机床空间误差补偿技术研究
- 格式:pdf
- 大小:1.57 MB
- 文档页数:7
机床加工精度检测与补偿技术研究摘要:现代社会对产品的精度要求越来越高。
为了保证零件的加工精度,可以通过误差的隔离和消除来实现,另外也可以通过误差的补偿来实现。
随着技术的发展,误差补偿技术的意义也愈来愈重要。
本文分析了加工精度检测的一般方法以及误差补偿技术的概念,最后分析了误差补偿的一般步骤。
关键词:机床误差检测误差补偿机械行业的国民经济的基础,机床作为机械行业的母机,其提供的装备技术的水平和质量,直接影响着终端产品的精度。
因此,如何提高机床的加工精度并保持一定的生产率成为企业所面临的现实问题。
提高机床的加工精度主要有误差隔离和误差补偿两种。
误差隔离就是找到加工中误差的根源,通过采取相应的措施,使误差不产生或者少产生。
而另外一种方式就是误差的补偿,就是通过建立数学误差模型,来抵消和均化误差,使得误差减小。
通过误差补偿的方法来提高机床的加工精度已经越来越普遍。
要达到较高的精度还需要使用在线检测和误差补偿。
1、加工精度检测的方法在对机床进行误差补偿之前,首先要进行的是机床精度的检测。
机床精度检测的环境和机床误差补偿的关系十分密切。
根据机床精度检测的环境来看,机床精度检测可以分为离线检测、在位检测和在线检测三种。
1.1 离线检测所谓离线检测是指在零件被加工完毕之后,从机床上把它取下来。
在机床旁边或者检测室中进行检测,这就是离线检测。
离线检测一般只能检测产品加工之后的结果,并不能反映产品加工的实际情况,而且也不能连续检测产品加工过程中的变化。
但是它的检测条件比较好,而且可以不受加工条件的限制,可以充分利用各种测量的仪器,其测量的精度也比较高。
1.2 在位检测在位检测是指在工件加工完毕之后,在机床上不卸下工件对其进行检测。
这时候所用的检测仪器可以是事先安装好的,也可以是临时安装到机床上使用的。
在位检测也只能检测加工后的结果,和离线检测一样,也不一定能反映加工的实际情况,同时也不能反映连续加工过程的变化。
但是可以避免离线检测时由于定位基准所带来的误差。
数控机床空间误差补偿与应用摘要数控机床精度要求的不断提升,逐渐向精密加工发展,因此从对数控机床精度提升角度进行研究,分析了三轴数控机床的各个直线轴误差及三个轴线之间的空间误差关系,对几种误差补偿方法进行综合分析。
从空间误差补偿的角度研究对机床精度的提升,对空间中三个轴线之间的本身误差以及它们之间的误差进行补偿,从空间三维多角度保证机床的精度,同时也是对补偿方法的应用及验证。
关键词:误差;精度;空间误差;误差补偿引言对于数控机床这种基础制造工程技术的发展伴随而来的就是对加工精度要求逐渐由粗加工到精加工再到超精密加工的过程,在这个过程中数控机床的精度发展技术对精密以及超级精密加工尤为重要,通过减少单动环节增加联动过程的误差减小来确保精度的精密程度以及可靠运行的过程。
之所以被称为精密或者超精密加工这都跟工作母机即能达到精细精度的数控机床有着千丝万缕的关系,甚至可以说精密的数控机床决定了加工工件的精密程度等级。
在以往的精密加工过程中往往通过数控机床的装配原件的基准实现,这样的机床生产过程所需时间之长,产量低,从而影响精密技术的发展脚步。
在加工中出现的误差难以避免并消除,通过提升机床装配部件精度的方法不能一直持续进行,因为这种提升程度有限,到一定程度之后就难以进步。
自动化控制技术以及软件技术的飞跃发展,能逐步实现通过微小的进给位移消除在加工过程中产生的误差,从而实现精密加工的保证。
现代的误差补偿技术大多都是随着数控机床的控制系统而进步,不同的数控系统虽然对误差的计算方法及补偿的原理不同,但能实现的效果却是一致的,误差补偿技术的不断持续发展,从多方面补充了因机床元件到达一定程度之后对精度提升没有效果的不足。
做好误差补偿工作对机床精度提升有重要的作用,也是对提升我国工业基础的关键技术,可以减少硬件投入的资金,增强装备制造的能力的重要环节。
1 空间误差分类与定义1.1轴线误差机床X、Y、Z轴运动时,分别产生6项基本误差及三项垂直度误差。
精密机床动态误差补偿技术研究随着科技的不断发展和工业的不断进步,机床设备的精度要求越来越高,对于传统的机床而言,部件加工误差、温度变化等因素都会对机床的精度造成一定的影响,而动态误差补偿技术的应用则可以有效地解决这一问题。
一、动态误差补偿技术的概念动态误差是指机床在工作过程中产生的误差,其存在与否严重影响零件的加工精度及加工效率。
误差补偿是指通过一定的技术手段对这一误差进行补偿,从而保障机床的加工精度。
动态误差补偿技术则是指利用各种传感器和监测系统实时监测机床的运动轨迹和状态,对其运动轨迹进行在线优化,从而实现对机床动态误差的补偿。
二、动态误差补偿技术的应用1.数控加工中的应用动态误差补偿技术在工业制造中得到越来越广泛的应用,特别是在数控机床加工中,它能够有效地提高机床的加工精度和工作效率。
在数控加工中,机床轴的移动轨迹是根据机床设定的指令、加工速度和输出转矩等参数自主控制,而这一过程中机床的动态误差极易产生,从而影响加工精度。
因此,在数控加工中,动态误差补偿技术应用极为重要,可以大大提高零件加工的精度和效率。
2.航空、航天等领域中的应用对于高精度的航空、航天领域,如制造飞机发动机、导弹等设备,精度要求更高。
而这些领域的生产过程复杂,需要多种形式的加工,从而对机床加工的精度和稳定性都有更高的要求。
因此,动态误差补偿技术在这些领域的应用更显得尤为重要,能够大大提高机床的加工精度,保证零件的质量和稳定性。
三、动态误差补偿技术的研究进展在过去的十年里,动态误差补偿技术已经有了很大的发展和突破。
国内外研究机构和企业在相关领域开展深入研究,提出了更加优秀和有效的动态误差补偿技术。
比如基于光纤传感器系统的动态误差监测技术、基于模型预测控制的动态误差补偿技术等等,这些技术极大地促进了动态误差补偿技术的发展和应用,不断提高机床加工的精度和效率。
总之,动态误差补偿技术是一种非常重要的技术,在机床加工精度和效率方面起到了重要的作用。
数控加工中的误差及补偿方法分析摘要:数控机床现在应用十分普遍,相比普通机床,无论是生产效率还是加工精度均有了明显提升,可保证产品质量满足市场要求。
以提高数控加工精度为目的,分析各种误差产生的原因,以及寻求高精度误差补偿方法,保障数控机床可以稳定运行,维持高精度加工状态。
文章就数控加工误差类型以及补偿方法进行了简单的分析。
关键词:数控加工;高精度;误差补偿数控加工存在着精度高且柔性自动化等特点,对于复杂零件的加工优势突出,被越发广泛的应用于制造业,且取得了显著成果。
为了进一步做到高精度加工,不断减小误差,就需要在生产加工中总结各类误差的表现形式,并分析其产生的原因,寻求更有效的误差补偿方法,例如通过控制温度与振动从根源上来减少甚至消除误差,或者是应用软件工程来进行纠错等,更大程度上实现高精度数控加工。
一、数控加工误差分析1.加工误差分类数据加工生产过程中受多种因素影响而产生加工误差,一类是根据误差条件可分为静态误差、准静态误差和动态误差。
其中,静态误差即数控加工过程中准确度和误差不会因为时间影响而发生变化。
准静态误差是在给定工作环境中会缓慢的发生变化,但是该条件下会始终保持不变,例如特定工作条件下产生的准静态误差本质并不会发生变化或者是变化速度非常缓慢[1]。
另一类则是根据误差来源可分为位置误差与非位置误差。
位置误差即数控加工生产过程中,随着零部件的运动,产生的运动轨迹以及位置与理想条件有着一定偏差,同时期望运动轨迹以及位置与指令相差较大,如几何误差。
数控机床不同零件与零件在生产运动过程中因外界条件的干扰,零部件的实际运行轨迹以及位置与理想条件偏差较大,包括力误差、热误差以及刀具磨损误差等。
2.误差产生原因数控加工生产中因各因素的影响不可避免的会有误差形成,促使切削工艺中工件与刀具的位置发生变化,影响零部件加工精度。
一般数控加工误差产生原因可从加工方法误差与调安误差两个方面分析,只有当误差总和低于允许差值时,才能够做到高精度数控加工。