非参数检验
- 格式:pdf
- 大小:954.24 KB
- 文档页数:63
两配对样本非参数检验在统计学中,非参数检验是一种用于比较两个或多个独立样本之间差异的方法,它不依赖于数据的分布假设。
相比之下,参数检验需要对数据的分布做出假设,例如正态分布。
非参数检验的优点是更加灵活,在不确定数据的分布情况下更能有效地进行统计推断。
以下将介绍两种常见的非参数检验方法:Wilcoxon秩和检验和Mann-Whitney U检验。
Wilcoxon秩和检验又称为Wilcoxon符号秩检验、Wilcoxon配对差异检验等,它用于比较两个配对样本的差异。
该检验的原假设是,在两个配对样本中,两两配对的差异具有相同的分布。
而备择假设是两个配对样本之间存在差异。
Wilcoxon秩和检验的步骤如下:1.给出两个配对样本,分别记作X和Y。
2.对所有配对差异进行排序,并为每个差异分配一个秩次,然后计算秩和W+和W-。
3.根据秩和W+和W-的大小,查找对应的临界值。
4.比较秩和W+和W-与临界值,如果大于等于临界值,则拒绝原假设,否则接受原假设。
Mann-Whitney U检验用于比较两个独立样本的差异,它的原假设是两个样本来自同一个总体,而备择假设是两个样本来自不同的总体。
Mann-Whitney U检验的步骤如下:1.给出两个独立样本,分别记作X和Y。
2.对两个样本的所有观测值进行排列,并为每个观测值计算秩次。
3.根据秩次,计算U值。
4.利用U值和样本量的关系,查找对应的临界值。
5.比较U值与临界值,如果小于等于临界值,则拒绝原假设,否则接受原假设。
需要注意的是,在使用非参数检验时,样本量越大,结果的准确性越高。
此外,当样本量较小时,非参数检验的效果可能会受到影响,建议使用参数检验。
综上所述,非参数检验是一种灵活、无需分布假设的统计推断方法,其中Wilcoxon秩和检验和Mann-Whitney U检验用于比较两个独立样本或配对样本之间的差异。
它们的应用范围广泛,并在实际问题中得到广泛应用。
常见的几种非参数检验方法非参数检验是一种不需要对数据进行假设检验的统计方法,它不需要满足正态分布等前提条件,因此被广泛应用于实际数据分析中。
在本文中,我们将介绍常见的几种非参数检验方法。
一、Wilcoxon符号秩检验Wilcoxon符号秩检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号和秩来计算统计量,并通过查表或使用软件进行显著性判断。
二、Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
三、Kruskal-Wallis H检验Kruskal-Wallis H检验是一种用于比较多个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
四、Friedman秩和检验Friedman秩和检验是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
五、符号检验符号检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号来计算统计量,并通过查表或使用软件进行显著性判断。
六、秩相关检验秩相关检验是一种用于比较两个相关样本之间关系的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
七、分布拟合检验分布拟合检验是一种用于检验数据是否符合某个特定分布的非参数检验方法。
它基于样本数据与理论分布之间的差异来计算统计量,并通过查表或使用软件进行显著性判断。
八、重复测量ANOVA重复测量ANOVA是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本方差和均值来计算统计量,并通过查表或使用软件进行显著性判断。
九、Bootstrap法Bootstrap法是一种用于估计总体参数和构建置信区间的非参数方法。
它基于自助重采样技术来生成大量虚拟样本,以此估计总体参数和构建置信区间。