析】根据中心对称得出AC=CD,DE=AB=3,根据勾股定理求出AD即可得出AC的长度.解:△△ABC与△DEC关于点C成中心对称△AC=CD,DE=AB=3△AE=5,△D=90°△AD==4△AC=AD=2故答案为:2.14.【答案】(-2,-3)【解析】过点A作AB△x轴于点B,过点A′作A′C△x轴于点C,得到△ABO=△OCA′=90°,推出△OAB+△AOB=90°,根据旋转性质得到OA=OA′,△AOA′=90°,推出△AOB+△A′OC=90°,得到△OAB=△A′OC,推出△OAB△△A′OC,根据A(-3,2),得到AB=2,OB=3,推出A′C=OB=3,OC=AB=2,得到A′(-2,-3).解:如图,过点A作AB△x轴于点B,过点A′作A′C△x轴于点C则△ABO=△OCA′=90°△△OAB+△AOB=90°△A(-3,2)△AB=2,OB=3由旋转知,OA=OA′,△AOA′=90°△△AOB+△A′OC=90°△△OAB=△A′OC△△OAB△A′OC△(AAS)△A′C=OB=3,OC=AB=2△A′(-2,-3).故答案为:(-2,-3).15.【答案】将△AOB顺时针旋转90°,再向左平移2个单位长度得到△DCO【解析】根据旋转变换,平移变换的性质解决问题即可.解:将△AOB顺时针旋转90°,再向左平移2个单位长度得到△DCO.故答案为:将△AOB顺时针旋转90°,再向左平移2个单位长度得到△DCO.16.【答案】4+2【解析】作E关于CD的对称点M,过M作KT△BC交BC延长线于T,交AD延长线于K,连接FM交DC于G,过A作AH△BC于H,由△ABC=60°,AB=8,得BH=4,AH=4,而AE=2,有DE=6,可得DN=3,EN=3,EM=2EN=6,在Rt△EMK中,KM=EM=3,EK= KE=9,故MT=KT-KM=AH-KM=,根据线段EF平分菱形ABCD的面积和菱形的对称性知CF=AE=2,可证△EFH=△EFT=90°,即可得FM==2,又EF+CG+EG=EF+CG+GM,知当M,G,F共线时,EF+CG+EG,即△EFG周长的最小,从而可得△EFG周长的最小值为4+2.解:作E关于CD的对称点M,过M作KT△BC交BC延长线于T,交AD延长线于K,连接FM交DC于G,过A作AH△BC于H,如图:△△ABC=60°,AB=8△BH=4,AH=4△AE=2△DE=6△△EDN=60°,△END=90°△△DEN=30°,DN=3,EN=3△EM=2EN=6在Rt△EMK中KM=EM=3,EK=KE=9△MT=KT-KM=AH-KM=△线段EF平分菱形ABCD的面积△EF过对称中心由菱形的对称性知CF=AE=2△HF=BC-BH-CF=8-4-2=2△HF=AE△HF△AE,△EHF=90°△四边形HFEA是矩形,EF=AH=4△△EFH=△EFT=90°△四边形EFTK是矩形△FT=EK=9△FM==2△EF+CG+EG=EF+CG+GM△当M,G,F共线时,EF+CG+EG,即△EFG周长的最小此时△EFG周长的最小值即为EF+FM△△EFG周长的最小值为4+2.故答案为:4+2.17.【解析】(1)把△ABC向上平移2个单位,再向右平移2个单位得到△△A1B1C1;(2)利用网格特点和旋转的性质画出点B1、C1的对应点B2、C2,从而得到△A1B2C2.解:(1)如图,△A1B1C1为所作;(2)如图,△A1B2C2为所作.18.【答案】4【解析】(1)△把A(2,2)代入y=即可得到结论;△设平移后的直线为y=-2x+b,解方程组即可得到结论;(2)当点A在直线BC的上方,过A,B,C分别作y轴的垂线,垂足为F,G,H,则OF=b,OG=OH=n,FG=OF-OG=b-n,FH=OF+OH=b+n根据平行线分线段成比例定理即可得到结论.解:(1)△把A(2,2)代入y=得,m=4故答案为:4;△设平移后的直线为y=-2x+b,△△2x2-bx+4=0△△=(-b)2-4×2×4=0△b=4方程有两个相等的实数根,此时直线y=-2x+b曲线y=只有一个交点△平移后的直线为y=-2x+4;(2)当点A在直线BC的上方,过A,B,C分别作y轴的垂线,垂足为F,G,H 则OF=b,OG=OH=n,FG=OF-OG=b-n,FH=OF+OH=b+n,△AF△x轴△CH△=△=+=2;当A在BC的下方时,同理可求=,=△-=2综上所述,±=2.19.【答案】(1)见解析(2)见解析【解析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;【小问1详解】答案不唯一.【小问2详解】【点睛】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条件的图形.20.【解析】本题是图案设计问题,用轴对称和中心对称知识画图,设计图案,要按照题目要求,展开丰富的想象力,答案不唯一.解:如图所示;21.【答案】(1)△△;(2)x=1或2或;【解析】(1)根据作图步骤画出图象即可;(2)根据图像判断各选项的正误即可;(3)根据图像分两种情况解答,△根据图表数据解出x>0时两根,△根据图像解出x<0时的根即可;(4)在t值范围内,先求出最大值,再根据题意计算出最小值,将最小值代入方程即可求得a 的值.解:(1)补全图象如图:(2)△该函数图象是中心对称图形,它的对称中心是原点,正确;△该函数有最大值,没有最小值,错误,既没有最大值,也没有最小值;△若x<0,则函数值y随x的增大而增大,错误,当x<-1.5或x>1.5时,y随x的增大而增大;△若关于x的方程2x(|x|-3)=m有两个不相等的实数根,则m=±.正确,将x=±代入2x(|x|-3)=m解出m值为±.故答案为:△△;(3)x(|x|-3)=-2 即2x(|x|-3)=-4当x<0时,2x(-x-3)=-4,整理得x2+3x-2=0,解得x=或x=(舍去)由图表可知,方程的根为x=1或2或.(4)由图象可知当x=-时,函数的最大值是,则符合题意的最小值为-5=-,则有:2t(|t|-3)=-△t<0△2t(-t-3)=-解得t=或t=(舍去)△t=.22.【解析】利用分针与时针的速度关系,列出方程求出时针走的圆心角的度数,再由时针走1°相当于2分钟,即可求出准确时间.解:分针的速度是时针速度的12倍,设时针走了x°,则分针走了12x°△小明下午4:00出门赶到书店门口时(路上用去的时间不超过1小时),且时针与分针刚好重合在一起.△12x°-x°=120°,解得x°=°△时针走1°相当于2分钟△时针走过的分钟为°×2=21分.△这时准确的时间为4时21分.23.【解析】(1)以C为圆心,CM长为半径画圆,连接CN交DE于M1,延长NC交圆于M2,由等腰直角三角形的性质,推出CN平分△ACB,CN=AB=×4=2,M1是DE中点,CM1= DE=×2=1,即可求出M、N距离的最小值和最大值;(2)连接CM,CN,作NH△MC交MC延长线于H,由等腰直角三角形的性质推出CN=AB=2,CM=DE=1,由旋转的性质得到△NCH=180°-△MCN=60°,由直角三角形的性质得到CH= CN=1,NH=CH=,由勾股定理即可求出MN==.解:(1)以C为圆心,CM长为半径画圆,连接CN交DE于M1,延长NC交圆于M2△△ACB是等腰直角三角形N是AB中点△CN平分△ACB CN=AB=×4=2△△DCE是等腰直角三角形△M1是DE中点△CM1=DE=×2=1△M、N距离的最小值是NM1=CN-CM1=2-1=1,M、N距离的最大值是NM2=CN+CM2=2+1=3.(2)连接CM,CN,作NH△MC交MC延长线于H△△ACB是等腰直角三角形,N是AB中点△CN=AB=2同理:CM=DE=1△△CDE绕顶点C逆时针旋转120°△△MCN=120°△△NCH=180°-△MCN=60°△CH=CN=1△NH=CH=△MH=MC+CH=2△MN==.24.【答案】等边三角形【解析】(1)由△ABC,△ADE是等边三角形,可得△ABC=60°,△AED=60°=△BEF,故△BEF 是等边三角形;(2)延长AD交BC于M,由△ABC,△ADE是等边三角形,得△ABC=60°=△DAE,AB=BC,AD=AE,而平移线段AD使点A与顶点C重合,得到线段CF,有AD=CF,AD△CF,故AE=CF,△BCF=△AMC,从而△BCF=△BAE,即得△BAE△△BCF(SAS),知BE=BF,△ABE=△CBF,即可得△BEF是等边三角形;(3)设直线AC交EF于H,分两种情况:△当EF在BC下方时,求出△FBC=360°-△BFE-△H-△BCH=90°,由勾股定理可得BF===EF,设EH=x,CH=y,可得,解得x=(负值已舍去),y=×+=,故AF=;当EF在BC上方时,同理可得AF==.解:(1)点E在线段AB上时△△ABC,△ADE是等边三角形△△ABC=60°,△AED=60°=△BEF△△BEF是等边三角形;故答案为:等边三角形;(2)当点E不在线段AB上,(1)中的结论依然成立,理由如下:延长AD交BC于M,如图:△△ABC,△ADE是等边三角形△△ABC=60°=△DAE,AB=BC,AD=AE△平移线段AD使点A与顶点C重合,得到线段CF△AD=CF,AD△CF△AE=CF,△BCF=△AMC△△AMC=△ABC+△BAM=60°+△BAM=△DAE+△BAM=△BAE △△BCF=△BAE在△BAE和△BCF中△△BAE△△BCF(SAS)△BE=BF,△ABE=△CBF△△ABE+△EBC=△CBF+△EBC,即△ABC=△EBF△△ABC=60°△△EBF=60°△△BEF是等边三角形;(3)设直线AC交EF于H,分两种情况:△当EF在BC下方时,如图:由(2)可知△BEF是等边三角形△△BFE=60°,BF=EF△△ACB=60°△△BCH=120°△EF△AC△△H=90°△△FBC=360°-△BFE-△H-△BCH=90°△BF=△平移线段AD使点A与顶点C重合,得到线段CF △CF=AD=而BC=AB=2△BF==△EF=;设EH=x,CH=y,△FH2+CH2=CF2,EH2+AH2=AE2△△△-△得:3x-4y+=0△y=x+△把△代入△得:+3x+x2+x2+x+=解得x=(负值已舍去)△y=×+=△AF2=FH2+AH2△AF2=(+x)2+(y+2)2=(+)2+(+2)2=△AF=;当EF在BC上方时,如图:同理可得△ABE=360°-△FEB-△H-△BAH=90°△BE===EF设FH=m,AH=n,△EH2+AH2=AE2,FH2+CH2=CF2=AD2△解得(负值已舍去)△AF==;综上所述,AF的值为或.。
备战2022最新中考数学考点专题训练——专题五:图形的旋转1.在图中,是由基本图案多边形ABCDE旋转而成的,它的旋转角为.2.如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O 顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是.3.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.4.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=.5.如图,在△ABC中,AB=AC,∠B=70°,把△ABC绕点C顺时针旋转得到△EDC,若点B恰好落在AB边上D处,则∠1=°.6.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x 轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2022最新的横坐标为.7.已知一个直角三角板PMN,∠MPN=30°,MN=2,使它的一边PN与正方形ABCD的一边AD重合(如图放置在正方形内)把三角板绕点P旋转,使点M落在直线BC上一点F处,则CF的长为.8.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,∠DAE =45°,将△ADC绕点A顺时针90°旋转后,得到△AFB,连接EF.下列结论中正确的有.(填序号)①∠EAF=45°;②△ABE∽△CAD;③EA平分∠CEF;④BE2+DC2=DE2.9.已知:如图,△ABC中,∠C=90°,AB=3,BC=2,将△ABC绕A点按顺时针旋转60°,得到△AB'C′,则CC′=.10.如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.11.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,则∠A的度数是.12.如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按逆时针方向旋转90°,则点B 的对应点的坐标为.13.如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A,C,B′三点共线,那么旋转角度的大小为.14.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤S四边形AEPF=S△ABC.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的序号有.15.如图,P是等边△ABC内的一点,若将△PAC绕点A逆时针旋转到△P′AB,则∠PAP′的度数为度.16.将点(0,1)绕原点顺时针旋转90°,所得的点的坐标为.17.如图,点D是等边△ABC内一点,将△BDC以点C为中心顺时针旋转60°,得到△ACE,连接BE,若∠AEB=45°,则∠DBE的度数为.18.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=度.19.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=.20.如图,A、B、C三点在正方形网格线的交点处.若将△ACB绕着点A逆时针旋转得到△AC′B′,则tanB′的值为.21.如图,平面直角坐标系中,A(4,2)、B(3,0),将△ABO绕OA中点C逆时针旋转90°得到△A′B′O′,则A′的坐标为.22.如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB=°.23.已知A,B,O三点不共线,点A,Aʹ关于点O对称,点B,Bʹ关于点O对称,那么线段AB与AʹBʹ的关系是.24.如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB=40°,则∠AOD的大小为度.25.如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的度数为.26.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.27.如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O 按顺时针方向旋转90°,得到△AB10,那么点A1的坐标为.28.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt △AB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,则线段B′C的长为.29.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是.30.在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是.31.如图,在△AOB中,∠AOB=90°,∠ABO=30°,将△AOB绕顶点O顺时针旋转,旋转角为θ(0°<θ<180°),得到△COD.设AO 的中点为E,CD中点为P,AO=a,连接EP,当θ=°时,EP长度最大,最大值为.32.如图,在矩形ABCD中,AB=15,BC=17,将矩形ABCD绕点D按顺时针方向旋转得到矩形DEFG,点A落在矩形ABCD的边BC上,连接CG,则CG的长是.33.如图,在平面直角坐标系中,点A、B的坐标分别为(3,2)、(﹣1,0),若将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标为.备战2022最新中考数学考点专题训练——专题五:图形的旋转参考答案1.在图中,是由基本图案多边形ABCDE旋转而成的,它的旋转角为.【答案】解:∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角为60°.2.如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O 顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是.【答案】解:∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),…,发现是8次一循环,所以2019÷8=252……3,∴点A2019的坐标为(,﹣).故答案为(,﹣).3.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.【答案】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.4.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=.【答案】解:∵△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,∴AC′=AC=1,∴BC′=AB﹣AC′=3﹣1=2.故答案为2.5.如图,在△ABC中,AB=AC,∠B=70°,把△ABC绕点C顺时针旋转得到△EDC,若点B恰好落在AB边上D处,则∠1=°.【答案】解:∵AB=AC,∠B=70°,∴∠ACB=∠B=70°,∴∠A=180°﹣70°﹣70°=140°,∵△ABC绕点C顺时针旋转得到△EDC,∴∠CDE=∠B=70°,BC=CD,∴∠B=∠BDC=70°,∴∠ADE=180°﹣70°﹣70°=40°,∴∠1=180°﹣40°﹣40°=100°,故答案为:100.6.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x 轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2022最新的横坐标为.【答案】解:由图象可知点B2022最新在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB===,∴B2(10,4),B4(20,4),B6(30,4),…∴B2022最新(10100,4).∴点B2022最新横坐标为10100.故答案为101007.已知一个直角三角板PMN,∠MPN=30°,MN=2,使它的一边PN与正方形ABCD的一边AD重合(如图放置在正方形内)把三角板绕点P旋转,使点M落在直线BC上一点F处,则CF的长为.【答案】解:∵∠MPN=30°,MN=2,∴AD=MN•cot∠MPN=2×cot30°=2×=2,①如图1,当点F在BC上,点N不在BC上时,根据旋转的性质AF=AM,在Rt△ABF和Rt△ADM中,,∴Rt△ABF≌Rt△ADM(HL),∴BF=DM,又∵BF=BC﹣CF,DM=CD﹣CM,∴CF=CM=CD﹣DM=2﹣2;②如图2,△PMN绕点P顺时针旋转90°时,点F、B都在直线BC 上时,根据旋转的性质,BF=MN=2,所以,CF=BC+BF=2+2,综上所述,CF的长为(2﹣2)或(2+2).故答案为:(2﹣2)或(2+2).8.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,∠DAE =45°,将△ADC绕点A顺时针90°旋转后,得到△AFB,连接EF.下列结论中正确的有.(填序号)①∠EAF=45°;②△ABE∽△CAD;③EA平分∠CEF;④BE2+DC2=DE2.【答案】解:∵△ADC绕点A顺时针90°旋转后,得到△AFB,∴∠FAD=90°,DC=BF,∠FBE=90°,AD=AF,而∠DAE=45°,∴∠EAF=90°﹣45°=45°,∴△DAE≌△FAE,∴∠DEA=∠FEA,即EA平分∠CEF;∴EF=ED,在Rt△BEF中,BE2+BF2=EF2,∴BE2+DC2=DE2,∴①③④正确,故答案为①③④.9.已知:如图,△ABC中,∠C=90°,AB=3,BC=2,将△ABC绕A点按顺时针旋转60°,得到△AB'C′,则CC′=.【答案】解:连接CC′,如图所示.由旋转,可知:AC=AC′,∠CAC′=60°,∴△ACC′为等边三角形,∴CC′=AC.在Rt△ABC中,∠C=90°,AB=3,BC=2,∴AC==,∴CC′=.故答案为:.10.如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.【答案】解:如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.11.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,则∠A的度数是.【答案】解:∵△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∴∠AOC=∠BOD=40°,OA=OC,∵OA=OC,∴∠A=∠OCA,∴∠A=(180°﹣40°)=70°,故答案为:70°.12.如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按逆时针方向旋转90°,则点B 的对应点的坐标为.【答案】解:如图,∵△OA′B′是由△OAB绕点O按逆时针方向旋转90°得到,∴OA′=OA,A′B′=AB,且A′B′⊥OA′,∵OA=2,AB=1,∴OA′=2,A′B′=1,∴点B′(﹣2,1),即点B的对应点的坐标为(﹣2,1).故答案为:(﹣2,1).13.如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A,C,B′三点共线,那么旋转角度的大小为.【答案】解:根据旋转的性质可知,∠ACB=∠A′CB′=45°,那么旋转角度的大小为∠ACA′=180°﹣45°=135°;故答案为:135°.14.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤S四边形AEPF=S△ABC.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的序号有.【答案】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=∠BAC=45°,AP=BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②由①知,△AEP≌△CFP,∴∠APE=∠CPF.正确;③由①知,△AEP≌△CFP,∴PE=PF.又∵∠EPF=90°,∴△EPF是等腰直角三角形.正确;④只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;⑤∵△AEP≌△CFP,同理可证△APF≌△BPE.∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.正确.故正确的序号有①②③⑤.15.如图,P是等边△ABC内的一点,若将△PAC绕点A逆时针旋转到△P′AB,则∠PAP′的度数为度.【答案】解:连接PP′.根据旋转的性质,得:∠P′AB=∠PAC.则∠P′AB+∠BAP=∠PAC+∠BAP=∠BAC=60°,即∠PAP′=60°.故答案为:60.16.将点(0,1)绕原点顺时针旋转90°,所得的点的坐标为.【答案】解:将点(0,1)绕原点顺时针旋转90°,所得的点在x轴的正半轴上,到原点的距离为1,因而该点的坐标为(1,0).故答案为(1,0).17.如图,点D是等边△ABC内一点,将△BDC以点C为中心顺时针旋转60°,得到△ACE,连接BE,若∠AEB=45°,则∠DBE的度数为.【答案】解:∵△ABC为等边三角形,∴∠ACB=60°,∵△BDC以点C为中心顺时针旋转60°,得到△ACE,∴∠CBD=∠CAE,∵∠CAE+∠AEB=∠CBE+∠BCA,即∠CBD+45°=∠CBE+60°,∴∠CBD﹣∠CBE=60°﹣45°=15°,即∠DBE=15°.故答案为:15°.18.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=度.【答案】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=50°,∴∠θ=50°,故答案为:50.19.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=.【答案】解:∵四边形ABCD为正方形,∴∠ABC=90°,∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=PB=2.故答案为2.20.如图,A、B、C三点在正方形网格线的交点处.若将△ACB绕着点A逆时针旋转得到△AC′B′,则tanB′的值为.【答案】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故答案为.21.如图,平面直角坐标系中,A(4,2)、B(3,0),将△ABO绕OA中点C逆时针旋转90°得到△A′B′O′,则A′的坐标为.【答案】方法一:解:如图过A'作O'B'的垂线交y轴于点N,∵点A到OB的距离是2,∴点A'到O'B'的距离A'M=2,故A'N=MN﹣A'M=OB﹣A'M=3﹣2=1,由勾股定理得OA=2,∴A'C=OC=,由勾股定理OA'=,在Rt△OA'N中,用勾股定理得ON=3,∴A'(1,3).方法二:解:过点C作直线l平行于x轴,分别过点A、A'作AM⊥l、A'N⊥l,垂足分别为M、N,如图2所示,∵∠ACA′=90°,∴∠ACM+∠A′CN=90°,∵∠ACM+∠CAM=90°,∴∠CAM=∠A′CN,在Rt△ACM和Rt△A′CN中,∵∠CAM=∠A′CN,AC=A′C,∴△ACM≌△A′CN,A′N=CM,CN=AM,∵点C为OA中点,A点坐标为(4,2)∴AM=×2=1,CM==2,∴A′点纵坐标为2+1=3,∵点A到OB的距离是2,∴点A'到O'B'的距离是2,∵OB=3,∴A′点横坐标为3﹣2=1,∴A'(1,3).22.如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC边上.已知∠C=80°,则∠EAB=°.【答案】解:∵△ABC的绕点A顺时针旋转得到△AED,∴AC=AD,∠BAC=∠EAD,∵点D正好落在BC边上,∴∠C=∠ADC=80°,∴∠CAD=180°﹣2×80°=20°,∵∠BAE=∠EAD﹣∠BAD,∠CAD=∠BAC﹣∠BAD,∴∠BAE=∠CAD,∴∠EAB=20°.故答案为:20.23.已知A,B,O三点不共线,点A,Aʹ关于点O对称,点B,Bʹ关于点O对称,那么线段AB与AʹBʹ的关系是.【答案】解:∵点A′与点A关于点O对称,点B′与点B关于点O对称,∴线段AB与A′B′关于点O对称.∴AB∥A′B′,且AB=A′B′故答案为:平行且相等.24.如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB=40°,则∠AOD的大小为度.【答案】解:∵将△OAB绕点O逆时针旋转70°到△OCD,∴∠DOB=70°,∵∠AOB=40°,∴∠AOD=∠BOD﹣∠AOB=30°,故答案为:30.25.如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的度数为.【答案】解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=60°,AD∥BC,∴∠ADA′+∠DA′B=180°,∴∠DA′B=180°﹣50°=130°,∵AE⊥BE,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=130°+30°=160°.故答案为160°.26.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.【答案】解:将△AMB逆时针旋转90°到△ACF,连接NF,∴CF=BM,AF=AM,∠B=∠ACF.∠2=∠3,∵△ABC是等腰直角三角形,AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠MAN=45°,∴∠NAF=∠1+∠3=∠1+∠2=90°﹣45°=45°=∠NAF,在△MAN和△FAN中∴△MAN≌△FAN,∴MN=NF,∵∠ACF=∠B=45°,∠ACB=45°,∴∠FCN=90°,∵CF=BM=1,CN=3,∴在Rt△CFN中,由勾股定理得:MN=NF==,故答案为:.27.如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O 按顺时针方向旋转90°,得到△AB10,那么点A1的坐标为.【答案】解:把点A绕点O顺时针旋转90°可得A1的坐标为(1,3).28.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt △AB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,则线段B′C的长为.【答案】解:如图,作B′E⊥AC交CA的延长线于E.∵∠ACB=90°,∠BAC=60°,AB=6,∴∠ABC=30°,∴AC=AB=3,∵Rt△AB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,∴AB=AB′=6,∠B′AC′=60°,∴∠EAB′=180°﹣∠B′AC′﹣∠BAC=60°.∵B′E⊥EC,∴∠AB′E=30°,∴AE=3,∴根据勾股定理得出:B′E==3,∴EC=AE+AC=6,∴B′C===3.故答案为:3.29.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是.【答案】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故答案是:30°.30.在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是.【答案】解:根据关于原点对称的点的坐标的特点,∴点(1,﹣2)关于原点过对称的点的坐标是(﹣1,2).故答案为:(﹣1,2).31.如图,在△AOB中,∠AOB=90°,∠ABO=30°,将△AOB绕顶点O顺时针旋转,旋转角为θ(0°<θ<180°),得到△COD.设AO 的中点为E,CD中点为P,AO=a,连接EP,当θ=°时,EP长度最大,最大值为.【答案】解:∵∠AOB=90°,∠ABO=30°,∴AB=2OA=2a,∵△AOB绕顶点O顺时针旋转,旋转角为θ(0°<<180°)得到△COD,∴CD=AB=2a,连结OP,∵CD中点为P,∴OP=CD=a,如图1,PE<OE+OP,点P、O、E共线时,如图2,Q为AB的中点,∵PE=OE+OP,∴PE的最大值为0.5a+a=1.5a.∵QA=QO,∴∠AOQ=∠A=60°,∴∠POQ=120°∴旋转角θ=120°.故答案为120,1.5a.32.如图,在矩形ABCD中,AB=15,BC=17,将矩形ABCD绕点D按顺时针方向旋转得到矩形DEFG,点A落在矩形ABCD的边BC上,连接CG,则CG的长是.【答案】解:连接AE,如图所示:由旋转变换的性质可知,∠ADE=∠CDG,AD=BC=DE=17,AB =CD=DG=15,由勾股定理得,CE===8,∴BE=BC﹣CE=17﹣8=9,则AE===3,∵=,∠ADE=∠CDG,∴△ADE∽△CDG,∴==,解得,CG=,故答案为:.33.如图,在平面直角坐标系中,点A、B的坐标分别为(3,2)、(﹣1,0),若将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标为.【答案】解:作AC⊥x轴于C,∵点A、B的坐标分别为(3,2)、(﹣1,0),∴AC=2,BC=3+1=4,把Rt△BAC绕点B顺时针旋转90°得到△BA′C′,如图,∴BC′=BC=4,A′C′=AC=2,∴点A′的坐标为(1,﹣4).故答案为(1,﹣4).。
人教版九年级数学上册第二十三章旋转专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN = B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥2、图,在ABCD 中,70A ∠=︒,将ABCD 绕顶点B 顺时针旋转到111A BC D ,当11C D 首次经过顶点C 时,旋转角1ABA ∠=( )A .30°B .40°C .45°D .60°3、有下列说法:①平行四边形具有四边形的所有性质:②平行四边形是中心对称图形:③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).A .①②④B .①③④C .①②③D .①②③④ 4、如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M5、观察下列图案,能通过左图顺时针旋转90°得到的( )A .B .C .D .6、下列图形中,是中心对称图形的是( )A .B .C .D .7、如图,在矩形ABCD 中,4AB =,6BC =,O 是矩形的对称中心,点E 、F 分别在边AD 、BC 上,连接OE 、OF ,若2AE BF ==,则OE OF +的值为( )A .B .CD .8、如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB 绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A .(1,2-+B .()C .(2D .(- 9、如图,在正方形ABCD 中,将边BC 绕点B 逆时针旋转至BC ',连接CC ',DC ',若90CC D '∠=︒,2C D '=,则线段BC 的长度为( ).A .4B .5C .D .10、如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,菱形OABC ,60AOC ∠=︒,边OC 在y 轴上,若将菱形OABC 绕点O 逆时针旋转75°,得到菱形OA B C ''',则点B 的对应点B '的坐标为______.2、将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD =_________.(结果保留根号)3、如图,在平面直角坐标系中,一次函数21y x =-的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45︒,交x 轴于点C ,则直线BC 的函数表达式是__________.4、如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1, A 2,…,An 分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为 ________5、如图,已知点A 的坐标是(-2),点B 的坐标是(1-,,菱形ABCD 的对角线交于坐标原点O ,则点D 的坐标是______.三、解答题(5小题,每小题10分,共计50分)1、问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC 和△DEC 是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB =DE =4.解决问题:(1)如图1,智慧小组将△DEC 绕点C 顺时针旋转,发现当点D 恰好落在AB 边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当△DEC 绕点C 继续旋转到如图2所示的位置时,连接AE 、AD 、BD ,他们提出S △BDC =S △AEC ,请你帮他们验证这一结论是否正确,并说明理由.2、如图1,在等腰直角三角形ABC 中,90BAC ∠=︒.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90︒得到AG ,连接GC ,HB .(1)证明:AHB AGC ≌;(2)如图2,连接GF ,HC ,AF 交AF 于点Q .①证明:在点H 的运动过程中,总有90HFG ∠=︒;②若4AB AC ==,当EH 的长度为多少时,AQG 为等腰三角形?3、如图,已知△ABC 是等边三角形,在△ABC 外有一点D ,连接AD ,BD ,CD ,将△ACD 绕点A 按顺时针方向60旋转得到△ABE ,AD 与BE 交于点F ,∠BFD =97°.(1)求∠ADC 的大小;(2)若∠BDC =7°,BD =2,BE =4,求AD 的长.4、图,在每个小正方形的边长为1个单位的网格中,ABC 的顶点均在格点(网格线的交点)上.(1)将ABC 向右平移5个单位得到111A B C △,画出111A B C △;(2)将(1)中的111A B C △绕点C 1逆时针旋转90︒得到221A B C △,画出221A B C △.5、如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABO 的三个顶点分别为()1,3A -,()4,3B -,()0,0O .(1)画出ABO 关于原点对称的11A B O ,并写出点1B 的坐标;(2)画出ABO 绕O 点顺时针旋转90 后得到的22A B O ,并写出点2B 的坐标.-参考答案-一、单选题1、C【解析】【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM 绕点A 逆时针旋转得到△ACN ,∴△ABM ≌△ACN ,∴AB =AC ,AM =AN ,∴AB 不一定等于AN ,故选项A 不符合题意;∵△ABM ≌△ACN ,∴∠ACN =∠B ,而∠CAB 不一定等于∠B ,∴∠ACN 不一定等于∠CAB ,∴AB 与CN 不一定平行,故选项B 不符合题意;∵△ABM ≌△ACN ,∴∠BAM =∠CAN ,∠ACN =∠B ,∴∠BAC =∠MAN ,∵AM =AN ,AB =AC ,∴△ABC 和△AMN 都是等腰三角形,且顶角相等,∴∠B =∠AMN ,∴∠AMN =∠ACN ,故选项C 符合题意;∵AM =AN ,而AC 不一定平分∠MAN ,∴AC 与MN 不一定垂直,故选项D 不符合题意;故选:C .【考点】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.2、B【解析】【分析】根据平行四边形的性质及旋转的性质可知1170,A C C BC BC ∠=∠=∠=︒=,然后可得1170BCC C ∠=∠=︒,则有140CBC ∠=︒,进而问题可求解.【详解】解:∵四边形ABCD 是平行四边形,70A ∠=︒,∴70A C ∠=∠=︒,由旋转的性质可得111170,,C C BC BC ABA CBC ∠=∠=︒=∠=∠,∴1170BCC C ∠=∠=︒,∴1140ABA CBC ∠=∠=︒;故选B .【考点】本题主要考查平行四边形的性质与旋转的性质,熟练掌握平行四边形的性质与旋转的性质是解题的关键.3、D【解析】【分析】根据平行四边形的性质、中心对称图形的定义和全等三角形的判定进行逐一判定即可.【详解】解:∵平行四边形是四边形的一种,∴平行四边形具有四边形的所有性质,故①正确:∵平行四边形绕其对角线的交点旋转180度能够与自身重合,∴平行四边形是中心对称图形,故②正确:∵四边形ABCD 是平行四边形,∴AD =BC ,CD =AB ,∠ADC =∠CBA∴△ADC ≌△CBA (SAS )同理可以证明△ABD ≌△CDB∴平行四边形的任一条对角线可把平行四边形分成两个全等的三角形,故③正确;∵四边形ABCD 是平行四边形,∴OA =OC ,OD =OB ,∴ADO ABO S S =△△,ADO DOC S S =△△,DOC BOC S S =△△,∴=ADO ABO DOC BOC S S S S ==△△△△,∴平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形,故④正确.故选D .【考点】本题主要考查了中心对称图形的定义,平行四边形的性质,全等三角形的判定,三角形中线把面积分成相同的两部分等等,解题的关键在于能够熟练掌握相关知识进行求解.4、B【解析】【分析】根据含30°角的直角三角形的性质可得B (2,,利用待定系数法可得直线PB 的解析式,依次将M 1,M 2,M 3,M 4四个点的一个坐标代入y +2中可解答.【详解】解:∵点A (4,2),点P (0,2),∴PA ⊥y 轴,PA =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,,设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y +2,当y =0+2=0,x∴点M 1(0)不在直线PB 上,当x y=-3+2=1,∴M2(-1)在直线PB上,当x=1时,y,∴M3(1,4)不在直线PB上,当x=2时,y,∴M4(2,112)不在直线PB上.故选:B.【考点】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键.5、A【解析】【分析】根据旋转的定义,观察图形即可解答.【详解】根据旋转的定义,图片按顺时针方向旋转90度,大拇指指向右边,其余4个手指指向下边,从而可确定为A图.故选A.【考点】本题主要考查了旋转的性质,熟知性质是解题的关键.6、C【解析】【分析】中心对称图形是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,根据定义结合图形判断即可.【详解】根据对中心对称图形的定义结合图像判断,A、B属于轴对称图形,C选项满足中心对称图形的定义,故选:C.【考点】本题考查中心对称图形的定义,根据定义结合图形分析并选出适合的选项是解决本题的关键.7、D【解析】【分析】⊥于点M,交BC于点N,利用勾股定理求得OE的长即可解题.连接AC,BD,过点O作OM AD【详解】⊥于点M,交BC于点N,解:如图,连接AC,BD,过点O作OM AD四边形ABCD是矩形,∴==OA OD OBOM AD⊥∴==3AM DM122OM AB ∴== 2AE =1EM AM AE ∴=-=OE ∴同理可得OFOE OF ∴+=故选:D .【考点】本题考查中心对称、矩形的性质、勾股定理等知识,学会添加辅助线,构造直角三角形是解题关键.8、B【解析】【分析】如图,作B H y '⊥轴于H .解直角三角形求出B H ',OH 即可.【详解】解:如图,作B H y '⊥轴于H .由题意:2OA A B '''==,60B A H ''∠=︒,∴30A B H ''∠=︒,∴112AH A B'''==,B H'=∴3OH=,∴()B',故选:B.【考点】本题考查坐标与图形变化——旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9、D【解析】【分析】根据旋转的性质,可知BC=BC'.取点O为线段CC'的中点,并连接BO.根据等腰三角形三线合一的性质、正方形的性质及直角三角形的性质,可证得Rt△OBC≌ Rt△C'CD,从而证得OC=C'D,BO =C C',再利用勾股定理即可求解.【详解】解:如图,取点O为线段CC'的中点,并连接BO.依题意得,BC=BC'∴BO⊥C C'∴∠BOC=90°在正方形ABCD中,BC=CD,∠BCD=90°∴∠OCB+∠C'CD=90°又∵∠C C'D=90°∴∠C'DC+∠C'CD=90°∴∠OCB =∠C 'DC在Rt △OBC 和Rt △C 'CD 中OCB C DC BOC CC D BC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩'' ∴Rt △OBC ≌ Rt △C 'CD (AAS )∴OC =C 'D =2∴C C '=2 OC =2×2=4∴BO =C C '=4在Rt △BOC 中BC故选:D .【考点】本题考查了旋转的性质、正方形的性质、等腰三角形的性质、直角三角形的性质、全等三角形的判定和性质及勾股定理的运用等知识,解题的关键是辅助线的添加.10、A【解析】【分析】由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选A .【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB二、填空题1、()3,3-【解析】【分析】根据菱形的性质可得出∠AOC =60°,则三角形OAC 为等边三角形,即AC ,根据菱形对角线的性质可得出∠AOE =30°,根据勾股定理可得OE , OB ,再根据旋转的性质可得OB =OB 1,∠B 1OF =45°,根据勾股定理即可得出OF 与B 1F 的长度,即可得出答案.【详解】解:如图,连接AC 与OB 相交于点E ,过点B 1作B 1F ⊥x 轴,垂足为F ,∵四边形OABC 为菱形,60AOC ∠=︒,OA =OC ,∴△AOC 是等边三角形,OC =OA =AC ,∵AC ⊥OB ,在Rt△OAE 中,OA AE =12AC∴OE=2,∴OB =∵∠COB =12∠AOC =30°,∠BOB 1=75°,∴∠B 1OF =180°-60°-∠BOB 1=180°-60°-75°=45°,在Rt △B 1OF 中,OB 1=OB =OF =B 1F ,∴OF 2+B 1F 2=OB 12,可得OF =B 1F =3,∵点B 1在第二象限,∴点B 1的坐标为()3,3-.故答案为:()3,3-.【考点】本题主要考查了菱形及旋转的性质,熟练应用相关性质进行计算是解决本题的关键.21【解析】【分析】先根据正方形的性质得到CD=1,∠CDA=90°,再利用旋转的性质得,根据正方形的性质得∠CFE=45°,则可判断△DFH 为等腰直角三角形,从而计算CF-CD 即可.【详解】∵四边形ABCD 为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置,使得点D 落在对角线CF 上,∴△DFH 为等腰直角三角形,∴DH=DF=CF -1..【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.3、113y x =- 【解析】【分析】先根据一次函数21y x =-求得A 、B 坐标,再过A 作BC 的垂线,构造直角三角形,根据勾股定理和正余弦公式求得OC 的长度,得到C 点坐标,从而得到直线BC 的函数表达式.【详解】因为一次函数21y x =-的图像分别交x 、y 轴于点A 、B ,则1,02A ⎛⎫ ⎪⎝⎭,()0,1B -,则AB =.过A作AD BC ⊥于点D ,因为45ABC ∠=︒,所以由勾股定理得AD =,设BC x =,则12AC OC OA =-=,根据等面积可得:AC OB BC AD ⨯=⨯12x =,解得x =.则3OC =,即()3,0C ,所以直线BC 的函数表达式是113y x =-.【考点】本题综合考察了一次函数的求解、勾股定理、正余弦公式,以及根据一次函数的解求一次函数的表达式,要学会通过作辅助线得到特殊三角形,以便求解.4、14n - 【解析】【分析】 根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为n -1阴影部分的和.【详解】 由题意可得阴影部分面积等于正方形面积的14,即是14, 5个这样的正方形重叠部分(阴影部分)的面积和为14×4, n 个这样的正方形重叠部分(阴影部分)的面积和为14×(n -1)=14n -cm 2. 【考点】本题考查了正方形的性质,熟悉正方形的性质是解题关键.5、(1【解析】【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称, 因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∵四边形ABCD 是菱形,对角线相交于坐标原点O∴根据平行四边形对角线互相平分的性质,A 和C ; B 和D 均关于原点O 对称根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B 的坐标是(-1, ,则点D 的坐标是( .故答案为:(.【考点】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.三、解答题1、(1)证明见解析;(2)正确,理由见解析【解析】【分析】(1)如图1中,根据旋转的性质可得AC =CD ,然后求出△ACD 是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行进行解答;(2)如图2中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明.【详解】解:(1)如图1中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)结论正确,理由如下:如图2中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN 和△DCM 中,ACN DCM CMD N 90AC CD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△ACN≌△DCM(AAS ),∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S △BDC =S △AEC .【考点】本题属于几何变换综合题,主要考查了全等三角形的判定与性质,等边三角形的判定与性质,旋转的性质的综合应用,添加恰当辅助线构造全等三角形是解题的关键.2、(1)见详解;(2)①见详解;②当EH 的长度为2时,AQG 为等腰三角形【解析】【分析】(1)由旋转的性质得AH =AG ,∠HAG =90°,从而得∠BAH =∠CAG ,进而即可得到结论;(2)①由AHB AGC ≌,得AH =AG ,再证明AEH AFG ≌,进而即可得到结论;②AQG 为等腰三角形,分3种情况:(a )当∠QAG =∠QGA =45°时,(b )当∠GAQ =∠GQA =67.5°时,(c )当∠AQG =∠AGQ =45°时,分别画出图形求解,即可.【详解】解:(1)∵线段AH 绕点A 逆时针方向旋转90︒得到AG ,∴AH =AG ,∠HAG =90°,∵在等腰直角三角形ABC 中,90BAC ∠=︒,AB =AC ,∴∠BAH =90°-∠CAH =∠CAG ,∴AHB AGC ≌;(2)①∵在等腰直角三角形ABC 中,AB =AC ,点E ,F 分别为AB ,AC 的中点,∴AE =AF ,AEF 是等腰直角三角形,∵AH =AG ,∠BAH =∠CAG ,∴AEH AFG ≌,∴∠AEH =∠AFG =45°,∴∠HFG =∠AFG +∠AFE =45°+45°=90°,即:90HFG ∠=︒;②∵4AB AC ==,点E ,F 分别为AB ,AC 的中点,∴AE =AF =2,∵∠AGH =45°,AQG 为等腰三角形,分3种情况:(a )当∠QAG =∠QGA =45°时,如图,则∠HAF =90°-45°=45°,∴AH 平分∠EAF ,∴点H 是EF 的中点,∴EH 12=(b )当∠GAQ =∠GQA =(180°-45°)÷2=67.5°时,如图,则∠EAH =∠GAQ =67.5°,∴∠EHA =180°-45°-67.5°=67.5°,∴∠EHA =∠EAH ,∴EH=EA=2;(c)当∠AQG=∠AGQ=45°时,点H与点F重合,不符合题意,舍去,综上所述:当EH的长度为2时,AQG为等腰三角形.【考点】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键.3、(1)23°;(2)【解析】【分析】(1)由旋转的性质可得AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,由三角形的内角和定理可求解;(2)连接DE,可证△AED是等边三角形,可得∠ADE=60°,AD=DE,由旋转的性质可得△ACD≌△ABE,可得CD=BE=4,由勾股定理可求解.【详解】解:(1)∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴AB=AC,∠ADC=∠E,∠CAB=∠DAE=60°,∵∠BFD=97°=∠AFE,∴∠E=180°−97°−60°=23°,∴∠ADC=∠E=23°;(2)如图,连接DE,∵AD=AE,∠DAE=60°,∴△AED是等边三角形,∴∠ADE=60°,AD=DE,∵将△ACD绕点A按顺时针方向旋转得到△ABE,∴△ACD≌△ABE,∴CD=BE=4,∵∠BDC=7°,∠ADC=23°,∠ADE=60°,∴∠BDE =90°,∴DE∴AD =DE =【考点】本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.4、(1)作图见解析;(2)作图见解析.【解析】【分析】(1)利用点平移的规律找出1A 、1B 、1C ,然后描点即可;(2)利用网格特点和旋转的性质画出点2A ,2B 即可.【详解】解:(1)如下图所示,111A B C △为所求;(2)如下图所示,221A B C △为所求;【考点】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键.5、(1)图见解析;1(4,3)B -;(2)图见解析;2(3,4)B【解析】【分析】(1)画出ABO 关于原点对称的11A B O ,写出1B 的坐标即可;(2)画出ABO 绕O 点顺时针旋转90︒后得到的22A B O ,写出点2B 的坐标即可.【详解】解:(1)如图11A B O 即为所作,1(4,3)B -;(2)如图:22A B O 即为所作,2(3,4)B .【考点】本题考查了旋转作图,根据题意画出图形是解本题的关键.。
2022年春苏科版九年级数学中考一轮复习《图形的旋转》专题训练(附答案)1.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.2.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.3.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.4.已知△ABC是等边三角形.(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.①如图a,当θ=20°时,△ABD与△ACE是否全等?(填“是”或“否”),∠BOE=度;②当△ABC旋转到如图b所在位置时,求∠BOE的度数;(2)如图c,在AB和AC上分别截取点B′和C′,使AB=AB′,AC=AC′,连接B′C′,将△AB′C′绕点A逆时针旋转角(0°<θ<180°),得到△ADE,BD 和EC所在直线相交于点O,请利用图c探索∠BOE的度数,直接写出结果,不必说明理由.5.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC (0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.6.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段P A绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.7.如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.8.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.9.如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.10.在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.活动一:如图1,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,求阴影部分的面积.小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积:.活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,求AE的长.小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图4所示),则①四边形AECG是怎样的特殊四边形?答:.AE的长是.活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B 旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.11.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.12.平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.当三角板绕点A顺时针旋转至图2、图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.13.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a 的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.14.如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.15.如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.16.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).17.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.18.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.19.(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.20.已知:正方形ABCD.(1)如图1,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.(2)如图2,等腰直角三角形F AE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.(3)如图3,等腰直角三角形F AE绕直角顶点A顺时针旋转∠α,当a=90°时,连接BE、DF,猜想AE与AD满足什么数量关系时,直线DF垂直平分BE.请直接写出结论.(4)如图4,等腰直角三角形F AE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.参考答案1.(1)解:连接AD,如图1,∵△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣75°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点C顺时针旋转60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.2.解:(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∠DAD′=15°,∴α=15°.(2)∵∠C′B′D′=60°,∴∠EB′G=120°,∵∠EAG=60°,∴∠EAG+∠EB′G=180°,∴四边形EAGB′四点共圆,∴∠AEB′=∠AGD′,∵∠EAB′=∠GAD′,AB′=AD′,∴△AEB′≌△AGD′(AAS),∴EB′=GD′,AE=AG,∵AH=AH,∠HAE=∠HAG,∴△AHE≌△AHG(SAS),∴EH=GH,∵△EHB′的周长为2,∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,∴AB′=AB=2,∴菱形ABCD的周长为8.3.(1)解:∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°,∵CD∥EF,∴∠α=30°;(2)证明:∵G为BC中点,∴CG=1,∴CG=CE,∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中,∴△GCD′≌△E′CD(SAS),∴GD′=E′D;(3)解:能.理由如下:∵四边形ABCD为正方形,∴CB=CD,∵CD=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△BCD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α==135°,当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′=∠BCD=45°则α=360°﹣=315°,即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.4.解:(1)①∵△ADE是由△ABC绕点A旋转θ得到,△ABC是等边三角形,∴AB=AD=AC=AE,∠BAD=∠CAE=20°,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS);∵θ=20°,∴∠ABD=∠AEC=(180°﹣20°)=80°,又∵∠BAE=θ+∠BAC=20°+60°=80°,∴在四边形ABOE中,∠BOE=360°﹣80°﹣80°﹣80°=120°;②由已知得:△ABC和△ADE是全等的等边三角形,∴AB=AD=AC=AE,∵△ADE是由△ABC绕点A旋转θ得到的,∴∠BAD=∠CAE=θ,∴△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ADB+∠ABD+∠BAD=180°,∴∠AEC+∠ABD+∠BAD=180°,∵∠ABO+∠AEC+∠BAE+∠BOE=360°,∵∠BAE=∠BAD+∠DAE,∴∠DAE+∠BOE=180°,又∵∠DAE=60°,∴∠BOE=120°;(2)如图,∵AB=AB′,AC=AC′,∴==,∴B′C′∥BC,∵△ABC是等边三角形,∴△AB′C′是等边三角形,根据旋转变换的性质可得AD=AE,∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠BOC=180°﹣(∠OBC+∠OCB),=180°﹣(∠OBC+∠ACB+∠ACE),=180°﹣(∠OBC+∠ACB+∠ABD),=180°﹣(∠ACB+∠ABC),=180°﹣(60°+60°),=60°,当0°<θ<30°时,∠BOE=∠BOC=60°,当θ=30°时,点B,点O,点E共线.当30°<θ<180°时,∠BOE=180°﹣∠BOC=180°﹣60°=120°.5.(1)证明:∵∠DBE=∠ABC,∴∠ABD+∠CBE=∠DBE=∠ABC,∵△ABE′由△CBE旋转而成,∴BE=BE′,∠ABE′=∠CBE,∴∠DBE′=∠DBE,在△DBE与△DBE′中,∵,∴△DBE≌△DBE′(SAS),∴DE′=DE;(2)证明:如图所示:把△CBE逆时针旋转90°,连接DE′,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCE=45°,∴图形旋转后点C与点A重合,CE与AE′重合,∴AE′=EC,∴∠E′AB=∠BCE=45°,∴∠DAE′=90°,在Rt△ADE′中,DE′2=AE′2+AD2,∵AE′=EC,∴DE′2=EC2+AD2,同(1)可得DE=DE′,∴DE2=AD2+EC2.6.解:(1)∵BA=BC,∠BAC=60°,M是AC的中点,∴BM⊥AC,AM=MC,∵将线段P A绕点P顺时针旋转2α得到线段PQ,∴AM=MQ,∠AMQ=120°,∴CM=MQ,∠CMQ=60°,∴△CMQ是等边三角形,∴∠ACQ=60°,∴∠CDB=30°;(2)如图2,连接PC,AD,∵AB=BC,M是AC的中点,∴BM⊥AC,即BD为AC的垂直平分线,∴AD=CD,AP=PC,PD=PD,在△APD与△CPD中,∵,∴△APD≌△CPD(SSS),∴∠ADB=∠CDB,∠P AD=∠PCD,又∵PQ=P A,∴PQ=PC,∠ADC=2∠1,∠4=∠PCQ=∠P AD,∴∠P AD+∠PQD=∠4+∠PQD=180°,∴∠APQ+∠ADC=360°﹣(∠P AD+∠PQD)=180°,∴∠ADC=180°﹣∠APQ=180°﹣2α,∴2∠CDB=180°﹣2α,∴∠CDB=90°﹣α;(3)如图1,延长BM,CQ交于点D,连接AD,∵∠CDB=90°﹣α,且PQ=QD,∴∠P AD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠P AD>∠MAD,∵点P在线段BM上运动,∠P AD最大为2α,∠P AD最小等于α,∴2α>180°﹣2α>α,∴45°<α<60°.7.(1)解:AE1=BF1.证明:∵O为正方形ABCD的中心,∴OA=OD,∵OF=2OA,OE=2OD,∴OE=OF,∵将△EOF绕点O逆时针旋转α角得到△E1OF1∴OE1=OF1,∵∠F1OB=∠E1OA,OA=OB,∴△E1AO≌△F1BO,∴AE1=BF1;(2)证明:∵取OE1中点G,连接AG,∵∠AOD=90°,α=30°,∴∠E1OA=90°﹣α=60°,∵OE1=2OA,∴OA=OG,∴∠E1OA=∠AGO=∠OAG=60°,∴AG=GE1,∴∠GAE1=∠GE1A=30°,∴∠E1AO=90°,∴△AOE1为直角三角形.8.解:(1)如图2中,结论:EG=CG,EG⊥CG.(2)如图3中,EG=CG,EG⊥CG.证明:延长FE交DC延长线于M,连MG.∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,∠EMC=90°,由图(3)可知,∵BD平分∠ABC,∠ABC=90°,∴∠EBF=45°,又∵EF⊥AB,∴△BEF为等腰直角三角形∴BE=EF,∠F=45°.∴EF=CM.∵∠EMC=90°,FG=DG,∴MG=FD=FG.∵BC=EM,BC=CD,∴EM=CD.∵EF=CM,∴FM=DM,又∵FG=DG,∠CMG=∠EMC=45°,∴∠F=∠GMC.在△GFE与△GMC中,,∴△GFE≌△GMC(SAS).∴EG=CG,∠FGE=∠MGC.∵∠FMC=90°,MF=MD,FG=DG,∴MG⊥FD,∴∠FGE+∠EGM=90°,∴∠MGC+∠EGM=90°,即∠EGC=90°,∴EG⊥CG.9.解:等边三角形.理由:由题意可知:∠APD=60°,∴△P AD是等边三角形,∴∠DAP=∠PDA=60°,∴∠PDC=∠P AE=30°,∴∠DAE=∠DAP﹣∠P AE=30°,∴∠P AB=30°,即∠BAE=60°,又∵CD=AB=EA,∴△ABE是等边三角形,故答案为等边三角形.10.解:活动一:∵四边形DECF是正方形,∴DE=DF=x,DE∥BC,DF∥AC,∴,,∵AD=2,BD=1,∴AC=3x,BC=x,∵AC2+BC2=AB2,∴9x2+(x)2=9,解得:x=,∴DE=DF=,AE=,BF=,∴S△ADE+S△BDF=1,∴S阴影=1;故答案为:1;活动二:根据题意得:∠EAG=90°,∵AE⊥BC,∴∠AEB=∠AEC=∠G=90°,∴四边形AECG是矩形,∵AE=AG,∴四边形AECG是正方形,∵BC=5,CD=3,∴设AE=x,则BE=GD=CG﹣CD=x﹣3,BE=BC﹣EC=5﹣x,∴x﹣3=5﹣x,解得:x=4,∴AE=4.故答案为:正方形,4;活动三:过点B作BG⊥DC于点G,过点E作EF⊥AB与AB的延长线交于点F.∵∠BAD=∠D=∠DGB=90°,∴四边形ABGD是矩形,∴DG=AB=2,∴CG=DC﹣DG=4﹣2=2.∵∠CBG+∠CBF=90°,∠EBF+∠CBF=90°,∴∠CBG=∠EBF.在△BCG与△BEF中,∠CBG=∠EBF,∠CGB=∠EFB=90°,BC=BE,∴△BCG≌△BEF,∴CG=EF=2.∴S△ABE=AB•EF=2.11.解:(1)答:AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2;∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG,∴∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.12.解:图2,AF+BF=2CE仍成立,证明:过B作BH⊥CE于点H,∵∠BCH+∠ACE=90°,又∵在直角△ACE中,∠ACE+∠CAE=90°,∴∠CAE=∠BCH,又∵AC=BC,∠AEC=∠BHC=90°∴△ACE≌△CBH.∴CH=AE,BF=HE,CE=BH,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.图3中,过点C作CG⊥BF,交BF延长线于点G,∵AC=BC,可得∠AEC=∠CGB,∠ACE=∠BCG,∴△CBG≌△CAE,∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF﹣BF=2CE.13.(1)证明:①如图2:∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE,②∵△BPM≌△CPE,∴PM=PE∴PM=ME,∴在Rt△MNE中,PN=ME,∴PM=PN.(2)解:成立,如图3.证明:延长MP与NC的延长线相交于点E,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,在△BPM和△CPE中,,∴△BPM≌△CPE,∴PM=PE,∴PM=ME,则Rt△MNE中,PN=ME∴PM=PN.(3)解:如图4,四边形BMNC是矩形,理由:∵MN∥BC,BM⊥AM,CN⊥MN,∴∠AMB=∠ANC=90°,∠AMB+∠CBM=180°,∴∠CBM=∠AMB=∠CNA=90°,∴四边形BMNC是矩形.∵BM=CN,∠PBM=∠PCN,BP=CP,∴△PBM≌△PCN(SAS)∴PM=PN.14.(1)证明:∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)解:∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角,∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°﹣75°﹣75°=30°.15.解:(1)BG=AE,证明:∵△ABC是等腰直角三角形,AD⊥BC,∴BD=DA,又∵正方形DEFG中:GD=DE,∠GDB=∠EDA;∴Rt△BDG≌Rt△ADE;∴BG=AE;(2)成立:证明:连接AD,∵Rt△BAC中,D为斜边BC的中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°,∵EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE,在△BDG和△ADE中,∴△BDG≌△ADE(SAS),∴BG=AE;(3)由(2)可得BG=AE,当BG取得最大值时,AE取得最大值;分析可得:当旋转角度为270°时,BG=AE最大值为1+2=3,此时如图:AF=.16.(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=FD,同理,在Rt△DEF中,EG=FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.(3)解:(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,∵∠GCD=∠GMF,∠CGD=∠MGF,GF=GD,∴△CDG≌△MFG(AAS),∴CD=FM,又因为BE=EF,易证∠EFM=∠EBC,∴△EFM≌△EBC(SAS),∴∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG.17.解:(1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等,则S△DEF+S△CEF=S△ABC;(2)图2成立;图3不成立.图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,又∵∠C=90°,∴DM∥BC,DN∥AC,∵D为AB边的中点,由中位线定理可知:DN=AC,MD=BC,∵AC=BC,∴MD=ND,∵∠EDF=90°,∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°,∴∠MDE=∠NDF,在△DME与△DNF中,∵,∴△DME≌△DNF(ASA),∴S△DME=S△DNF,∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF,由以上可知S四边形DMCN=S△ABC,∴S△DEF+S△CEF=S△ABC.图3不成立,连接DC,证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°)∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+,∴S△DEF﹣S△CFE=.故S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.18.解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.19.解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.20.解:(1)BE=DF且BE⊥DF;(2)在△DF A和△BEA中,∵∠DAF=90°﹣∠F AB,∠BAE=90°﹣∠F AB,∴∠DAF=∠BAE,又AB=AD,AE=AF,∴△DF A≌△BEA,∴BE=DF;∠ADF=∠ABE,∴BE⊥DF;(3)AE=(﹣1)AD;(4)正方形.。
一、旋转真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).【答案】(1)D(1,3);(2)①详见解析;②H(175,3);(3)30334-≤S≤30334+.【解析】【分析】(1)如图①,在Rt△ACD中求出CD即可解决问题;(2)①根据HL证明即可;②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22AD AC-=4,∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(34)30334-当点D 在BA 的延长线上时,△D ′E ′K 的面积最大,最大面积=12×D ′E ′×KD ′=12×3×(5+342)=303344+. 综上所述,303344-≤S ≤303344+. 【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.2.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE()2探究2:如图2,在一般的RtABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由.()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】 【分析】()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论. 【详解】()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中, ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABC ∴≌()BDE AASBC DE a ∴==,BCD 1S BC DE 2=⋅,2BCD 1S a 2∴=;()2BCD的面积为21a2,理由:如图2,过点D作BC的垂线,与BC的延长线交于点E,BED ACB90∠∠∴==,线段AB绕点B顺时针旋转90得到线段BE ,AB BD∴=,ABD90∠=,ABC DBE90∠∠∴+=,A ABC90∠∠+=,A DBE∠∠∴=,在ABC和BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC∴≌()BDE AAS,BC DE a∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()3如图3,过点A作AF BC⊥与F,过点D作DE BC⊥的延长线于点E,AFB E90∠∠∴==,11BF BC a22==,FAB ABF90∠∠∴+=,ABD90∠=,ABF DBE90∠∠∴+=,FAB EBD ∠∠∴=,线段BD 是由线段AB 旋转得到的,AB BD ∴=,在AFB 和BED 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AFB ∴≌()BED AAS ,1BF DE a 2∴==, 2BCD1111SBC DE a a a 2224=⋅=⋅⋅=, BCD ∴的面积为21a 4.【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.3.在平面直角坐标系中,已知点A (0,4),B (4,4),点M ,N 是射线OC 上两动点(OM <ON ),且运动过程中始终保持∠MAN =45°,小明用几何画板探究其中的线段关系. (1)探究发现:当点M ,N 均在线段OB 上时(如图1),有OM 2+BN 2=MN 2. 他的证明思路如下:第一步:将△ANB 绕点A 顺时针旋转90°得△APO ,连结PM ,则有BN =OP . 第二步:证明△APM ≌△ANM ,得MP =MM . 第一步:证明∠POM =90°,得OM 2+OP 2=MP 2. 最后得到OM 2+BN 2=MN 2. 请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM 2+BN 2=MN 2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN =PM ,∵∠ABN =∠AOP =135°,∠AOB =45°, ∴∠MOP =90°, ∴PM 2=OM 2+OP 2, ∴OM 2+BN 2=MN 2;(3)如图3中,若点B 是MN 的中点,求MN 的长. 设MN =2x ,则BM =BN =x , ∵OA =AB =4,∠OAB =90°, ∴OB =42, ∴OM =42﹣x , ∵OM 2+BN 2=MN 2. ∴(42﹣x)2+x 2=(2x)2,解得x =﹣22+26或﹣22﹣26(舍弃) ∴MN =﹣42+46. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.4.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3)55;(4)BD=101143. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA=即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB 22AC BC -.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE 22AB BE +2263+52)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD 125125. (4)∵m =6,n =2∴CE =3,CD 2,AB 22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD 22BC CD +224222+()()10. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,∴AM=5,AE=22AM ME=57,由(2)可知DBAE=223,∴BD=21143.故答案为210或2114.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.5.在平面直角坐标系中,O为原点,点A(0,4),点B(﹣2,0),把△ABO绕点A逆时针旋转,得△AB′O′,点B、O旋转后的对应点为B′、O′.(1)如图①,若旋转角为60°时,求BB′的长;(2)如图②,若AB′∥x轴,求点O′的坐标;(3)如图③,若旋转角为240°时,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)【答案】(1)252)点O′8545);(3)点P′的坐标为(﹣83 5,365.【解析】分析:(1)由点A、B的坐标可得出AB的长度,连接BB′,由旋转可知:AB=AB′,∠BAB′=60°,进而可得出△ABB′为等边三角形,根据等边三角形的性质可求出BB′的长;(2)过点O′作O′D⊥x轴,垂足为D,交AB′于点E,则△AO′E∽△ABO,根据旋转的性质结合相似三角形的性质可求出AE、O′E的长,进而可得出点O′的坐标;(3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,根据旋转的性质结合解直角三角形可求出点O ′的坐标,由A 、A ′关于x 轴对称可得出点A ′的坐标,利用待定系数法即可求出直线A ′O ′的解析式,由一次函数图象上点的坐标特征可得出点P 的坐标,进而可得出OP 的长度,再在Rt △O ′P ′M 中,通过解直角三角形可求出O ′M 、P ′M 的长,进而可得出此时点P ′的坐标.详解:(1)∵点A (0,4),点B (﹣2,0),∴OA =4,OB =2,∴AB. 在图①中,连接BB ′.由旋转可知:AB =AB ′,∠BAB ′=60°,∴△ABB ′为等边三角形,∴BB ′=AB(2)在图②中,过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E . ∵AB ′∥x 轴,O ′E ⊥x 轴,∴∠O ′EA =90°=∠AOB .由旋转可知:∠B ′AO ′=∠BAO ,AO ′=AO =4,∴△AO ′E ∽△ABO ,AE AO ='O E BO ='AO AB,即4AE ='2O E∴AE,O ′E∴O ′D+4,∴点O ′的坐标为). (3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,如图3所示. 由旋转可知:AO ′=AO =4,∠O ′AF =240°﹣180°=60°,∴AF =12AO ′=2,O ′F=2AO∴点O ′(﹣6).∵点A (0,4),∴点A ′(0,﹣4).设直线A ′O ′的解析式为y =kx +b ,将A ′(0,﹣4)、O ′(﹣6)代入y =kx +b ,得:46b b =-⎧⎪⎨-+=⎪⎩,解得:4k b ⎧=⎪⎨⎪=-⎩,∴直线A ′O ′的解析式为y =x ﹣4. 当y =0x ﹣4=0,解得:x =,∴点P0),∴OP =O ′P在Rt △O ′P ′M 中,∠MO ′P ′=60°,∠O ′MP ′=90°,∴O ′M =12O ′P′=5,P ′M=2O ′P ′=65,∴点P ′的坐标为(﹣5,6+65),即(﹣3655,).点睛:本题考查了函数图象及旋转变换、待定系数法求一次函数解析式、等边三角形的判定与性质、一次函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)利用等边三角形的性质找出BB′的长;(2)通过解直角三角形求出AE、O′E的长;(3)利用两点之间线段最短找出当O′P+AP′取得最小值时点P的位置.6.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.【解析】【分析】(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.【详解】(1)∵a=b=3,且∠ACB=60°,∴△ABC是等边三角形,∴OC=,∴CD=3;(2)3;(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;只有当∠ACB=120°时,∠CAE=180°,即A、C、E在一条直线上,此时AE最大∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.【点睛】本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.7.如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.(1)若CA=CB,CE=CD①猜想线段BE,AD之间的数量关系及所在直线的位置关系,直接写出结论;②现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(2)若CA=8,CB=6,CE=3,CD=4,Rt△ECD绕着点C顺时针转锐角α,如图3,连接BD,AE,计算的值.【答案】(1)①BE=AD,BE⊥AD;②见解析;(2)125.【解析】试题分析:根据三角形全等的判定与性质得出BE=AD,BE⊥AD;设BE与AC的交点为点F,BE与AD的交点为点G,根据∠ACB=∠ECD=90°得出∠ACD=∠BCE,然后结合AC=BC,CD=CE得出△ACD≌△BCE,则AD=BE,∠CAD=∠CBF,根据∠BFC=∠AFG,∠BFC+∠CBE=90°得出∠AFG+∠CAD=90°,从而说明垂直;首先根据题意得出△ACD∽△BCE,然后说明∠AGE=∠BGD=90°,最后根据直角三角形的勾股定理将所求的线段转化成已知的线段得出答案.试题解析:(1)①解:BE=AD,BE⊥AD②BE=AD,BE⊥AD仍然成立证明:设BE与AC的交点为点F,BE与AD的交点为点G,如图1.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=BC CD=CE ∴△ACD≌△BCE∴AD=BE ∠CAD=∠CBF ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD(2)证明:设BE与AC的交点为点F,BE的延长线与AD的交点为点G,如图2.∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE ∵AC=8,BC=6,CE=3,CD=4 ∴△ACD∽△BCE∴∠CAD=∠CBE ∵∠BFC=∠AFG ∠BFC+∠CBE=90°∴∠AFG+∠CAD=90°∴∠AGF=90°∴BE⊥AD ∴∠AGE=∠BGD=90°∴,.∴.∵,,∴考点:三角形全等与相似、勾股定理.8.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
平移和旋转专题(2021•大同二模)综合与实践问题情境:如图1,在数学活动课上,老师让同学们画了等腰Rt△ABC和等腰Rt△ADE,并连接CE,BD.操作发现:(1)当等腰Rt△ADE绕点A旋转,如图2,勤奋小组发现了:①线段CE与线段BD之间的数量关系是.②直线CE与直线BD之间的位置关系是.类比思考:(2)智慧小组在此基础上进行了深入思考,如图3,若△ABC与△ADE都为直角三角形,∠BAC=∠DAE=90°,且AC=2AB,AE=2AD,请你写出CE与BD的数量关系和位置关系,并加以证明.拓展应用:(3)创新小组在(2)的基础上,又作了进一步拓展研究,当点E在直线AB 上方时,若DE∥AB,且AB=√5,AD=1,其他条件不变,试求出线段CE的长.(直接写出结论)【点睛】(1)如图2中,延长BD交AC于点O,交EC于H.证明△EAC≌△DAB(SAS),即可解决问题.(2)结论:CE=2BD,CE⊥BD.如图3中,延长BD交AC于点O,交EC于点H.证明△ABD∽△ACE,即可解决问题.(3)如图4中,当DE∥AB时,设DE交AC于H,易证AC⊥DE.求出EH,CH,理由勾股定理即可解决问题.1.(2021•邓州市二模)阅读材料如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB 边上,AB、EF的中点均为O,连接BF、CD、CO,显然,点C、F、O在同一条直线上,可以证明△BOF≌△COD,所以BF=CD.解决问题:(1)将图①中的Rt△DEF绕点O旋转到图②的位置,猜想此时线段BF与CD的数量关系,并证明你的结论;(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中结论仍然成立吗?如果成立,请说明理由;如果不成立,请求出BF与CD之间的数量关系;(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为O,且顶角∠ACB=∠EDF=α,BF与CD之间的数量关系如何(用含α的式子表示出来)?请直接写出结果.2.(2021•中原区校级四模)问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB =30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重台时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.3.(2021•宛城区二模)【问题背景】如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,BE,点P为DC的中点.【观察猜想】观察图1,猜想线段AP与BE的数量关系是,位置关系是.(2)【拓展探究】把△ADE绕点A逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立,请证明:否则写出新的结论并说明理由.(3)【问题解决】把△ADE绕点A在平面内自由旋转,若DE=4,BC=8,请直接写出线段AP长的取值范围.4.(2021•中原区校级三模)等腰直角三角形ABC中,AC=BC=4√2,E为AC中点,以CE为斜边作如图所示等腰直角三角形CED.(1)观察猜想:如图1所示,过D作DF⊥AE于F,交AB于G,线段CD与BG的关系为;(2)探究证明:如图2所示,将△CDE绕点C顺时针旋转到如图所示位置,过D作DF ⊥AE于F,过B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由;(3)拓展延伸:如图3所示,当E、D、G共线时,直接写出DG的长度.5.(2021•金水区校级模拟)如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是,∠MAE =;(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;(3)若CD=12BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=√62CD时,请直接写出α的值.6.(2021•镇平三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D 是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.7.(2021•葫芦岛模拟)在等腰△ABC中,∠BAC=90°,作∠ABC的平分线交AC于点D,∠MDN=135°,将∠MDN绕点D旋转,使∠MDN的两边交直线BA于点E,交直线BC于点F.(1)当∠MDN绕点D旋转到如图①的位置时,请直接写出三条线段AE,CF,AD的数量关系;(2)当∠MDN绕点D旋转到如图②的位置时,(1)中结论是否成立,若成立,请证明;若不成立,请写出正确的结论,并说明理由;(3)若BC=2+√2,当∠CDF=15°时,请直接写出线段CF的长度.8.(2021•北辰区二模)在平面直角坐标系中,O为坐标原点点A(3,4)点B(6,0).(Ⅰ)如图①,求AB的长;(Ⅱ)如图②,把图①中的△OAB绕点B顺时针旋转,使点O的对应点M恰好落在OA 延长线上,N是点A旋转后的对应点.①求证:BN∥OM;②求点N的坐标;(Ⅲ)点C是OB的中点,点D为线段OA上的动点在△OAB绕点B顺时针旋转过程中,点D的对应点是P,求线段CP长的取值范围(直接写出结果)9.(2021•南岗区四模)已知:在平面直角坐标系中,点O为坐标原点,线段AB的两个端点的坐标分别为A(0,a),B(b,0),且a>0,b<0,将线段AB绕点A顺时针旋转90°得到线段AC.(1)如图1,用a,b表示点C的坐标;(2)如图2,连接BC并延长交y轴于点D,点E在x轴上,连接CE,DE,且BE=CE,求证:∠BDE=45°;(3)如图3,在(2)条件下,过点D作BD的垂线DF,点F在第一象限内,连接BF 交CE于点G,若BG:BC:DF=3:3:4,BF=17,求AO的长.10.(2021•洛阳三模)如图1,在Rt△ABC中,∠C=90°,AC=8,AB=10,D,E两点分别是AC ,CB 上的点,且CD =6,DE ∥AB ,将△CDE 绕点C 顺时针旋转一周,记旋转角为α.(1)问题发现①当α=0°时,AD EB = ;②当α=90°时,AD EB = .(2)拓展探究 请你猜想当△CDE 在旋转的过程中,AD EB 是否发生变化?根据图2证明你的猜想.(3)问题解决 在将△CDE 绕点C 顺时针旋转一周的过程中,当AD =2√13时,BE = ,此时α= .11.(2021•碑林区校级二模)在△ABC 中,∠ACB =90°,BC =AC =2,将△ABC 绕点A 顺时针方向旋转α角(0°<α<180°)至△AB ′C ′的位置.问题探究:(1)如图1,当旋转角为60°时,连接C ′C 与AB 交于点M ,则C ′C = ,CM = .(2)如图2,在(1)条件下,连接BB ′,延长CC ′交BB ′于点D ,求CD 的长.问题解决:(3)如图3,在旋转的过程中,连线CC′、BB′,CC′所在直线交BB′于点D,那么CD的长有没有最大值?如果有,求出CD的最大值:如果没有,请说明理由.12.(2021•洛阳二模)如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点D、E分别是边AB、AC的中点,连接DE,将△ADE绕点A按顺时针方向旋转,记旋转角为α,BD、CE所在直线相交所成的锐角为β.(1)问题发现当α=0°时,CEBD=;β=°.(2)拓展探究试判断:当0°≤α<360°时,CEBD和β的大小有无变化?请仅就图2的情形给出证明.(3)在△ADE旋转过程中,当DE∥AC时,直接写出此时△CBE的面积.13.(2021•苏家屯区二模)已知:如图,△ABC和△BDE都是等腰直角三角形,∠ACB=∠BDE=90°,点F是AE的中点,连接DF,CF.(1)如图1,点D,E分别在AB,BC边上,填空:CF与DF的数量关系是,位置关系是;(2)如图2,将图1中的△BDE绕B顺时针旋转45°得到图2,请判断(1)中CF与DF的数量关系和位置关系是否仍然成立,如果成立,请加以证明;如果不成立,请说明理由;(3)如图3,将图1中的△BDE绕B顺时针旋转90°得到图3,如果BD=2,AC=3√2,请直接写出CF的长.14.(2021•博罗一模)有一块含30°角的直角三角板OMN,其中∠MON=90°,∠NMO =30°,ON=2√3,将这块直角三角板按如图所示位置摆放.等边△ABC的顶点B与点O重合,BC边落在OM上,点A恰好落在斜边MN上,将等边△ABC从图1的位置沿OM方向以每秒1个单位长度的速度平移,边AB,AC分别与斜边MN交于点E,F(如图2所示),设△ABC平移的时间为t(s)(0<t<6).(1)等边△ABC的边长为;(2)在运动过程中,当时,MN垂直平分AB;(3)当0<t<6时,求直角三角板OMN与等边△ABC重叠部分的面积S与时间t之间的函数关系式.15.(2021•海州区一模)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.16.(2021•建昌一模)已知:点A、B在∠MON的边OM上,作AC⊥OM,BD⊥OM,分别交ON于C、D两点.(1)若∠MON=45°.①如图1,请直接与出线段AB和CD的数量关系.②将△AOC绕点O逆时针旋转到如图2的位置,连接AB、CD,猜想线段AB和CD的数量关系,并证明你的猜想.(2)若∠MON =α(0°<α<90°),如图3,请直接写出线段OC 、OD 、AB 之间的数量关系 .(用含α的式子表示)17.(2021•南漳模拟)在四边形ABCD 中,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF ⊥AB .(1)若四边形ABCD 是正方形①如图1,直接写出AE 与DF 的数量关系 ;②将△EBF 绕点B 逆时针旋转到图2所示的位置,连接AE ,DF ,猜想AE 与DF 的数量关系并说明理由;(2)如图3,若四边形ABCD 为矩形,AB BC =√22,其它条件都不变,将△EBF 绕点B 顺时针旋转α(0o <α≤90o )得到△E 'BF '(E 、F 的对应点分别为E '、F '点),连接AE '、DF ',请在图3中画出草图,并判定AE′DF′的值是否随着α的变化而变化.若变化,请说明变化情况;若不变,请求出AE′DF′的值.18.(2021•徐州一模)将一副直角三角尺按图1摆放,其中∠C =90°,∠EDF =90°,∠B=60°,∠F=45°,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=4√3cm.(1)求DG的长;(2)如图2.将△DEF绕点D按顺时针方向旋转,直角边DF经过点C,另一直角边DE与AC相交于点H,分别过点H,D作AB,BC的垂线,垂足分别为点M,N.猜想HM与CN之间的数量关系,并证明;(3)如图3,在旋转的过程中,若△DEF两边DE,DF与△ABC两边AC,BC分别交于K、T两点,则KT的最小值为.19.(2021•太原一模)综合与实践数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC进行以下操作:第一步:折叠三角形纸片ABC使点C与点A重合,然后展开铺平,得到折痕DE;第二步:将△ABC沿折痕DE剪开,然后将△DEC绕点D逆时针方向旋转得到△DFG,点E,C的对应点分别是点F,G,射线GF与边AC交于点M(点M不与点A重合),与边AB交于点N,线段DG与边AC交于点P.数学思考:(1)求DC的长;(2)在△DEC绕点D旋转的过程中,试判断MF与ME的数量关系,并证明你的结论;问题解决:(3)在△DEC绕点D旋转的过程中,探究下列问题:①如图2,当GF∥BC时,求AM的长;②如图3,当GF经过点B时,AM的长为;③当△DEC绕点D旋转至DE平分∠FDG的位置时,试在图4中作出此时的△DFG和射线GF,并直接写出AM的长.(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)参考答案:(2021•大同二模)综合与实践问题情境:如图1,在数学活动课上,老师让同学们画了等腰Rt△ABC和等腰Rt△ADE,并连接CE,BD.操作发现:(1)当等腰Rt△ADE绕点A旋转,如图2,勤奋小组发现了:①线段CE与线段BD之间的数量关系是EC=BD.②直线CE与直线BD之间的位置关系是BD⊥EC.类比思考:(2)智慧小组在此基础上进行了深入思考,如图3,若△ABC与△ADE都为直角三角形,∠BAC=∠DAE=90°,且AC=2AB,AE=2AD,请你写出CE与BD的数量关系和位置关系,并加以证明.拓展应用:(3)创新小组在(2)的基础上,又作了进一步拓展研究,当点E在直线AB 上方时,若DE∥AB,且AB=√5,AD=1,其他条件不变,试求出线段CE的长.(直接写出结论)【点睛】(1)如图2中,延长BD交AC于点O,交EC于H.证明△EAC≌△DAB(SAS),即可解决问题.(2)结论:CE=2BD,CE⊥BD.如图3中,延长BD交AC于点O,交EC于点H.证明△ABD∽△ACE,即可解决问题.(3)如图4中,当DE∥AB时,设DE交AC于H,易证AC⊥DE.求出EH,CH,理由勾股定理即可解决问题.【详解】解:(1)如图2中,延长BD交AC于点O,交EC于H.∵AE=AD,AC=AB,∠EAD=∠CAB=90°,∴∠EAC=∠DAB,∴△EAC≌△DAB(SAS),∴EC=BD,∠ECA=∠ABD,∵∠ABD+∠AOB=90°,∠AOB=∠COH,∴∠ECA+∠COH=90°,∴∠CHO=90°,∴BD⊥EC,故答案为EC=BD,BD⊥EC.(2)结论:CE=2BD,CE⊥BD.理由:如图3中,延长BD交AC于点O,交EC于点H.∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,∵AC =2AB ,AE =2AD ,∴AB AC =AD AE =12,∴△ABD ∽△ACE ,∴BD EC =AD AE =12,∴CE =2BD ,∠ABD =∠ACE ,∵∠ABD +∠AOB =90°,∠AOB =∠COH ,∴∠ECA +∠COH =90°,∴∠CHO =90°,∴BD ⊥EC .(3)如图4中,当DE ∥AB 时,设DE 交AC 于H ,易证AC ⊥DE .∵AE=2AD,AD=1,∴AE=2,DE=√5,AH=2√55,EH=4√55,∵AC=2AB,AB=√5,∴CH=AC﹣AH=8√5 5,在Rt△ECH中,EC=√EH2+CH2=(455)2+(855)2=4.1.(2021•邓州市二模)阅读材料如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB 边上,AB、EF的中点均为O,连接BF、CD、CO,显然,点C、F、O在同一条直线上,可以证明△BOF≌△COD,所以BF=CD.解决问题:(1)将图①中的Rt△DEF绕点O旋转到图②的位置,猜想此时线段BF与CD的数量关系,并证明你的结论;(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中结论仍然成立吗?如果成立,请说明理由;如果不成立,请求出BF与CD之间的数量关系;(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为O,且顶角∠ACB=∠EDF=α,BF与CD之间的数量关系如何(用含α的式子表示出来)?请直接写出结果.【点睛】(1)如答图②所示,连接OC、OD,由全等三角形的判定定理SAS证明△BOF ≌△COD;(2)如答图③所示,连接OC、OD,由等边三角形的性质和锐角三角函数的定义推知OB OC =OFOD=√33,结合∠BOF=∠COD即可证明△BOF∽△COD,相似比为√33;(3)如答图④所示,连接OC、OD,由等边三角形的性质和锐角三角函数的定义推知OB OC =OFOD=tanα2,结合∠BOF=∠COD即可证明△BOF∽△COD,相似比为tanα2.【详解】解:(1)猜想:BF=CD.理由如下:如答图②所示,连接OC、OD.∵△ABC为等腰直角三角形,点O为斜边AB的中点,∴OB=OC,∠BOC=90°.∵△DEF为等腰直角三角形,点O为斜边EF的中点,∴OF =OD ,∠DOF =90°.∵∠BOF =∠BOC +∠COF =90°+∠COF ,∠COD =∠DOF +∠COF =90°+∠COF , ∴∠BOF =∠COD .∵在△BOF 与△COD 中,{OB =OC ∠BOF =∠COD OF =OD∴△BOF ≌△COD (SAS ),∴BF =CD .(2)答:(1)中的结论不成立.如答图③所示,连接OC 、OD .∵△ABC 为等边三角形,点O 为边AB 的中点,∴OB OC=tan30°=√33,∠BOC =90°. ∵△DEF 为等边三角形,点O 为边EF 的中点,∴OF OD=tan30°=√33,∠DOF =90°. ∴OB OC =OF OD =√33. ∵∠BOF =∠BOC +∠COF =90°+∠COF ,∠COD =∠DOF +∠COF =90°+∠COF ,∴∠BOF =∠COD .在△BOF 与△COD 中,∵OB OC =OF OD =√33,∠BOF =∠COD , ∴△BOF ∽△COD ,∴BF CD =√33. (3)如答图④所示,连接OC 、OD .∵△ABC 为等腰三角形,点O 为底边AB 的中点,∴OB OC =tan α2,∠BOC =90°.∵△DEF 为等腰三角形,点O 为底边EF 的中点,∴OF OD=tan α2,∠DOF =90°. ∴OB OC =OF OD =tan α2.∵∠BOF =∠BOC +∠COF =90°+∠COF ,∠COD =∠DOF +∠COF =90°+∠COF , ∴∠BOF =∠COD .在△BOF 与△COD 中,∵OB OC =OF OD =tan α2,∠BOF =∠COD ,∴△BOF ∽△COD ,∴BF CD =tan α2.2.(2021•中原区校级四模)问题发现:如图(1)在Rt △ABC 和Rt △BDE 中,∠A =∠DEB =30°,BC =BE =6,Rt △BDE 绕点B 逆时针旋转,H 为CD 的中点,当点C 与点E 重台时,BH 与AE 的位置关系为 BH ⊥AE ,BH 与AE 的数量关系为 AE =2√3BH ; 问题证明:在Rt △BDE 绕点B 旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt △BDE 绕点B 旋转的过程中,当DE ∥BC 时,请直接写出BH 2的长.【点睛】问题发现:如图1中,结论:AE=2√3BH,AE⊥BH.解直角三角形求出AC,BH即可判断.问题证明:如图2中,(1)中结论成立.延长BH到F使得HF=BH,连接CF.设AE 交BF于O.证明△ABE∽△BCF即可解决问题.拓展应用:分两种情形:①如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.②当DE在BC的上方时,利用上面结论求出AE2即可解决问题.【详解】解:问题发现:如图1中,结论:AE=2√3BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD=BCcos30°=4√3,∵CH=DH,∴BH=12CD=2√3,∴AEBH =2√3=2√3,∴AE=2√3BH.故答案为AE ⊥BH ,AE =2√3BH .问题证明:如图2中,(1)中结论成立.理由:延长BH 到F 使得HF =BH ,连接CF .设AE 交BF 于O .∵CH =DH ,BH =HF ,∠CHF =∠BHD ,∴△CHF ≌△DHB (SAS ),∴BD =CF ,∠F =∠DBH ,∴CF ∥BD ,∵AB =√3BC ,BE =√3BD ,∴BE =√3CF ,∴AB BC =BE CF =√3,∵CF ∥BD ,∴∠BCF +∠CBD =180°,∵∠ABC +∠DBE =∠ABD +∠CBD +∠CBD +∠CBE =∠CBD +∠ABE =180°,∴∠BCF =∠ABE ,∴△ABE ∽△BCF ,∴∠CBF =∠BAE ,AE BF =AB BC =√3,∴AE =√3BF =2√3BH ,∵∠CBF +∠ABF =90°,∴∠ABF +∠BAE =90°,∴∠AOB =90°,∴BH ⊥AE .拓展应用:如图3﹣1中,当DE 在BC 的下方时,延长AB 交DE 于F .∵DE ∥BC∴∠ABC =∠BFD =90°,由题意BC =BE =6,AB =6√3,BD =2√3,DE =4√3,∵12•BD •BE =12•DE •BF ,∴BF =6×2√34√3=3,∴EF=√3BF=3√3,∴AF=6√3+3,∴AE2=AF2+EF2=(6√3+3)2+(3√3)2=144+36√3.∵AE=2√3BH,∴AE2=12BH2,∴BH2=12+3√3如图3﹣2中,当DE在BC的上方时,同法可得AF=6√3−3,EF=3√3,∴BH2=AE212=((6√3−3)2+(3√3)212=12﹣3√3.【点评】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.3.(2021•宛城区二模)【问题背景】如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,BE,点P为DC的中点.【观察猜想】观察图1,猜想线段AP与BE的数量关系是AP=12BE,位置关系是P A⊥BE.(2)【拓展探究】把△ADE绕点A逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立,请证明:否则写出新的结论并说明理由.(3)【问题解决】把△ADE绕点A在平面内自由旋转,若DE=4,BC=8,请直接写出线段AP长的取值范围.【点睛】(1)如图1中,设P A交BE于点O.证明△DAC≌△EAB(SAS),结合直角三角形斜边中线的性质即可解决问题.(2)结论成立.如图2中,延长AP到J,使得PJ=P A,连接JC.延长P A交BE于O.证明△EAB≌△JCA(SAS),即可解决问题.(3)利用三角形的三边关系求出AJ的取值范围,即可解决问题.【详解】解:(1)如图1中,设P A交BE于点O.∵AD=AE,AC=AB,∠DAC=∠EAB,∴△DAC≌△EAB(SAS),∴BE=CD,∠ACD=∠ABE,∵∠DAC=90°,DP=PC,∴P A=12CD=PC=PD,∴P A=12BE.∠C=∠P AE,∵∠CAP+∠BAO=90°,∴∠ABO+∠BAO=90°,∴∠AOB=90°,∴P A⊥BE,故答案为:AP=12BE,P A⊥BE.(2)结论成立.理由:如图2中,延长AP到J,使得PJ=P A,连接JC.延长P A交BE于O.∵P A=PJ,PD=PC,∠APD=∠CPJ,∴△APD≌△JPC(SAS),∴AD=CJ,∠ADP=∠JCP,∴AD∥CJ,∴∠DAC+∠ACJ=180°,∵∠BAC=∠EAD=90°,∴∠EAB+∠DAC=180°,∴∠EAB=∠ACJ,∵AB=AC,AE=AD=CJ,∴△EAB≌△JCA(SAS),∴BE=AJ,∠CAJ=∠ABE,∵P A=12AJ,∴P A=12BE,∵∠CAJ+∠BAO=90°,∴∠ABE+∠BAO=90°,∴∠AOB=90°,∴P A⊥BE.(3)∵△AED,△ABC都是等腰三角形,DE=4,BC=8,∴AD=AE=2√2,AC=AB=4√2由(2)可知CJ=AD=2√2,∵AC=4√2,∴4√2−2√2≤AJ≤4√2+2√2,∴2√2≤AJ≤6√2,∵AJ=2AP,∴√2≤P A≤3√2.4.(2021•中原区校级三模)等腰直角三角形ABC中,AC=BC=4√2,E为AC中点,以CE为斜边作如图所示等腰直角三角形CED.(1)观察猜想:如图1所示,过D作DF⊥AE于F,交AB于G,线段CD与BG的关系为CD=BG,CD⊥BG;(2)探究证明:如图2所示,将△CDE绕点C顺时针旋转到如图所示位置,过D作DF⊥AE于F,过B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由;(3)拓展延伸:如图3所示,当E、D、G共线时,直接写出DG的长度.【点睛】(1)先根据等腰三角形三线合一得:PC⊥AB,证明△PCB和△PDG是等腰直角三角形,可得PC=PB,PD=PG,可得结论;(2)如图2,作辅助线,构建全等三角形,证明△ACE≌BCH(SAS),得AE=BH,∠EAC=∠HBC,根据三角形的内角和定理可得:∠AKB=∠ACB=90°,所以可以证明四边形BHDG为平行四边形,从而得结论;(3)存在两种情况:分别根据勾股定理进行计算即可.【详解】解:(1)CD⊥BG,CD=BG,理由是:如图1,延长CD交AB于P,∵△EDC是等腰直角三角形,∴∠ECD=45°,∵∠ACB=90°,∴∠ACP=∠BCP=45°,∵AC=BC,∴PC⊥AB,即CD⊥BG,∴△PCB是等腰直角三角形,∴PC=PB,∵DF⊥AC,AC⊥BC,∴FG∥BC,∴∠DGP=∠B=45°,∴△PDG是等腰直角三角形,∴PD=PG,∴PC﹣PD=PB﹣PG,即CD=BG;故答案为:CD=BG,CD⊥BG;(2)如图2,延长ED至H,使得DH=DE,连接CH、BH,延长BH交AE于K,设AC与BK交于点O,∵△CDE是等腰直角三角形∴CD⊥DE∴CE=CH,∠ECD=∠HCD=45°∴∠ECH=90°∴△CEH为等腰直角三角形,∴∠ECH=∠ACB=90°,∴∠ACE=∠BCH,又∵AC=BC,EC=HC∴△ACE≌BCH(SAS),∴AE=BH,∠EAC=∠HBC,又∵∠AOK=∠BOC,∴∠AKB=∠ACB=90°,又∵DF⊥AE,∴BH∥GE,又∵BG∥EH,∴四边形BHDG为平行四边形,∴DH=BG,又∵CD=DE=DH,CD⊥DH,∴CD⊥BG,CD=BG;(3)存在两种情况:①如图4,由(2)知:CD=DE=BG=2,当E、D、G三点共线时,Rt△BCD中,∠CDB=90°,∵CD=2,BC=4√2,∴BD=√BC2−CD2=√(4√2)2−22=2√7,∴DG=BD﹣BG=2√7−2;②如图5,E、D、G三点共线,同理可得:BD=2√7,∴DG=BD+BG=2√7+2,综上,DG的长为2√7−2或2√7+2.5.(2021•金水区校级模拟)如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.(1)如图①,当点D 在BC 上,E 在AC 上时,AE 与AM 的数量关系是 AM =√2AE ,∠MAE = 45° ;(2)将△CDE 绕点C 顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;(3)若CD =12BC ,将△CDE 由图①位置绕点C 顺时针旋转α(0°<α<360°),当ME =√62CD 时,请直接写出α的值.【点睛】(1)证明四边形ABDM 是平行四边形即可解决问题.(2)如图2中,连接BD ,DM ,BD 交AC 于点O ,交AE 于G .证明△BCD ∽△ACE ,推出∠CBD =∠CAE ,BD AE =BC AC =√2,即可解决问题.(3)如图2中,首先证明△AEM 是等腰直角三角形,分两种情形画出图形分别求解即可.【详解】解:(1)结论:AM =√2AE ,∠MAE =45°.理由:如图1中,∵AP =PD ,BP =PM ,∴四边形ABDM 是平行四边形,∴AM ∥BC ,∴∠MAE =∠C ,∵AB =AC ,∠BAC =90°,∴∠C =45°,∴∠MAE =45°,∵∠AEM =∠DEC =90°,∴∠AME =∠EAM =45°,∴MA =√2AE .故答案为:AM =√2AE ,45°.(2)如图2中,连接BD ,DM ,BD 交AC 于点O ,交AE 于G .∵BC =√2AC ,CD =√2CE ,∴BC AC =CD CE =√2,∵∠ACB =∠DCE =45°,∴∠BCD =∠ACE ,∴△BCD ∽△ACE ,∴∠CBD =∠CAE ,BD AE =BC AC =√2,∵∠BOC=∠AOG,∴∠AGO=∠BCO=45°,∵AP=PD,BP=PM,∴四边形ABDM是平行四边形,∴AM∥BD,AM=BD=√2AE,∴∠MAE=∠BGA=45°,∵EH⊥AM,∴△AHE是等腰直角三角形,∴AH=√22AE,∵AM=√2AE,∴AH=MH,∴EA=EM,∴∠EAM=∠EMA=45°,∴∠AEM=90°.(3)如图2中,作EH⊥AM于H.∵EH⊥AM,∠MAE=45°,∴△AHE是等腰直角三角形,∴AH=√22AE,∵AM=√2AE,∴AH=MH,∴∠EAM=∠EMA=45°,∴∠AEM=90°.如图3﹣1中,∵EM=EA=√62CD,设CD=√2a,则CE=a,BC=2√2a,AC=2a,EA=√3a,∴AC2=AE2+EC2,∴∠AEC=90°,∴tan∠ACE=AEEC=√3,∴∠ACE=60°,∴旋转角α=60°.如图3﹣2中,同法可证∠AEC=90°,∠ACE=60°,此时旋转角α=300°.综上所述,满足条件的α的值为60°或300°.6.(2021•镇平三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D 是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.【点睛】(1)利用直角三角形斜边中线定理解决问题即可.(2)结论成立.如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.想办法证明△MFC≌△NEF(SAS),可得结论.(3)如图3中,作EH⊥AB于H.想办法求出EH,HG即可解决问题.【详解】解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=12AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=12AD=AN=ND,同理CM=12AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC =∠EAN ,∴∠AMC =∠ANE ,又∵∠FMA =∠ANF ,∴∠ENF =∠FMC ,在△MFC 和△NEF 中,{MF =NE ∠FMC =∠ENF MC =NF,∴△MFC ≌△NEF (SAS ),∴FE =FC ,∠NFE =∠MCF ,∵NF ∥AB ,∴∠NFD =∠ABD ,∵∠ACB =90°,∠BAC =30°,∴∠ABC =60°,△BMC 是等边三角形,∠MCB =60°∴∠EFC =∠EFN +∠NFD +∠DFC =∠MCF +∠ABD +∠FBC +∠FCB =∠ABC +∠MCB =60°+60°=120°.(3)如图3中,作EH ⊥AB 于H .在Rt △ABC 中,∵∠BAC =30°,BC =3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=12AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=√3 2,DH=ED•cos60°=1 2,在Rt△EHG中,EG=(32)2+(2+12)2=√7.7.(2021•葫芦岛模拟)在等腰△ABC中,∠BAC=90°,作∠ABC的平分线交AC于点D,∠MDN=135°,将∠MDN绕点D旋转,使∠MDN的两边交直线BA于点E,交直线BC于点F.(1)当∠MDN绕点D旋转到如图①的位置时,请直接写出三条线段AE,CF,AD的数量关系;(2)当∠MDN绕点D旋转到如图②的位置时,(1)中结论是否成立,若成立,请证明;若不成立,请写出正确的结论,并说明理由;(3)若BC=2+√2,当∠CDF=15°时,请直接写出线段CF的长度.【点睛】(1)结论:AE+CF=AD.如图1中,作DH⊥BC于H.证明△DAE≌△DHF (ASA),即可解决问题.(2)结论不成立.应为CF﹣AE=AD.如图②中,作DG⊥BC于点G,证明△DAE≌E△DGF(ASA),即可解决问题.(3)分两种情形分别求解:①如图③﹣1中,作DH⊥BC于H.求出AD=DH=CH=1,利用(1)中结论即可解决问题.②如图③﹣2中,当∠CDF=15°时,作DH⊥BC 于H,求出FH=即可解决问题.【详解】解:(1)结论:AE+CF=AD.理由:如图1中,作DH⊥BC于H.∵AB=AC,∠A=90°,∴∠ABC=∠C=45°,∵∠A=∠DHB=90°,∴∠ADH=360°﹣90°﹣90°﹣45°=135°,∵∠EDF=135°,∴∠ADH=∠EDF,∴∠ADE=∠HDF,∵BD平分∠ABC,DA⊥AB,DH⊥BC,∴DA=DH,∴△DAE≌△DHF(ASA),∴AE=HF,∵∠C=∠HDC=45°,∴DH=CH=AD,∴AE+CF=HF+CF=CH=AD.(2)不成立应为CF﹣AE=AD.理由如下:如图②中,作DG⊥BC于点G,∵∠BAC=90°,∴DA⊥BA,∵AC平分∠ABC,∴DA=DG,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ADG=360°﹣90°﹣90°﹣45°=135°,∵∠MDN=135°,∴∠ADE=∠GDF=135°﹣∠ADF,又∵∠DAE=∠DGF=90°,∴△DAE≌E△DGF(ASA),∴AE=FG,∵∠DCG=45°∠DGC=90°,∴∠DCG=∠GDC=45°,∴GC=DG=AD,∵FC﹣FG=GC,③∴FC﹣AE=AD.(3)①如图③﹣1中,作DH⊥BC于H.由(1)可知:DA=DH=CH,设DA=DH=HC=a,则CD=√2a,AB=AC=BH=a+√2a,∴2a+√2a=2+√2,∴a=1,∴AD=1,∵∠CDF=15°,∴∠ADE=180°﹣135°﹣15°=30°,∴AE=√3 3,∵AE+CF=AD,∴CF=1−√3 3②如图③﹣2中,当∠CDF=15°时,作DH⊥BC于H,∵AD=DH═CH=1,∠CFD=30°,∴FH=√3DH=√3,∴CF=FH﹣CH=√3−1综上所述,满足条件的CF的值为1−√33或√3−1.8.(2021•北辰区二模)在平面直角坐标系中,O为坐标原点点A(3,4)点B(6,0).(Ⅰ)如图①,求AB的长;(Ⅱ)如图②,把图①中的△OAB绕点B顺时针旋转,使点O的对应点M恰好落在OA 延长线上,N是点A旋转后的对应点.①求证:BN∥OM;②求点N的坐标;(Ⅲ)点C是OB的中点,点D为线段OA上的动点在△OAB绕点B顺时针旋转过程中,点D的对应点是P,求线段CP长的取值范围(直接写出结果)【点睛】(Ⅰ)如图①中,作AH⊥OB于H.求出AH,BH,利用勾股定理即可解决问题.(Ⅱ)①想办法证明∠BMO=∠MBN即可.②连接AN,作NE⊥OB于E.证明四边形OANB是菱形,解直角三角形即可解决问题.(Ⅲ)分别求解PC的最小值,最大值即可解决问题.【详解】(Ⅰ)解:如图①中,作AH⊥OB于H.∵A(3,4),B(6,0),∴OH=3,AC=4,OB=6,∴BH=6﹣3=3,在Rt△ACB中,AB=√AH2+BH2=√32+42=5.(Ⅱ)①证明:如图②中,由(1)可知:OA=AB,∴∠AOB=∠ABO,由旋转可知:OB=BM,∴∠AOB=∠BMO,∠MBN=∠ABO,∴∠BMO=∠MBN,∴BN∥OM.②解:连接AN,作NE⊥OB于E.∵OA∥NB,OA=OB=BN=5,∴四边形OANB是菱形,∴AN∥OB,NE=4,在Rt△BNE中,BE=√BN2−BE2=√52−42=3,∴OE=OB+BE=6+3=9,∴N(9,4).(Ⅲ)解:如图②﹣1中,作BP⊥MN于P.则BP=4×65=245,当点P在BC的延长线上时,PC的值最小,最小值=245−3=95,当点P与点M重合,旋转到点M在CB的延长线上时,PC的值最大,最大值=3+6=9,∴95≤CP≤9.9.(2021•南岗区四模)已知:在平面直角坐标系中,点O为坐标原点,线段AB的两个端点的坐标分别为A(0,a),B(b,0),且a>0,b<0,将线段AB绕点A顺时针旋转90°得到线段AC.(1)如图1,用a,b表示点C的坐标;(2)如图2,连接BC并延长交y轴于点D,点E在x轴上,连接CE,DE,且BE=CE,求证:∠BDE=45°;(3)如图3,在(2)条件下,过点D作BD的垂线DF,点F在第一象限内,连接BF 交CE于点G,若BG:BC:DF=3:3:4,BF=17,求AO的长.【点睛】(1)如图1中,作CH⊥y轴于H.证明△BOA≌△AHC(AAS),即可解决问题.(2)连接EA交BC于L,作CK⊥OD于K.证明△ABE≌△CAD(ASA),即可解决问题.(3)如图3中,作∠DBF的平分线交DE于P,作PR⊥BD于R,PS⊥DF于S,PT⊥BF于T.则点P是△BDF的内心.由BC:BG:DF=3:3:4,可以假设BC=BG=6k,DF=8k,证明△DBP≌△BDA(ASA),推出DP=AB=3√2k,推出DS=PS=PR=DR=3k,推出SF=FT=5k,BR=BT=17﹣5k,BD=17﹣2k.在Rt△BDF中,利用勾股定理求出k即可.【详解】(1)解:如图1中,作CH⊥y轴于H.∵A(0,a),B(b,0),∴OA=a,OB=﹣b,∵∠CHA=∠AOB=∠BAC=90°,∴∠ABO+∠BAO=90°,∠BAO+∠CAH=90°,∴∠ABO=∠CAH,∵AB=AC,∴△BOA≌△AHC(AAS),∴CH=OA=a,AH=OB=﹣b,∴OH=a﹣b,∴C(﹣a,a﹣b).(2)证明:连接EA交BC于L,作CK⊥OD于K.∵AB=AC,EB=EC,∴EA垂直平分线段BC,∵AL⊥BC,∵AB=AC,∠BAC=90°,∴∠ABL=∠ACB=∠CAL=∠BAL=45°,∴AL=BL=CL,∴∠ACD=∠BAE=135°,∵AB=AC,∠ABE=∠CAD,∴△ABE≌△CAD(ASA),∴AE=CD,∵LC=LA,∴LD=LE,∵∠DLE=90°,∴∠BDE=45°.(3)如图3中,作∠DBF的平分线交DE于P,作PR⊥BD于R,PS⊥DF于S,PT⊥BF于T.则点P是△BDF的内心.∵BC:BG:DF=3:3:4,∴可以假设BC=BG=6k,DF=8k,BC=BG,BP平分∠CBG,∴BP⊥CG,∴∠3+∠BCG=90°,∵EA⊥BC,∴∠1+∠CBE=∠1+∠BCE=90°,∴∠1=∠3,由(2)可知:∠1=∠2,∴∠3=∠2,∵∠DBA=∠BDP=45°,BD=DB,∴△DBP≌△BDA(ASA),∴DP=AB=3√2k,∴DS=PS=PR=DR=3k,∴SF=FT=5k,BR=BT=17﹣5k,BD=17﹣2k.在Rt△BDF中,(8k)2=(17﹣2k)2=172,∴k=1,∴BR=BT=12,BG=BG=6,CR=6,CD=AE=9,∴tan∠RBP=14=tan∠BEA=OAOE,设OA=m,OE=4m,∴m2+16m2=81,∴m=9√1717或−9√1717(舍弃),∴OA=9√17 17.10.(2021•洛阳三模)如图1,在Rt△ABC中,∠C=90°,AC=8,AB=10,D,E两点分别是AC,CB上的点,且CD=6,DE∥AB,将△CDE绕点C顺时针旋转一周,记旋转角为α.(1)问题发现。
2022年中考数学复习:旋转综合体专项训练1.如图,在Rt ABC 中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转一定的角度α得到DEC ,点A ,B 的对应点分别是点D ,E .(1)如图①,当点E 恰好在AC 边上时,连接AD ,求①ADE 的度数;(2)如图①,当60α=时,若点F 为AC 边上的动点,当①FBC 为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明2.综合与实践问题:如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,GF ⊥CD ,垂足为F .证明与推断(1)①四边形CEGF 的形状是 ;②AGBE的值为 ; 【探究与证明】(2)在图1的基础上,将正方形CEGF 绕点C 按顺时针方向旋转α角(0°<α<45°),如图2所示,并说明理由;【拓展与运用】(3)如图3,在(2)的条件下,正方形CEGF 在旋转过程中,AG 和GE 的位置关系是 .3.若①ABC ,①ADE 为等腰三角形,AC =BC ,AD =DE ,将①ADE 绕点A 旋转,连接BE ,F 为BE 中点,连接CF ,DF .(1)若①ACB =①ADE =90°,如图1,试探究DF 与CF 的关系并证明; (2)若①ACB =60°,①ADE =120°,如图2,请直接写出CF 与DF 的关系.4.在平面直角坐标系中,点(0,0)O ,点A ,点)(0),30B m m AOB >∠=︒.以点O 为中心,逆时针旋转OAB ,得到OCD ,点,A B 的对应点分别为,C D .记旋转角为α.(1)如图①,当点C 落在OB 上时,求点D 的坐标;(2)如图①,当45α=︒时,求点C 的坐标;(3)在(2)的条件下,求点D 的坐标(直接写出结果即可).5.如图,30HAB ∠=︒,点B 与点C 关于射线AH 对称,连接AC .D 点为射线AH 上任意一点,连接CD .将线段CD 绕点C 顺时针旋转60°,得到线段CE ,连接BE .(1)求证:直线EB 是线段AC 的垂直平分线;(2)点D 是射线AH 上一动点,请你直接写出ADC ∠与ECA ∠之间的数量关系.6.已知如图,等腰△ABC 中,AB=AC ,△BAC=α(α>90︒),F 为BC 中点,D 为BC 延长线上一点,以点A 为中心,将线段AD 逆时针旋转α得到线段AE ,连接CE ,DE .(1)补全图形并比较△BAD 和△CAE 的大小; (2)用等式表示CE ,CD ,BF 之间的关系,并证明;(3)过F 作AC 的垂线,并延长交DE 于点H ,求EH 和DH 之间的数量关系,并证明.7.一副三角尺(分别含30°,60°,90°和45°,45°,90°)按如图所示摆放,边OB ,OC 在直线l 上,将三角尺ABO 绕点O 以每秒10°的速度顺时针旋转,当边OA 落在直线l 上时停止运动,设三角尺ABO 的运动时间为t 秒.(1)如图,①AOD = °= ′; (2)当t =5时,①BOD = °; (3)当t = 时,边OD 平分①AOC ;(4)若在三角尺ABO 开始旋转的同时,三角尺DCO 也绕点O 以每秒4°的速度逆时针旋转,当三角尺ABO 停止旋转时,三角尺DCO 也停止旋转.在旋转过程中,是否存在某一时刻使①AOC =2①BOD ,若存在,请直接写出的值;若不存在,请说明理由.8.如图,正方形ABCO 的边OA 、OC 在坐标物上,点B 坐标为()3,3.将正方形ABCO 绕点A 顺时针旋转角度()090αα︒<<︒,得到正方形ADEF ,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P .连AP 、AG .(1)求证:AOG①ADG;∠的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(2)求PAG(3)当12∠=∠时,求直线PE的解析式(可能用到的数据:在Rt中,30°内角对应的直角边等于斜边的一半).(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.9.如图,等腰Rt①ABC中,AB=AC,D为线段BC上的一个动点,E为线段AB上的一个动点,使得CD=.连接DE,以D点为中心,将线段DE顺时针旋转90°得到线段DF,连接线段EF,过点D作射线DR①BC交射线BA于点R,连接DR,RF.(1)依题意补全图形;(2)求证:①BDE①①RDF;(3)若AB=AC=2,P为射线BA上一点,连接PF,请写出一个BP的值,使得对于任意的点D,总有①BPF为定值,并证明.10.在①ABC中,AB=AC,①BAC=90°,D为平面内的一点.(1)如图1,当点D在边BC上时,BD=2,且①BAD=30°,AD=;(2)如图2,当点D在①ABC的外部,且满足①BDC﹣①ADC=45°,求证:BD AD;(3)如图3,若AB =4,当D 、E 分别为AB 、AC 的中点,把①DAE 绕A 点顺时针旋转,设旋转角为α(0<α≤180°)直线BD 与CE 的交点为P ,连接P A ,直接出①P AB 面积的最大值 .11.已知:①ABC 为等边三角形,且AB =4,点D 在直线BC 上运动,线段DA 绕着点D 顺时针旋转60°得到线段DE ,连接AE 和BE ,直线AE 交直线BC 于点F . (1)如图,当点D 在点C 左侧时,求证:CD =BE ;(2)若①ABC 的面积等于①ABF 面积的4倍,直接写出线段CD 的长;(3)在(2)的条件下,若点E 关于直线AD 的对称点为点G ,连接DG 交线段AC 于点M ,DE 交线段AB 于点N ,连接MN ,直接写出线段MN 的长.12.已知在①ABC 中,90ACB ∠=︒,AC =BC =(1)如图1,以点A 为原点,AB 所在直线为x 轴建立平面直角坐标系,直接写出点B ,C 的坐标; (2)如图2,过点C 作①MCN =45°交AB 于点M ,N ,且AM =1,求MN 的长度;(3)如图3,过点C 作①MCN =45°,当点M ,N 分布在点B 异侧时,线段AM ,BN 和MN 满足怎样的数量关系?并给予证明.13.如图,在①ABC 中,AC = BC ,①ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ①BD 于E .(1)求证:①CAE =①CBD ;(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE . ①依题意补全图形;①用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.14.把两个等腰直角ABC 和ADE 按如图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角为α(0360α︒<<︒).(1)如图1,BD 与EC 的数量关系是___________,BD 与EC 的位置关系是___________;(2)如图2,(1)中BD 和EC 的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立请说明理由.(3)如图3,当点D 在线段BE 上时,BEC ∠=___________. (4)当旋转角α=__________时,ABD △的面积最大.15.如图,在Rt ①ABC 中,BC =4,AC =2,①ACB =90°,矩形BDEF 的边BF =1,BD =2,矩形BDEF 可以绕点B 在平面内旋转,连接AE 、BE 、CD . (1)证明:①ABE ①①CBD ;(2)当A 、E 、F 三点共线时,求CD 的长;(3)设AE 的中点为M ,连接FM ,直接写出FM 的最大值.16.在平面直角坐标系中,四边形AOBC 是矩形,点A 的坐标为()5,0,点B 的坐标为()0,3,以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图①,当点D 落在线段BE 上时,连接AB ,AD 与BC 交于点H . ①求证:ADB AOB ≅△△; ①求点H 的坐标.(3)点K 为矩形AOBC 对角线的交点,S 为KDE 得面积,直接写出S 的取值范围.17.如图,P 是正三角形ABC 内的一点,且6,8,10PA PB PC ===,若将PAC △绕点A 顺时针旋转后得到P AB '△,(1)求旋转角的度数;(2)求点P 与点P '之间的距离; (3)求APB ∠的度数.18.如图在平面直角坐标系中,点O 为坐标原点,直线y 34=-x +b 分别交x 轴,y 轴于点A 、B ,OA =4,①OBA 的外角平分线交x 轴于点D .(1)求点D 的坐标;(2)点P 是线段BD 上一点(不与B 、D 重合),过点P 作PC ①BD 交x 轴于点C ,设点P 的横坐标为t ,△BCD 的面积为S ,求S 与t 之间的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,PC 的延长线交y 轴于点E ,当PC =PB 时,将射线EP 绕点E 旋转45°交直线AB 于点F ,求F 点坐标.19.如图,在菱形ABCD 中,60ABC ∠=︒,E 为对角线AC 上一点,将线段DE 绕点D 逆时针旋转60︒,点E 的对应点为F ,连接BE ,AF ,CF .(1)求证:B ,C ,F 三点共线;(2)若点G 为BE 的中点,连接AG ,求证:2AF AG =.20.如图,在四边形ABCD中,BC=CD,△BCD=α°,△ABC+△ADC=180°,AC、BD交于点E.将△CBA 绕点C顺时针旋转α°得到△CDF(点B、A的对应点分别为点D、F).(1)画出旋转之后的图形(不要求写画法,保留画图痕迹);(2)求证:△CAB=△CAD;(3)若△ABD=90°,AB=3,BD=4,△BCE的面积为1S,△CDE的面积为2S,求1S:2S的值.参考答案:1.解:①将ABC绕点C顺时针旋转一定的角度α得到①DEC,E点在AC上,①CA=CD,①ECD=①BCA=30︒,(180︒−30︒)=75︒,①①CAD=①CDA=12又①①DEC=①ABC=90︒,①①ADE=90°-75︒=15︒;(2)①FBC=30︒时,四边形BFDE为平行四边形,①①FBC=①ACB=30︒,①①ABF=①A=60︒,①BF=CF=AF,①ABF是等边三角形,①BF=AB,①将ABC绕点C顺时针旋转60︒得到DEC,①DE=AB,BCE是等边三角形,①DEC=①ABC=90︒,①①CBE=①BEC=60︒,①①EBF=①EBC-①FBC=30︒,①①DEB+①EBF=180︒,①DE=BF,//DE BF,①四边形BFDE为平行四边形.2.①正方形;.理由:如图1中,∵四边形ABCD 是正方形,∴∠BCD =90°,∠BCA =45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°,∴EG =EC ,∴四边形CEGF 是正方形,∵AC BC ,,∴AG =AC ﹣CGBC ﹣EC ,∴AG BE(2)结论:AG ,理由:如图2中,连接CC ,∵四边形ABCD 是正方形,∴∠ABC =90°,AB =BC ,∴△ABC 为等腰直角三角形,∴AC BC由①得四边形GECF 是正方形,∴∠GEC =∠ECF =90°,GE =EC ,∴△EGC 为等腰直角三角形.∴CG CE∴AC CG BC EC=∴△ACG ∽△BCE ,∴AG CG BE EC∴线段AG 与BE 之间的数量关系为AG ;(3)如图3中,连接CG ,∵∠CEF =45°,点B 、E ,∴∠BEC =135°.∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°.∴∠AGF =∠AGC +∠CGF =135°+45°=180°,∴点A ,G ,F 三点共线,∴∠AGE =∠AGF ﹣∠EGF =180°﹣90°=90°,∴AG ⊥GE ,故答案为:AG ⊥GE .3.(1)DF =CF 且DF ①CF ;延长CF 至点M ,使CF =FM ,连接ME ,MD ,CD ,延长DE 交CB 延长线于点N ,如图1,①BF=EF,CF=FM,①BFC=①EFM,①①BFC①①EFM(SAS),①EM=BC=AC,①FME=①FCB,①BC①EM,①①N=①MEN,在四边形ACND中,①ACB=①ADE=90°,①①N+①CAD=360°-(①ACB+①ADE)=180°,又①①MEN+①MED=180°,①①MED=①CAD,又AD=DE,EM=AC,①①MED①①CAD(SAS),①DM=DC,①MDE=①CDA,①①MDC=①NDC+①MDE=①NDC+①CDA=①ADE=90°,①①DCM为等腰直角三角形,①点F是CM中点,CM=CF,DF①CF;①DF=12(2)DF①CF且CF;延长CF至点M,使CF=FM,连接ME,MD,CD,延长ED交BC延长线于点N,如图2,①BF=EF,CF=FM,①BFC=①EFM,①①BFC①①EFM(SAS),①EM =BC =AC ,①FME =①FCB ,①BC //EM ,①①N =①NER ,①①ACB =60°,①①ACN =120°,①①ADE =120°,①①ADN =60°,①①N +①CAD =360°-(①ACN +①ADN )=180°,①①DER +①DEM =180°,①①DEM =①CAD ,又 AD =DE ,EM =AC ,①①MED ①①CAD (SAS ),①DM =DC ,①MDE =①CDA ,①①DCM 为等腰三角形,①①CDM =①ADE =120°,①F 是CM 的中点,①DF ①CF①60CDF ∠=︒①30DCF ∠=︒①CD =2DE由勾股定理得,222CE DE CD +=①2224CE DE DE +=解得,CF (负值舍去)①DF ①CF 且CF .4.(1)如图,过点D 作DE OA ⊥,垂足为E .① 0A ,B m )0m (>),① AB OA ⊥,OA =AB m =.① 30AOB ∠=︒,① 22OB AB m ==.在Rt OAB 中,由222OA AB OB +=,得2234m m +=.解得1m =.① 1AB =,2OB =.① OCD 是由OAB 旋转得到的,① 2OD OB ==,30DOC AOB ∠=∠=︒.① 60DOE DOC BOA ∠=∠+∠=︒.① 9030ODE DOE ∠=︒-∠=︒.① 112OE OD ==. 在Rt OED 中,DE =① 点D 的坐标为(.(2)如图,过点C 作CT OA ⊥,垂足为T .由已知,得45COT ∠=︒.① 9045OCT COT ∠=︒-∠=︒.① OT CT=.① OCD是由OAB旋转得到的,① OC OA==在Rt OTC△中,由222T TO C OC+=,得OT CT=① 点C的坐标为.(3)如图①中,过点D作DJ①OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.①①DOC=30°,①COT=45°,①①DOJ=75°,①①ODJ=90°-75°=15°,①KD=KO,①①KDO=①KOD=15°,①①OKJ=①KDO+①KOD=30°,①OK=DK=2m,KJ,①OD2=OJ2+DJ2,①22=m2+(2m)2,解得m=,①OJ DJ①D⎫⎪⎪⎝⎭.5.(1)证明:连接AE,DB,CB①点B 与点C 关于射线AH 对称,30HAB ∠=︒ ①CD BD =,AC AB =①30HAB HAC ∠∠==︒①260CAB HAC ∠∠==︒①ABC 为等边三角形,60ACB ∠=︒ ①60DCE ∠=︒①DCE ACD ACB ACD ∠∠∠∠-=- ECA DCB ∠=∠①在ECA △和DCB 中,EC DC ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩①()ECA DCB SAS ≅△△①BD EA =①DC BD EC ==,①AE EC =又AB BC =①EB 垂直平分AC(2)分两种情况来讨论:第一种情况,如图,当点D 在ABE △内部时:①点B 与点C 关于射线AH 对称,①90CFA ∠=︒①90ADC CFA DCB DCB ∠=∠+∠=︒+∠ ①ECA DCB ∠=∠①90ADC ECA ∠=︒+∠第二种情况,如图,当点D 在ABC 外部时: ①点B 与点C 关于射线AH 对称,①90CFA ∠=︒①90ADC CFA DCB DCB ∠=∠-∠=︒-∠ ①ECA DCB ∠=∠①90ADC ECA ∠=︒-∠6.如图,即为补全的图形,根据题意可知BAC DAE α∠=∠=,①BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠.(2)由旋转可知AD AE =,①在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,①()BAD CAE SAS ≅,①BD CE =.①BD BC CD =+,①CE BC CD =+.①点F 为BC 中点,①2BC BF =,①2CE BF CD =+,即2CE CD BF -=.(3)如图,连接AF ,作AN DE ⊥,①AB=AC ,F 为BC 中点,①90AFD ∠=︒,12FAB FAC α∠=∠=. 根据作图可知90AND ∠=︒,①180AFD AND ∠+∠=︒,①A 、F 、D 、N 四点共圆,①AFN ADN ∠=∠.①AD AE =,AN DE ⊥,①EN DN =,11(180)9022AFN ADN DAE α∠=∠=︒-∠=︒-. ①11909022AFN FAC αα∠+∠=︒-+=︒. ①90AFH FAC ∠+∠=︒,且点H 在线段DE 上,①点H 与点N 重合,①EH DH =.7.(1)①180AOD AOB COD ∠=︒-∠-∠,3045AOB COD ∠=︒∠=︒,,①10510560=6300AOD '∠=︒=⨯.故答案为:105,6300;(2)当5t =时,即三角尺ABO 绕点O 顺时针旋转了51050⨯︒=︒,如图,ABO 即为旋转后的图形.由旋转可知50BOM ∠=︒,①180180455085BOD COD BOM ∠=︒-∠-∠=︒-︒-︒=︒,故答案为85;(3)当三角尺绕点O 顺时针旋转到如图所示的ABO 的位置时,边OD 平分①AOC .①224590AOC COD ∠=∠=⨯︒=︒,①90AOM ∠=︒①90903060BOM AOB ∠=︒-∠=︒-︒=︒, ①60610t ==; 故答案为:6;(4)①当边OA 落在直线l 上时停止运动时, ①180150=1510t -≤. 当OA 和OC 重合时,即有10418030t t +=︒-︒, 解得:757t =. ①当757t ≤时,1801030415014AOC t t t ∠=︒--︒-=︒-, 当757t >时,1030418014150AOC t t t ∠=+︒+-︒=-︒. 当OB 和OD 重合时,即有10418045t t +=︒-︒, 解得:13514t =①当13514t ≤时,1801045413514BOD t t t ∠=︒--︒-=︒-, 当13514t >时,1045418014225BOD t t t ∠=+︒+-︒=-︒. ①可根据2AOC BOD ∠=∠分类讨论,①当13514t ≤时,有15014=2(13514)t t ︒-︒-, 解得:607t =,符合题意; ①当13575147t <≤时,即有150142(14225)t t ︒-=-︒ 解得:1007t =,符合题意; ①当757t >时,即有141502(14225)t t -︒=-︒解得:150157t =>,不符合题意舍; 综上,可知当607t =或1007t =时,2AOC BOD ∠=∠. 8.(1)证明:在Rt△AOG 和Rt△ADG 中,AO AD AG AG=⎧⎨=⎩ ①AOG ①ADG (HL ).(2)在Rt ①ADP 和Rt ①ABP 中,AD AB AP AP=⎧⎨=⎩ ΔΔADP ABP ∴≅(HL ), 则DAP BAP ∠=∠;ΔΔAOG ADG ≅,1DAG ∴∠=∠;又190DAG DAP BAP ∠+∠+∠+∠=︒,2290DAG DAP ∴∠+∠=︒,45DAG DAP ∴∠+∠=︒,PAG DAG DAP ∠=∠+∠,45∴∠=︒PAG ;ΔΔAOG ADG ≅,DG OG ∴=,ΔΔADP ABP ≅,DP BP ∴=,PG DG DP OG BP ∴=+=+.(3)解:ΔΔAOG ADG ≅,AGO AGD ∴∠=∠,又190AGO ∠+∠=︒,290PGC ∠+∠=︒,12∠=∠,AGO PGC ∴∠=∠,又AGO AGD ∠=∠,AGO AGD PGC ∴∠=∠=∠,又180AGO AGD PGC ∠+∠+∠=︒,180360AGO AGD PGC ∴∠=∠=∠=︒÷=︒,12906030∴∠=∠=︒-︒=︒;∴在Rt ΔAOG 中,2,3AG OG OA ==,222AG OG OA =+∴222(2)3OG OG =+ 解得OGG ∴点坐标为0),3CG =在Rt ΔPCG 中,2PG CG =,222PG CG PC =+∴222(2)CG CG PC =+, ∴3PC =,P ∴点坐标为:(3,3),设直线PE 的解析式为:y kx b =+,则033b k b +=+=⎪⎩,解得3k b ⎧=⎪⎨=-⎪⎩∴直线PE 的解析式为3y =-.(4)①如图1,当点M 在x 轴的负半轴上时,AG MG =,点A 坐标为(0,3),∴点M 坐标为(0,3)-.①如图2,当点M 在EP 的延长线上时,由(3),可得60AGO PGC ∠=∠=︒,EP ∴与AB 的交点M ,满足AG MG =,A 点的横坐标是0,GM ∴的横坐标是3,∴点M 坐标为3).综上,可得点M 坐标为(0,3)-或3).9.(1)如图,(2)DR ①BC90RDB ∴∠=︒将线段DE 顺时针旋转90°得到线段DF ,90,EDF ED FD ∴∠=︒=BDR EDF ∴∠=∠即BDE EDR EDR RDF ∠+∠=∠+∠BDE RDF ∴∠=∠ ABC 是等腰直角三角形90BDR ∠=︒45BRD ∴∠=︒BRD ∴是等腰直角三角形BD DR ∴=∴①BDE ①①RDF ;(2)如图,当24PB AB ==时,使得对于任意的点D ,总有①BPF 为定值,证明如下,ABC 是等腰直角三角形,2AB AC ==BC ∴=DC =设DE a =,则CD =,①BDE ①①RDF ,DR BD ∴==,FR BR a == ABC 是等腰直角三角形,45EBD ∴∠=︒DR BC ⊥45BRD ∴∠=︒BDR ∴是等腰直角三角形,42BR a ∴==-()4422PR BP BR a a ∴=-=--=①BDE ①①RDF ,45FRD EBD ∴∠=∠=︒90BRF BRD DRF ∴∠=∠+∠=︒1tan 22RF a BPF RP a ∴∠=== BPF ∴∠为定值10.证明:(1)如图1,将①ABD 沿AB 折叠,得到①ABE ,连接DE ,①AB =AC ,①BAC =90°,①①ABC =45°,①将①ABD 沿AB 折叠,得到①ABE ,①①ABD ①①ABE ,①AE =AD ,BE =BD ,①ABE =①ABD =45°,①BAD =①BAE =30°,①①DBE =90°,①DAE =60°,且AD =AE ,BE =BD ,①①ADE 是等边三角形,DE =,①AD =DE =故答案为:(2)如图2,过点A 作AE ①AD ,且AE =AD ,连接DE ,①AE ①AD ,①①DAE =①BAC =90°,①①BAE =①DAC ,且AD =AE ,AB =AC ,①①BAE ①①CAD (SAS )①①ACD=①ABE,①①ACD+①DCB+①ABC=90°,①①DCB+①ABC+①ABE=90°,①①BOC=90°,①AE=AD,AE①AD,①DE=,①ADE=45°,①①BDC﹣①ADC=45°,①①BDC=①ADC+45°=①EDC,且DO=DO,①DOB=①DOE=90°,①①DOB①①DOE(ASA)①BD=DE,①BD=;(3)如图3,连接PC交AB于G点①①DAE绕A点旋转①AD=AE,AB=AC,①①DAE=①BAC=90°①①DAB=①EAC①①DAB①①EAC①①DBA=①ECA①①PGB=①AGC①①BPC=①GAC=90°①①BPC为直角三角形①点P在以BC中点M为圆心,BM为半径的圆上,连接PM交AB所在直线于点N,当PM①AB时,点P到直线AB的距离最大,①①BAC=90°①A 、P 、B 、C 四点共圆①PM ①AB ,①N 是AB 的中点①M 是BC 的中点①MN =122AC = ①AB =AC =4,①CB =22442,①BM =PM =12BC =,①PN =2 ,①点P 到AB 所在直线的距离的最大值为:PN =2 . ①①P AB的面积最大值为12AB ×PN =4. 11.(1)证明:ABC 是等边三角形60,BAC AB AC ∴∠=︒=线段DA 绕着点D 顺时针旋转60°得到线段DE , 60,DAE DA DE ∴∠=︒=ADE ∴是等边三角形DAC DAE CAE BAC CAE EAB ∴∠=∠-∠=∠-∠=∠ 即DAC EAB ∠=∠∴ADC AEB △≌△∴CD BE =(2)ABC 是等边三角形,AB =4,则60BAC ∠=︒过点A 作AM BC ⊥,则1302BAH BAC ∠=∠=︒ Rt ABH 中,122BH AB ==AH ∴=142ABC S ∴=⨯⨯△①ABC 的面积等于①ABF 面积的4倍ABF S ∴=△11sin 60422ABF S BF AB =⋅⨯︒=⨯=△ 1BF ∴= ①当F 点在B 点的左侧时,如图,60ACB ABC ∠=∠=︒120ACD ∴∠=︒ADC AEB △≌△ADC AEB ∴∠=∠,BE DC =60ABC ∠=︒60EBF ABE ABC ∴∠=∠-∠=︒60FBE FCA ∴∠=∠=︒又AFC EFB ∠=∠AFC EFB ∴∽FB BE FC AC∴= 4,1AC BC AB BF ====413FC ∴=-=14433FB AC BE FC ⋅⨯∴=== 43CD EB ∴==①当F 点在B 点的右侧时,如图,ADC AEB △≌△60ACD EBA ∴∠=∠=︒60ABC ∠=︒18060EBF ABC ABE ∴∠=︒-∠-∠=︒BE AC ∴∥FEB FAC ∴∽FB BE FC AC∴= 1,4,145FB AC FC BC BF ===+=+=45FB AC BE FC ⨯∴== 45CD EB ∴==综上所述CD 的长为43或45(3)如图,点E 关于直线AD 的对称点为点G ,ADE 是等边三角形60ADE ADG ∴∠=∠=︒,AE AD =AEN ADM ∴∠=∠60=︒60,60MAD DAB CAB EAB DAB DAE ∠+∠=∠=︒∠+∠=∠=︒MAD NAE ∴∠=∠MAD NAE ∴=AM AN ∴=60MAN ∠=︒AMN ∴是等边三角形MN AN ∴=由(2)可得45BE =,FEB FAC ∽ 445525EF BF BF AF FC BC BF ∴====+过点A 作AH BC ⊥,则AH =,2CH HB ==,3HF HB BF =+=AF ∴=425EF AF ∴==AE AF EF ∴=-==60,ABE AEN EAB NAE ∠=∠=︒∠=∠∴BEA ENA ∽BE BA EN EA∴= 则BE EA EN BA ⨯=60,ADN ABE AND ENB ∠=∠=︒∠=∠ADN EBN ∴∽AD AN EB EN∴= 即AN EB EN AD ⨯= BE EA AN EB BA AD ⨯⨯∴= EA AD AN AB⨯∴=AE AD =,4AB =2926142500AN ⎝⎭∴== 即92612500MN =12. 解:(1)如图1,过点C 作CD ①x 轴于D ,①在①ABC 中,90ACB ∠=︒,AC =BC=①4AB = ,①点B (4,0),①CD ①AB ,①AD =CD =12AB =12×4=2,①点C 的坐标为(2,2);(2)如图,把①ACM 绕点C 逆时针旋转90°得到①BCM ′,连接M ′N ,①90ACB ∠=︒,AC =BC ,①①ABC 是等腰直角三角形,①①CAB =①CBA =45°,由旋转的性质得,45AM BM CM CM CAM CBM ACM BCM '''==∠=∠=︒∠=∠'、、,,①454590M BN ABC CBN ∠'=∠+∠'=︒+︒=︒ ,①①MCN =45°,①90904545M CN BCN BCM BCN ACM MCN ∠'=∠+∠'=∠+∠=︒-∠=︒-︒=︒ , ①MCN M CN ∠=∠' ,在①MCN 和①M ′CN 中,①CM CM MCN M CN CN CN ''=⎧⎪∠=∠⎨⎪=⎩,①MCN M CN SAS '≌(), ①MN M N =' ,在Rt M NB ' 中,222BM BN M N +='' ,①222AM BN MN += ,1AM =,①3MN BN AB AM +=-=,1BM '= ,设MN x =,则BN =3x -,()22213-x x ∴+=,解得:53x =, 53MN ∴=; (3)AM 2+BN 2=MN 2,证明如下:如图3,把①BCN 绕点C 顺时针旋转90°得到ACN ' ,①90ACB ∠=︒,AC =BC ,①①ABC 是等腰直角三角形,①①CAB =①CBA =45°,由旋转的性质得,135AN BN CN CN CAN CBN '='=∠'=∠=︒,, , ①1354590MAN ∠'=︒-︒=︒,①点N '在y 轴上,①①MCN =45°,①904545MCN ∠'=︒-︒=︒,①MCN MCN ∠=∠' ,在①MCN 和①MCN ′中,①CN CN MCN MCN CM CM =''⎧⎪∠=∠⎨⎪=⎩,①()MCN MCN SAS ≅' ,①MN MN =' ,在Rt AMN ' 中,222AM AN MN +''= ,①222AM BN MN += .13.(1)如图1,①90ACB ∠=︒,AE BD ⊥,①90ACB AEB ∠=∠=︒,又①12∠=∠,①CAE CBD ∠=∠;(2)①补全图形如图2;①EF BE =.理由如下:在AE 上截取AM ,使AM BE =.又①AC CB =,CAE CBD ∠=∠,①ΔΔACM BCE ≌,①CM CE =,ACM BCE ∠=∠,又①90ACB ACM MCB ∠=∠+∠=︒,①90MCE BCE MCB ∠=∠+∠=︒,①ME =,又①射线AE 绕点A 顺时针旋转45︒,后得到AF ,且90AEF ∠=︒,①EF AE AM ME BE ==+=.14.解:(1)如图:BD 与EC 的数量关系是相等,理由如下:,AB AC AD AE ==,AB AD AC AE ∴-=-,BD EC ∴=;BD 与EC 的位置关系是垂直,理由如下:AB AC ⊥, 又点,D E 分别在,AB AC 上,BD EC ⊥;(2)成立:理由分别如下:如图:根据旋转的性质可得:,,AD AE AB AC BAD CAE ==∠=∠, ()ABD ACE SAS ∴≌,BD EC ∴=,作BD 的延长线交EC 于点F ,交AC 于点G ,如下图:由ABD ACE SAS △≌△()可知,ABD ACE ∠=∠,AGB FGC ∠=∠,AGB FGC ∴∽,90GAB GFC ∴∠=∠=︒,GF CF ∴⊥,即BD EC ⊥;(3)当点D 在线段BE 上时,90BAD BAC DAC DAC ∠=∠-∠=︒-∠,90CAE DAE DAC DAC ∠=∠-∠=︒-∠,BAD CAE ∴∠=∠,又AB AC =,AD AE =,()BAD CAE SAS ∴∆≅∆,180135ADB AEC ADE ∴∠=∠=︒-∠=︒,451354590BEC AEC ∴∠=∠-︒=︒-︒=︒;(4)由题意知,点D 的轨迹在以A 为圆心,AD 为半径的圆, 在ABD ∆中,当AB 为底时,点D 到AB 的距离最大时,ABD ∆的面积最大, 故如图所示,当AD AB ⊥时,ABD ∆的面积最大,∴旋转角为90︒或270︒,故答案为:90︒或270︒.15.解:(1)在Rt ①ABC 中,BC =4,AC =2,①ACB =90°,AB ∴=在Rt ①BDE 中,BF =1,BD =2,BE ∴=121tan ,tan 242ED AC EBD ABC BD BC ∴∠==∠=== EBD ABC ∴∠=∠EBD ABD ABC ABD ∴∠-∠=∠-∠ABE CBD ∴∠=∠24AB BE BC BD ===∴①ABE ①①CBD ;(2)当A 、E 、F 三点共线时,分两种情况讨论: ①90AED ∠=︒,如图,在Rt ①AFB 中,222AB BF AF =+21(2)20AE ∴++=2(2)19AE ∴+=2AE ∴=①ABE ①①CBDAE CD ∴=CD ∴= ①如图,90AFB ∠=︒在Rt ①AFB 中,22220119AF AB BF =-=-=AF ∴=2AE AF EF ∴=+=EBD ABC ∠=∠90EBF ABC ∴∠+∠=︒EBF ABC FBC DBF FBC ∴∠+∠+∠=∠++∠24AB BE BC BD ===∴①ABE ①①CBDAE CD ∴=CD ∴=综上所述,CD =CD =(3)如图,延长EF 至点G ,使得EF =FG ,连接BG ,此时①BEG 是等腰三角形, 当G B A 、、三点共线,此时FM 最大//BD GEG DBA ∴∠=∠9090180DBA FBD GBF G FBD GBF ∴∠+∠+∠=∠+∠+∠=︒+︒=︒, 此时,G B A 、、三点共线,F M 、分别是BE 、AE 的中点,FM ∴是①EGA 的中位线,111==()222FM AG AB BG ∴+==16.解:(1)如图①中,(5,0)A ,(0,3)B ,5OA ∴=,3OB =,四边形AOBC 是矩形,3AC OB ∴==,5OA BC ==,90OBC C ∠=∠=︒,矩形ADEF 是由矩形AOBC 旋转得到,5AD AO ∴==,在Rt ADC 中,4CD ,1BD BC CD ∴=-=,(1,3)D ∴.(2)①如图①中,由四边形ADEF 是矩形,得到90ADE ∠=︒,点D 在线段BE 上,90ADB ∴∠=︒,由(①)可知,AD AO =,又AB AB =,90AOB ∠=︒,()Rt ADB Rt AOB HL ∴≌.①如图①中,由ADB AOB ∆≅∆,得到BAD BAO ∠=∠,又在矩形AOBC 中,//OA BC ,CBA OAB ∴∠=∠,BAD CBA ∴∠=∠,BH AH ∴=,设AH BH m ==,则5HC BC BH m =-=-,在Rt AHC 中,222AH HC AC =+,2223(5)m m ∴=+-,175m ∴=, 175BH ∴=, 17(5H ∴,3). (3)如图①中,当点D 在线段BK 上时,DEK ∆的面积最小,最小值113(522DE DK ==⨯⨯=当点D 在BA 的延长线上时,①D E K ''的面积最大,最大面积113(522D E KD =⨯''⨯'=⨯⨯=. 17.解:(1)∵P AB ∆'由PAC ∆绕点A 旋转得到,∴P AB PAC ∆≅∆',∴P AB PAC ∠=∠',P A PA '=,∵60BAC PAC PAB ∠=∠+∠=︒,∴60P AB PAB ∠+∠='︒,即:60P AP ∠='︒,∴旋转角度数为60︒;(2)如图所示,连接P P ',∵60P AP ∠='︒,P A PA '=,∴P AP ∆'为等边三角形,∴6P P PA '==,即点P 与点P '之间的距离为6;(3)在P PB ∆'中,由(1)得:10P B PC ='=,6P P '=,8PB =,∴222P B P P PB ''=+,∴P PB ∆'为直角三角形,∴90P PB ∠='︒,由(1)得60APP ∠='︒,∴150APB P PB APP ∠=∠+='∠'︒,∴APB ∠的度数为150︒.18.( 1 )①OA =4,①A (4,0),把A (4,0)代入34y x b =-+, 得:b =3,过点D 作DH ①AB 于点H ,则DH =DO ,BH =BO ,①当x =0时,y =3,①B (0,3),①OA =4,BO =BH =3,在Rt OAB 中,①5AB ,AD =DO +OA =DH +4, ①1122ABD S AD OB AB DH =⋅⋅=⋅⋅, ①()1143522DH DH ⨯+⨯=⨯⋅, 解得:DH =6,①OD =6,①点D 的坐标为(﹣6,0),(2)过点P 作PE ①OD 于点E ,则△DPE ①①DBO ,①点P 在直线BD 上,且点P 的横坐标为t ,①DE =t +6,①OD =6,OB =3,在Rt OBD △中,BD ==①①DPE ①①DBO , ①DP DE DB DO =,66t +,解得:)6DP t =+, ①PC ①BD , ①①PDC ①①ODB , ①PC DP OB OD=,①)6236t PC +=,①)6PC t =+,①)()1115154566=22884BCD S BD PC t t t =⋅⋅=⨯+=++; (3)作PH 垂直于x 轴于点H ,设射线EP 绕点E 逆时针旋转45°交x 轴于点K ,顺时针旋转45°交x 轴于点G .①①BPC =90°,①BOC =90°①B ,P ,C ,O 四点共圆,①PC PB =,①45PCB PBC ∠=∠=︒,①①POC =①PBC =45°,①90PHO ∠=︒,①45HPO POC ∠=∠=︒,①PH =HO ,①DH =6﹣HO =6﹣PH ,①DHP DOB ∽, ①663PH DO PH BO -==, 得PH =2,①HC =CO =1,①OE =2,①点(0,2)E -,①①KEP =①DBC ,①PEB =①BDC ,①①KEP +①PEB =①DBC +①BDC ,即①KEO =①BCO ,①OE :GK =CO :BO =1:3,①GK =6,①K (﹣6,0),设直线KE 的解析式为:y kx b =+,则62y k b b =-+⎧⎨-=⎩,解得:132k b ⎧=-⎪⎨⎪=-⎩,, ①直线KE 为:y 13=-x ﹣2, 联立方程组:123334y x y x ⎧=--⎪⎪⎨⎪=-+⎪⎩解得x =12,y =﹣6,①F 1(12,﹣6),①①KEP +①PEG =90°,①①DEG =90°,①①OEG =①ODE ,①OG :OE =OE :OD =1:3,①OG 23=; ①G (23,0), 设直线EG 的解析式为:y mx n =+, 则20=32m n n⎧+⎪⎨⎪-=⎩,解得:32m n =⎧⎨=-⎩, ①直线EG 的解析式为:y =3x ﹣2, 联立方程组:32334y x y x =-⎧⎪⎨=-+⎪⎩, 解得x 43=,y =2, ①F 2(43,2), 综上所述:F 的坐标为(12,﹣6)或(43,2). 19.证明:(1)①四边形ABCD 是菱形,①ABC =60°, ①AB =BC =AD =CD ,①ADC =①ABC =60°,①①ADC 是等边三角形,①AD =AC =AB =BC ,①①ACB 是等边三角形,①①ACB =①ACD =60°,①①ADC =①EDF =60°,①①ADE =①CDF ,①将线段DE 绕点D 逆时针旋转60︒,点E 的对应点为F , ①DE DF =,在①ADE 和①CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩①①ADE ①①CDF (AAS ),①60DCF DAE ∠=∠=︒,①180DCF BCD ∠+∠=︒,①B ,C ,F 三点共线;(2)如图,过点B 作BH ①AC ,交AG 的延长线于点H ,①BH ①AC ,①①H =①GAE ,①ABH +①BAC =180°,①①ABH =120°=①ACF ,①点G 为BE 的中点,①BG =GE ,在①AGE 和①HGB 中,H GAE AGE BGH BG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩,①①AGE ①①HGB (AAS ),由(1)得AE CF =,①AE =BH =CF ,AG =GH =12AH ,在①ABH 和①ACF 中,AB AC ABH ACF BH CF =⎧⎪∠=∠⎨⎪=⎩,①①ABH ①①ACF (SAS ),①AF =AH ,①AF =2AG .20.(1)如图①CDF 即为旋转之后的图形;(2)证明:由旋转旋转可知:①CAB ①①CFD ,①①CDF =①CBA ,①F =①CAB ,CA =CF ,①①CBA +①CDA =180°,①①CDF +①CDA =180°,①A 、D 、F 三点共线,①AC =CF ,①①F =①CAD ,①①CAB =①CAD ;(3)过点E 作EM ①AF 于点M ,过点C 作CN ①BD 于点N , ①①ABE =①AME =90°,在①ABE 和①AME 中,EAB EAM ABE AME AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①ABE ①①AME (AAS ),①AM =AB =3,BE =ME ,①①ABD =90°,AB =3,BD =4,①5AD ==,①DM =2,设BE EM x ==,则4DN x =-,①()222x 24x +=-,解得 1.5x =,①BE =1.5,DE =2.5, ①12113::225S S BE CN DE CN =⋅⋅=.。