百度文库江苏省第二十届初中数学竞赛第2试试题及答案
- 格式:doc
- 大小:87.00 KB
- 文档页数:3
初中中数学竞赛试题及答案初中数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0或13. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,则这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形4. 一个多项式f(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. 1, 2, 3B. 2, 3, 4C. 1, 3, 4D. 2, 2, 35. 一个圆的半径为5,圆心到直线的距离为4,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切6. 以下哪个是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 椭圆7. 一个数列1, 3, 5, ..., 19,这个数列共有多少项?A. 10B. 11C. 12D. 138. 一个等差数列的首项是2,公差是3,那么第10项是:A. 29B. 32C. 35D. 389. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加8平方米,求原长方形的宽是多少?A. 2米B. 3米C. 4米D. 5米10. 一个分数的分子与分母的和是21,如果分子增加5,分母增加1,新的分数等于1,求原分数是多少?A. 3/18B. 4/17C. 5/16D. 6/15二、填空题(每题4分,共20分)11. 如果一个数的平方根等于它本身,那么这个数是________。
12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。
13. 一个多项式f(x) = x^2 - 5x + 6可以分解为________。
14. 一个数的立方根等于它本身,这个数是________。
15. 如果一个数列的前三项是1, 2, 3,且每一项都是前一项的两倍,这个数列的第5项是________。
数学竞赛初中组试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的立方等于它本身,那么这个数可能是:A. 1B. -1C. 0D. 1和-1答案:D3. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数的平方根是它本身,这个数可能是:A. 1B. -1C. 0D. 1和0答案:D5. 一个数的倒数是它本身,这个数可能是:A. 1B. -1C. 0D. 1/2答案:A二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______。
答案:非负数7. 一个数的相反数是它本身,这个数是______。
答案:08. 如果a和b互为倒数,那么ab=______。
答案:19. 一个数的平方等于16,这个数可能是______。
答案:±410. 一个数的立方等于8,这个数是______。
答案:2三、简答题(每题5分,共20分)11. 证明:对于任意实数x,都有(x+1)^2 ≥ 2x。
答案:展开(x+1)^2得x^2+2x+1,因为x^2总是非负的,所以(x+1)^2 ≥ 2x。
12. 一个数列的前三项是1, 2, 3,如果每一项都是前一项的两倍,求第10项的值。
答案:这是一个等比数列,首项a1=1,公比r=2。
根据等比数列的通项公式an=a1*r^(n-1),第10项a10=1*2^(10-1)=2^9。
13. 一个圆的半径为5,求圆的周长。
答案:圆的周长公式为C=2πr,代入半径r=5,得C=2*π*5=10π。
14. 一个长方体的长宽高分别为2, 3, 4,求其体积。
答案:长方体的体积公式为V=lwh,代入长l=2,宽w=3,高h=4,得V=2*3*4=24。
四、解答题(每题10分,共30分)15. 某班有40名学生,其中1/4的学生数学成绩优秀,1/3的学生英语成绩优秀,求至少有1门成绩优秀的学生人数。
数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。
解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。
根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。
由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。
试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。
代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。
试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。
已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。
代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。
江苏数学竞赛试题及答案【试题一】题目:求证:对于任意正整数\( n \),\( 1^2 + 2^2 + 3^2 +\ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。
【答案】证明:我们使用数学归纳法来证明这个等式。
1. 当\( n = 1 \)时,左边为\( 1^2 = 1 \),右边为\( \frac{1\cdot 2 \cdot 3}{6} = 1 \),等式成立。
2. 假设当\( n = k \)时等式成立,即\( 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k + 1)(2k + 1)}{6} \)。
3. 当\( n = k + 1 \)时,我们需要证明\( 1^2 + 2^2 + 3^2 +\ldots + k^2 + (k + 1)^2 = \frac{(k + 1)(k + 2)(2k + 3)}{6} \)。
4. 根据假设,将\( k \)的和代入,得到\( \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \)。
5. 简化上述表达式,我们得到\( \frac{(k + 1)(k + 2)(2k + 3)}{6} \),这正是我们需要证明的等式。
6. 因此,根据数学归纳法,对于任意正整数\( n \),等式成立。
【试题二】题目:已知函数\( f(x) = x^3 - 3x^2 + 2 \),求\( f(x) \)的极值。
【答案】解:首先求导得到\( f'(x) = 3x^2 - 6x \)。
令\( f'(x) = 0 \),解得\( x = 0 \)或\( x = 2 \)。
1. 当\( x < 0 \)或\( x > 2 \)时,\( f'(x) > 0 \),函数\( f(x) \)在此区间单调递增。
2. 当\( 0 < x < 2 \)时,\( f'(x) < 0 \),函数\( f(x) \)在此区间单调递减。
初中数学竞赛试题及答案doc一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. 4 或 -4D. 2答案:C3. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数的立方等于-27,这个数是多少?A. -3B. 3C. -27D. 27答案:A5. 一个数的倒数等于它自身,这个数是?A. 1B. -1C. 0D. 都不是答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是_________。
答案:±57. 如果一个数的平方根是2,那么这个数是_________。
答案:48. 一个数的立方根是3,那么这个数是_________。
答案:279. 一个分数的分子是7,分母是14,化简后是_________。
答案:1/210. 一个数的相反数是-5,那么这个数是_________。
答案:5三、解答题(每题5分,共20分)11. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。
证明:根据三角形不等式定理,对于任意三角形ABC,有AB + BC > AC,AC + BC > AB,AB + AC > BC。
如果已知AB + BC > AC,则满足三角形的构造条件,因此这样的三角形是存在的。
12. 计算:(2x - 3)(x + 4)。
解:根据多项式乘法法则,我们有(2x - 3)(x + 4) = 2x^2 + 8x - 3x - 12 = 2x^2 + 5x - 12。
13. 解方程:2x + 5 = 11。
解:首先将5移到等式右边,得到2x = 11 - 5,即2x = 6。
然后将2除到等式右边,得到x = 6 / 2,即x = 3。
14. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加了15平方米,求原长方形的长和宽。
江苏数学竞赛初中试题及答案试题一:代数基础题题目:已知 \( a \) 和 \( b \) 是两个正整数,且 \( a^2 - b^2 = 21 \),求 \( a \) 和 \( b \) 的值。
答案:根据差平方公式,\( a^2 - b^2 = (a+b)(a-b) \)。
已知\( a^2 - b^2 = 21 \),我们可以将21分解为两个因数的乘积,即\( 21 = 3 \times 7 \)。
考虑到 \( a \) 和 \( b \) 是正整数,我们可以得出 \( a = 7 \),\( b = 3 \)。
试题二:几何题题目:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,求这个三角形的三个角度数。
答案:设较小的锐角为 \( x \) 度,则较大的锐角为 \( 2x \) 度。
根据直角三角形的性质,三个角的和为180度,因此有 \( x + 2x + 90 = 180 \)。
解这个方程,我们得到 \( 3x = 90 \),所以 \( x = 30 \)。
因此,较小的锐角是30度,较大的锐角是60度,直角是90度。
试题三:数列题题目:一个数列的前三项为 \( 2, 4, 7 \),从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:根据题意,数列的前几项为:2, 4, 7, (2+4+7), (4+7+13), ...即:2, 4, 7, 13, 24, 41, 75, 130, 231, ...第10项的值为 \( 231 \)。
试题四:逻辑推理题题目:有5个盒子,每个盒子里都装有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人从每个盒子里都拿了一个球,但没有人拿到两个相同数量的球。
每个人拿的球的总数都是6个。
问每个人分别从哪些盒子里拿球?答案:设5个人分别为A、B、C、D、E。
根据题意,每个人拿的球的总数都是6个,且没有人拿到两个相同数量的球。
我们可以列出以下可能的组合:- A: 1, 2, 3- B: 1, 3, 4- C: 1, 4, 5- D: 2, 3, 5- E: 2, 4由于每个人拿的球的总数都是6个,我们可以排除E的组合,因为2+4=6,没有第三个球。
数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。
答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。
答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。
2023年中学生数学竞赛试题及答案知识
点复习考点归纳总结
考试概况
2023年中学生数学竞赛试题分为初级组和高级组,共计10道题,涵盖数学应用、计算思维、逻辑推理等方面,考试时间为2小时。
考试范围
初级组考试范围包括小学数学的基础知识和初中数学的简单应用,主要考察学生的计算能力和逻辑思维能力;
高级组考试范围包括初中数学和高中数学的知识,并且需具备一定的创新性和思维深度,主要考察学生的分析问题和解决问题的能力。
考试重点
数学竞赛试题注重考查学生的计算能力、推理能力和解决问题的能力,因此需要重点复以下知识点:
初级组
- 数的认识和数的大小比较;
- 常见的长度、重量、时间单位换算;
- 分数的认识和加、减、乘、除法的计算;
- 图形的认识、画法和度量;
- 简单的代数式和方程式;
- 简单的百分数计算。
高级组
- 函数和导数的应用;
- 几何平面图形的性质及计算方法;
- 三角函数及其应用;
- 微积分初步;
- 高中数学常用公式。
考试技巧
除了复知识点,考试技巧同样重要。
考试时建议注意以下几个方面:
1. 认真审题,把握题意,理解题目表述的意思;
2. 注意单位换算,量纲分析,特别要注意前后可以相约消去的变量;
3. 充分利用公式,结合实际情况,进行适当的变换;
4. 对于解答题,应清晰、简明地列出解题步骤,注意推理的逻辑性和完整性;
5. 坚持到考试结束,不放弃任何一道题目,重要的是保持冷静和清晰的思路。
祝愿大家考试顺利,取得好成绩!。
江苏省数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数除以3的余数是2,那么这个数除以5的余数是多少?A. 2B. 3C. 4D. 53. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 1004. 下列哪个表达式等于 \( \frac{1}{2} \)?A. \( \frac{3}{6} \)B. \( \frac{2}{4} \)C. \( \frac{1}{3} \)D. \( \frac{3}{8} \)5. 一个数的75%是150,那么这个数是多少?B. 300C. 400D. 5006. 一个班级有40名学生,其中3/5是男生,那么这个班级有多少名女生?A. 8B. 12C. 16D. 207. 一个数的1/3加上它的1/4等于这个数的多少?A. 7/12B. 1/2C. 5/12D. 1/38. 下列哪个数是最小的正整数?A. 1B. 2C. 3D. 49. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64D. 1610. 一个数的3倍加上15等于这个数的5倍,这个数是多少?B. 10C. 15D. 20二、填空题(每题4分,共40分)11. 一个数的2倍减去8等于36,这个数是_________。
12. 一本书的价格是35元,打8折后的价格是_________元。
13. 一个长方形的长是15厘米,宽是长的2/3,那么宽是_________厘米。
14. 一个数的1/4加上它的1/2等于这个数的_________。
15. 一个数的倒数是1/5,这个数是_________。
16. 一个数的75%加上25等于这个数本身,这个数是_________。
17. 一本书的总页数是360页,小明第一天读了总页数的1/4,第二天读了总页数的1/6,小明两天共读了_________页。
初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(3无限循环)B. √2C. 3.14D. 1/32. 一个数的平方等于它本身,这个数是?A. 0B. 1C. -1D. 0或13. 如果一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 12B. 14C. 16D. 184. 一个数列的前三项是2,4,8,那么第四项是多少?A. 16B. 32C. 64D. 1285. 一个圆的半径是5,那么它的面积是多少?A. 25πC. 75πD. 100π6. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为4的圆C. 长为6,宽为4的矩形D. 底边为6,高为4的等腰三角形7. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 08. 一个数的相反数是-3,那么这个数是?A. 3B. -3C. 0D. 69. 一个数的倒数是1/4,那么这个数是?A. 4B. 1/4C. 1/2D. 210. 下列哪个表达式的值是最小的?A. 5 - 3B. 5 + 3D. 5 ÷ 3二、填空题(每题4分,共20分)11. 一个数的立方等于-8,这个数是______。
12. 如果一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是______。
13. 一个数的平方根是2,那么这个数是______。
14. 如果一个数除以3的商是5,那么这个数是______。
15. 一个圆的直径是10,那么它的周长是______。
三、解答题(每题10分,共50分)16. 一个等差数列的前三项分别是3,7,11,求这个数列的第10项。
17. 一个长方形的长是宽的两倍,且周长是24,求这个长方形的面积。
18. 一个三角形的内角和是多少?19. 一个数的平方加上这个数本身等于0,求这个数。
20. 一个圆的半径增加2,那么它的面积增加了多少?答案一、选择题1. B2. D3. C4. B5. C6. B7. C8. A9. A 10. A二、填空题11. -2 12. 5 13. 4 14. 15 15. 31.4三、解答题16. 第10项是31。
主办单位:江苏省教育学会中学数学专业委员会
江苏教育出版社《时代数学学习》编辑部
江苏省第二十届初中数学竞赛试卷
(第2试)
(2005年12月18日上午8:30—11:00)
一、选择题(共8题,每题8分,共64分)以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的括号内.
1.定义运算符号“﹡”的意义为:a﹡b = a + b
ab
(其中a、b均不为0 ).下面有两个结
论:(1)运算“﹡”满足交换律;(2)运算“﹡”满足结合律.其中( )
(A)只有(1)正确(B)只有(2)正确(C)(1)和(2)都正确(D)(1)和(2)都不正确
2.下面有4个正整数的集合:(1)1~10l中3的倍数;(2)1~101中4的倍数;(3)1~101中5的倍数;(4)l~10l中6的倍数.
其中平均数最大的集合是( )
(A) (1) (B) (2) (C) (3) (D ) (4)
3.下面有3个结论:
(1)存在两个不同的无理数,它们的差是整数;
(2)存在两个不同的无理数,它们的积是整数;
(3)存在两个不同的非整数的有理数,它们的和与商都是整数.
其中正确的结论有( )
(A) 0个(B) 1个(C) 2个(D) 3个
4.如果△ABC的两边长分别为a、b,那么△ABC的面积不可能等于( )
(A) 1
4
(a2 + b2) (B)
1
2
(a2 + b2 ) (C)
1
8
(a + b )2(D)
1
4
ab
5.如果m、n是奇数,关于x的方程x2 + mx + n = 0有两个实数根,则其实根的情况是( )
(A)有奇数根,也有偶数根(B)既没有奇数根也没有偶数根
(C)有偶数根,没有奇数根(D)有奇数根,没有偶数根
6.如图,AB为⊙O的直径,诸角p、q、r、s之间的关系(1) p = 2q;(2) q = r;(3) p + s = 180°中,正确的是( )
(A) 只有(1)和(2) (B) 只有(1)和(3) (C) 只有(2)和(3) (D) (1)、(2)和(3)
第3题第8题
7.有6个量杯A、B、C、D、E、F,它们的容积分别是16毫升、18毫升、22毫升、23毫升、24毫升和34毫升.有些量杯中注满了酒精,有些量杯中注满了蒸馏水,还剩下一个空量杯,而酒精的体积是蒸馏水体积的两倍.那么注满蒸馏水的量杯是( )
(A) B、D(B) D、E(C) A、E(D) A、C
8.如图,表示阴影区域的不等式组为( )
2x +.y≥5,2x + y≤5,2x +.y≥5,2x + y≤5,(A) 3x + 4y≥9,(B) 3x + 4y≤9,(C) 3x + 4y≥9,(D) 3x + 4y≤9,
y≥0 y≥0 x≥0 x≥0
二、填空题(共8题,每题8分,共64分):
9.设a、b、c是△ABC的三边的长,化简(a–b–c )2 + (b–c–a )2 + (c–a–b )2 的结果是.
10.如图,DC∥AB,∠BAF=∠BCD,AE⊥DE,∠D = 130°,则∠B = .
第10题第13题
11.同时掷出七颗骰子后,向上的七个面上的点数的和是10的概率与向上的七个面的点数的和是a (a≠10)的概率相等,那么a = .
12.方程2x2–x y– 3x + y + 2006 = 0的正整数解( x,y )共有对.
13.如图,已知直角坐标系中四点A(– 2,4),B(– 2,0),C(2,–3),D(2,0).设P是x轴上的点,且P A、PB、AB所围成的三角形与PC、PD、CD所围成的三角形相似,请写出所有符合上述条件的点P的坐标:.
14.已知R、x、y、z是整数,且R> x > y > z,若R、x、y、z满足方程16(2R +2x + 2y +2z) = 330,则R = .
15.如图,在斜坡的顶部有一铁塔AB,
在阳光的照射下,塔影DE留在坡面上.
已知铁塔底座宽CD = 14m,塔影长DE
= 36m,小明和小华的身高都是1.6m,
小明站在点E处,影子也在斜坡面上,
小华站在沿DE方向的坡脚下,影子在
平地上,两人的影长分别为4m与2m,
那么,塔高AB = m.
16.设2005的所有不同正约数的积为a,a的所有不同正约数的积为b,则b = .
三、解答题(共4题,每题13分,共52分)
17.某仓储系统有20条输入传送带,20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(1),每条输出传送带每小时出库的货物流量如图(2),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(3),则在0时至2时有多少条输入传送带和输出传送带在工作? 在4时至5时有多少条输入传送带和输出传送带在工作?
18.已知直角三角形ABC和ADC有公共斜边AC,M、N分别是AC,BD中点,且M、N不重合.(1)线段MN与BD是否垂直?请说明理由.(2)若∠BAC = 30°,∠CAD = 45°,AC =4,求MN的长.
19.已知x、y为正整数,且满足xy– ( x + y ) = 2p + q,其中p、q分别是x与y的最大公约数和最小公倍数,求所有这样的数对(x,y ) (x≥y ).
20.若干个1与2排成一行:1,2,1,2,2,l,2,2,2,1,2,...,规则是:第1个数是l,第2个数是2,第3个数是1.一般地,先写一行1,再在第k个1与第k + 1个1之间插入k个2 (k= 1,2,3,...).试问(1) 第2005个数是1还是2 ?(2)前2005个数的和是多少? (3)前2005个数两两乘积的和是多少?
参考答案
一、选择题:ACDB BADD
二、填空题:9.a + b + c10.40°11.39 12.4 13.( 2
7
,0)、(14,0)、(4,0)、(–4,
0) (注:每一点给2分) 14.4 15.20 16.2005 9
三、解答题
17.在0时至2时内有14条输入传送带和12条输出传送带在工作;在4时至5时内有6条输入传送带和6条输出传送带在工作.
18.(1)垂直,证略.(2)注意二种情况:B、D在AC两侧,MN= 2 –3,B、D 在AC同侧,MN = 2 + 3 .
19. x = 9,x = 5,
y = 3,y = 5.
20.(1)第2005个数是2.(2)前2005个数的和为3948.(3)所求和为7789435.。