(北师大版)五年级数学上册 组合图形面积
- 格式:doc
- 大小:40.00 KB
- 文档页数:2
1《组合图形的面积》(教案)五年级上册数学北师大版今天,我为大家带来的是五年级上册数学北师大版《组合图形的面积》的教案。
一、教学内容本节课的教学内容是北师大版五年级上册数学第107页至108页的“组合图形的面积”。
我们将学习如何通过分割和计算基本图形的面积来求解组合图形的面积。
二、教学目标通过本节课的学习,我希望学生们能够掌握组合图形面积的求解方法,提高空间想象能力和解决问题的能力。
三、教学难点与重点重点:理解组合图形面积的求解方法,能够运用分割和计算基本图形的面积来求解组合图形的面积。
难点:如何将组合图形分割成基本图形,以及如何计算组合图形的面积。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备学具:练习本、尺子、圆规、剪刀、彩笔五、教学过程1. 实践情景引入:我拿出一个由两个不同形状的图形组合而成的图形,让学生观察并思考如何求解这个组合图形的面积。
2. 讲解与演示:我在黑板上展示如何将组合图形分割成基本图形,并利用圆规和剪刀进行实际操作,让学生直观地理解组合图形面积的求解方法。
3. 例题讲解:我选取一道典型的例题,讲解如何将组合图形分割成基本图形,并演示计算过程,让学生跟随我的思路一起解决实际问题。
4. 随堂练习:我设计几道类似的练习题,让学生独立完成,检验他们是否掌握了组合图形面积的求解方法。
5. 作业布置:我布置几道课后作业,让学生巩固所学知识,提高解决问题的能力。
六、板书设计板书设计如下:组合图形的面积 = 基本图形的面积之和七、作业设计1. 计算下列组合图形的面积:(1)一个边长为4厘米的正方形,内部有一个半径为2厘米的圆形。
答案:25.12平方厘米(2)一个长为8厘米,宽为6厘米的长方形,内部有一个边长为4厘米的正方形。
答案:32平方厘米2. 自己设计一个组合图形,并计算其面积。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生直观地理解了组合图形面积的求解方法。
在讲解例题的过程中,我注重了与学生的互动,让他们跟随我的思路一起解决问题。
《组合图形的面积》(教案)五年级上册数学北师大版作为一名经验丰富的教师,我将以五年级上册数学北师大版《组合图形的面积》为例,为您展示我的教学内容和教学方法。
一、教学内容今天我们要学习的章节是《组合图形的面积》。
这部分内容主要包括理解组合图形的概念,学会将组合图形分解为基本图形,计算基本图形的面积,求出组合图形的面积。
二、教学目标通过本节课的学习,我希望学生能够掌握组合图形的概念,学会计算组合图形的面积,并能运用到实际问题中。
三、教学难点与重点重点是让学生掌握计算组合图形面积的方法,难点在于如何引导学生理解组合图形的分解和面积的求解。
四、教具与学具准备为了帮助学生更好地理解组合图形的面积,我准备了一些实物模型和图形卡片,以及练习用的纸张。
五、教学过程1. 实践情景引入:我会先给学生展示一些组合图形,如书桌、电视柜等,让学生观察并说出它们的共同点和不同点。
2. 例题讲解:我会选择一个典型的组合图形,如一个由两个三角形和一个矩形组成的图形,引导学生将其分解为基本图形,并讲解如何计算每个基本图形的面积,求出组合图形的面积。
3. 随堂练习:在讲解完例题后,我会给学生发放一些练习题,让学生独立完成,巩固所学知识。
六、板书设计板书设计将简洁明了地展示组合图形的面积计算方法,包括组合图形的概念、分解图形的方法和面积的求解步骤。
七、作业设计1. 请画出一个你喜欢的组合图形,并计算出它的面积。
答案:略2. 请找出生活中的一个组合图形,尝试计算它的面积,并与同学分享。
答案:略八、课后反思及拓展延伸课后,我会反思本节课的教学效果,观察学生对组合图形面积计算的掌握情况,并根据学生的反馈进行调整。
同时,我会鼓励学生在课后探索更多的组合图形,提高他们的实践能力。
重点和难点解析一、实践情景引入在实践情景引入环节,我选择了学生日常生活中常见的组合图形,如书桌、电视柜等。
这样做的原因是希望通过学生熟悉的事物,激发他们的学习兴趣,同时帮助他们更好地理解组合图形的概念。
北师大版五年级数学上册期末复习专题组合图形的面积【知识点归纳】 方法:①“割法”:观察图形,把图形进行分割成容易求得的图形,再进行相加减.②“补法”:观察图形,给图形补上一部分,形成一个容易求得的图形,再进行相加减. ③“割补结合”:观察图形,把图形分割,再进行移补,形成一个容易求得的图形. 【典例分析】例1:求图中阴影部分的面积.(单位:厘米)分析:根据图所示,可把组合图形分成一个直角梯形和一个41圆,阴影部分的面积等于梯形的面积减去41圆的面积再加上41圆的面积减去三角形面积的差,列式解答即可得到答案. 解:[(5+8+5)×5÷2-41×3.14×52]+(41×3.14×52-5×5÷2), =[18×5÷2-0.785×25]+(0.785×25-25÷2), =[90÷2-19.625]+(19.625-12.5), =[45-19.625]+7.125, =25.375+7.125,=32.5(平方厘米);答:阴影部分的面积为32.5平方厘米.点评:此题主要考查的是梯形的面积公式(上底+下底)×高÷2、三角形的面积公式底×高÷2和圆的面积公式S=πr 2的应用.同步测试一.选择题(共10小题)1.已知长方形和正方形的面积相等,阴影部分A和B的面积不相等是()A.B.C.D.2.如图是一个直角梯形,图中阴影部分面积是100平方厘米,空白部分面积是()平方厘米.A.140 B.120 C.100 D.703.如图中阴影部分的面积是60平方厘米,空白部分的面积是()平方厘米.A.12 B.30 C.60 D.无法判断4.下面三个完全一样的直角梯形中,阴影部分的面积()A.甲最大B.乙最大C.丙最大D.一样大5.在图的平行四边形中,E、F把AB边分成了相等的三段,平行四边形的面积是48平方厘米,阴影三角形的面积是()A.8平方厘米B.12平方厘米C.16平方厘米D.24平方厘米6.如图,平行四边形的面积是24cm2,则阴影部分的面积是()A.2cm2B.4cm2C.10cm2D.12cm27.两个完全一样的正方形,如果①号图形阴影部分的面积是10平方厘米,那么②号图形阴影部分的面积是()平方厘米.A.30 B.25 C.20 D.108.下面两个是完全一样的平行四边形,涂色部分的面积()A.甲大B.乙大C.一样大9.如图中,阴影部分面积与三角形()的面积相等.A.BCD B.BFC C.BCE10.比较下面两个图形,说法正确的是()A.甲、乙的面积相等,周长也相等B.甲、乙的面积相等,但甲的周长长C.甲、乙的周长相等,但乙的面积大D.甲、乙的面积相等,它们周长不一定相等二.填空题(共8小题)11.如图(单位:dm),半圆是长方形内最大的半圆,则这个长方形的面积是dm2.12.如图的面积是平方厘米.13.如果用1厘米表示如图小方格的边长,那么阴影部分的面积是平方厘米.14.如图,平行四边形的面积是20cm2,那么三角形的高是cm,面积是cm2.15.图中四边形的面积是平方厘米.16.如图,阴影部分是面积是平方厘米.(π取3.14)17.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是.18.如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为.(A)5050m2(B)4900m2(C)5000m2(D)4998m2三.判断题(共5小题)19.图中阴影部分的面积比半圆大..(判断对错)20.如图所示,梯形的上底长等于下底长的一半,空白面积也等于阴影部分面积的一半.(判断对错)21.图中阴影部分的面积为24cm2.(判断对错)22.如图中阴影部分的面积是14平方厘米.(判断对错)23.计算组合图形的面积时,可以把组合图形分成几个简单的图形,然后再进行计算..(判断对错)四.计算题(共2小题)24.求阴影部分的面积.(单位:cm)25.计算下面图形的面积.五.解答题(共3小题)26.下面是一个菜园的平面图,算一算这个菜园的面积是多少平方米.27.如图,在平行四边形ABCD中,BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知两块阴影部分的面积和比三角形EFG的面积大10平方厘米,求CF的长.28.李大爷家有一块菜地.(形状如图,单位米)长方形地里种的是圆白菜,右边的梯形地里种的是茄子.(1)每棵圆白菜占地0.15平方米,一共可以种几棵?(2)茄子地一共有多少平方米?参考答案与试题解析一.选择题(共10小题)1.【分析】我们通过对每个选项给出的图形计算可知,A选项中阴影部分A的面积等于正方形的面积的,B的面积等于长方形面积的,而长方形和正方形的面积相等;所以阴影部分A和B的面积;选项B阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的正方形的面积,所以相等;选项C阴影部分A等于长方形的面积减去大的空白部分长方形的面积,B的面积得出正方形减去空白部分小长方形的面积,所以不相等.选项D阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的三角形的面积,所以相等;据此解答.解:A选项中阴影部分A的面积等于正方形的面积的,B的面积等于长方形面积的,而长方形和正方形的面积相等;所以阴影部分A和B的面积;选项B阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的正方形的面积,所以相等;选项C阴影部分A等于长方形的面积减去大的空白部分长方形的面积,B的面积得出正方形减去空白部分小长方形的面积,所以不相等.选项D阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的三角形的面积,所以相等;故选:C.【点评】本题考查了学生的观察能力,考查了学生灵活解决问题的能力.2.【分析】空白三角形、阴影三角形,以及梯形的高相等,根据三角形的面积=底×高÷2可知,先用阴影三角形的面积乘上2,再除以它的底20厘米,即可求出它的高,再用空白三角形的底乘上高,再除以2,即可求出空白部分的面积.解:100÷20×2=5×2=10(厘米)14×10÷2=140÷2=70(平方厘米)答:空白部分的面积是70平方厘米.故选:D.【点评】本题考查了三角形的面积公式,三角形的面积=底×高÷2,关键是得出两个三角形的高相等.3.【分析】先利用三角形的面积公式S=ah÷2计算出三角形的高,也就等于知道了空白部分的高,从而利用三角形的面积公式进行解答即可.解:60×2÷20=120÷20=6(厘米)10×6÷2=30(平方厘米)答:空白部分的面积是30平方厘米.故选:B.【点评】此题主要考查三角形的面积公式的灵活应用.4.【分析】这几个直角梯形中,阴影部分总面积都是以梯形的下底为底,以梯形的高为高的三角形的面积,由此即可判断它们面积的大小.解:三图中,阴影部分总面积都是以梯形的下底为底,以梯形的高为高的三角形的面积,因为三个梯形完全相同,由此可得:阴影部分的面积都相等.故选:D.【点评】此题主要考查等底等高的三角形面积都相等,据图即可以作出判断.5.【分析】根据图得出阴影部分的三角形,与平行四边形的等高,底是平行四边形底的,又三角形的面积是与它底等高平行四边形面积的一半,所以三角形的面积是平行四边形面积的×=,然后解答即可.解:因为E、F把AB边分成了相等的三段,所以阴影部分三角形的底是平行四边形底的,所以三角形的面积是平行四边形面积的×=,阴影三角形的面积是48×=8(平方厘米).答:阴影三角形的面积是8平方厘米.故选:A.【点评】本题关键理解以三角形的面积是与它底等高平行四边形面积的一半.6.【分析】首先根据平行四边形的面积公式:s=ah,那么a=s÷h,已知平行四边形的面积和高求出平行四边形的底,然后用平行四边形的底减去5就是阴影部分三角形的底,然后根据三角形的面积公式:s=ah÷2,把数据代入公式解答.解:24÷4=6(厘米),(6﹣5)×4÷2=1×4÷2=2(平方厘米),答:阴影部分的面积是2平方厘米.故选:A.【点评】此题主要考查平行四边形的面积公式、三角形的面积公式的灵活运用,关键是熟记公式.7.【分析】由正方形的特征可知,①号图中阴影部分的面积等于正方形面积的,因此正方形的面积就等于图①中阴影部分面积的4倍,已知①号图形阴影部分的面积是10平方厘米,用10乘上4即可得到正方形的面积;而②号图中阴影部分的面积是正方形面积的,因此再用正方形的面积乘上即可得到②号图形阴影部分的面积,据此解答.解:由分析知②号图形阴影部分的面积是:10×4×=40×=20(平方厘米);答:②号图形阴影部分的面积是20平方厘米.故选:C.【点评】解决本题的关键是明确各个图中阴影部分的面积和正方形的面积之间的数量关系.8.【分析】甲图中阴影部分的面积可以看作与平行四边形等底等高的三角形,三角形的面积是平行四边形的面积的一半,乙图中的阴影部分面积也可以看作与平行四边形等底等高的三角形,三角形的面积是平行四边形的面积的一半,平行四边形又是完全一样,所以阴影部分的三角形的面积也是一样据此判断.解:甲图中阴影部分的面积和乙图中的阴影部分面积都可以看作与平行四边形等底等高的三角形,平行四边形的面积一样,它们的面积也一样大.故选:C.【点评】此题主要考查等底等高的三角形面积相等及平行四边形的特点.据图即可以作出判断.9.【分析】三角形的面积S=ah,只要是三角形的底和高相等,则它们的面积相等,据此即可得解.解:由图意可知:图中3个三角形的底是相等的,要想面积与阴影部分的三角形面积相等,那么如果高与阴影部分的三角形的高相等即可;再根据平行线间的距离相等,所以△BCE的面积与阴影部分的面积相等.故选:C.【点评】解答此题的主要依据是:等底等高的三角形的面积相等.10.【分析】由图形可知,甲的面积小于长方形面积的一半,乙的面积大于长方形面积的一半,所以乙的面积大于甲的面积;因为甲的周长=长方形的两条邻边的和+中间的曲线的长,乙的周长=长方形的两条邻边和+中间的曲线的长,进行解答继而得出结论.解:因为甲的面积小于长方形面积的一半,乙的面积大于长方形面积的一半,所以甲的面积小于乙的面积;甲的周长=长方形的两条邻边的和+中间的曲线的长,乙的周长=长方形的两条邻边的和+中间的曲线的长,所以甲的周长等于乙的周长;故选:C.【点评】解答此题应根据长方形的特征,并结合周长的计算方法进行解答.二.填空题(共8小题)11.【分析】观察图形可知,长方形的长等于圆的直径是8分米,宽是半圆的半径是8÷2=4分米,据此利用长方形的面积=长×宽计算即可解答问题.解:8÷2=4(分米)8×4=32(平方分米)答:这个长方形的面积是32平方分米.故答案为:32.【点评】掌握长方形内的半圆的特征得出长方形的长与宽的值,是解决本题的关键.12.【分析】根据图示,这个组合图形可以看作由一个梯形和一个长方形拼成的图形,利用长方形和梯形面积公式求解即可.解:如图:该图形可看作一个梯形和一个长方形拼成的图形,其面积为:(12+16)×(10﹣5)÷2+16×5=28×5÷2+80=70+80=150(平方厘米)答:这个图形的面积为150平方厘米.故答案为:150平方厘米.【点评】此题主要考查的是梯形的面积公式:(上底+下底)×高÷2、长方形面积公式:长×宽的应用.13.【分析】右边图形中阴影部分的面积=最上面一行中的2个方格的面积+下面图形中的长方形的面积﹣1个方格的面积,据此即可求解.解:2+4×5﹣1=2+20﹣1=21(平方厘米)答:阴影部分的面积是21平方厘米.故答案为:21.【点评】解答此题的关键是:看利用小方格的边长计算简单还是利用小正方形的面积计算简单,要灵活应对.14.【分析】根据平行四边形的面积变形公式h=S÷a,可求平行四边形的高,根据三角形面积公式S=ah可求三角形的面积;依此即可求解.解:高:20÷5=4(厘米)三角形的面积:3×4÷2=12÷2=6(平方厘米)故答案为:4,6.【点评】本题考查了学生求平行四边形、三角形面积的知识,关键是求出平行四边形的高.15.【分析】根据图意可把这个不规则的四边形,看作是2个直角三角形面积的和来进行解答,然后再根据三角形的面积公式进行计算.解:11×6÷2=66÷2=33(平方厘米)答:这个四边形的面积是33平方厘米.故答案为:33.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.16.【分析】观察图示可知,阴影部分的面积=梯形面积﹣圆面积的,代入数据,解答即可.解:(4+10)×4÷2﹣3.14×42×=28﹣12.56=15.44(平方厘米)答:阴影部分是面积是15.44平方厘米.故答案为:15.44.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.17.【分析】运用面积公式、割补法求阴影部分面积,再与题目的要求比较.解:花坛面积为4m2,一半为2m2,A、阴影部分面积为2×2÷2=2(m2)B、阴影部分面积为1×1+1×1÷2+1×2÷2=2.5(m2)不符合要求;C、阴影部分面积为1×1÷2×4=2(m2)D、把图中上面两个扇形移下来,刚回拼成两个小正方形,面积为2m2;故答案为:B.【点评】本题考查了阴影部分图形面积的计算方法,即规则图形用面积公式求,不规则图形用割补法求解.18.【分析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102﹣2)米,宽为(51﹣1)米.所以草坪的面积=长×宽=(102﹣2)×(51﹣1)=100×50=5000(米2).故答案为:C.【点评】此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.三.判断题(共5小题)19.【分析】分别计算出阴影部分和半圆的面积,再判断.解:设正方形的边长为a,则:阴影部分面积=πa2﹣=a2;半圆的面积为:π×═a2;所以阴影部分面积等于半圆的面积,原说法错误.故答案为:错误.【点评】解决本题的关键是计算出组合图形中相关部分的面积,再比较.20.【分析】分别运用梯形的面积公式和三角形的面积公式进行列式比较就可做出判断.解:设梯形的上底为a,高为h,则下底为2a;梯形的面积=(a+2a)×h÷2=3ah÷2=ah;空白三角形的面积=a×h÷2=ah;则阴影部分的面积=梯形的面积﹣空白三角形的面积=ah﹣ah=ah;由此可以看出:空白面积等于阴影部分面积的一半.故此题是正确的.故答案为:√.【点评】此题主要考查三角形和梯形的面积公式.21.【分析】观察图形可知,可把右侧阴影部分割补到左侧对称的位置,如下图所示:会发现阴影部分是一个上底为4cm、下底为8cm,高为4cm的梯形,利用梯形的面积公式代入数据计算即可.解:由分析知,阴影部分的面积等于上图所示梯形的面积,梯形的上底为:8﹣8÷2=8﹣4=4(cm),高为:8÷2=4(cm),所以面积为:(4+8)×4÷2=12×4÷2=48÷2=24(cm2);答:图中阴影部分的面积为24cm2.所以题干说法正确.故答案为:√.【点评】本题考查了求组合图形的面积,组合图形的面积一般都是转化为规则图形的面积的和或差,再利用规则图形的面积公式进行计算.22.【分析】把这个图形分成三部分计算,上面是底4厘米、高2厘米的三角形,中间是上底2厘米、下底4厘米、高1厘米的梯形,下面是长与宽分别是3厘米、2厘米的长方形,据此计算出它们的面积,再加起来即可判断.解:4×2÷2+(2+4)×1÷2+2×3=4+3+6=13(平方厘米)答:阴影部分的面积是13平方厘米.故答案为:×.【点评】此题考查了不规则图形的周长与面积的计算方法,一般都是转化到规则图形中利用面积公式计算解答.23.【分析】根据组合图形的面积的计算方法可知:计算组合图形的面积时,可以把组合图形分成几个简单的图形,然后再利用规则图形的面积公式进行计算,据此即可判断.解:计算组合图形的面积时,可以把组合图形分成几个简单的图形,然后再根据简单图形的计算公式进行计算.故答案为:√.【点评】此题考查组合图形的面积的计算方法:关键是把组合图形的面积转化为我们学过的图形的面积,再利用相应的面积公式与基本的数量关系解决问题.四.计算题(共2小题)24.【分析】(1)通过旋转平移把阴影部分转化为一个半圆,根据圆的面积公式:S=πr2,把数据代入公式解答.(2)阴影部分的面积等于圆的面积减去正方形的面积,根据圆的面积公式:S=πr2,三角形的面积公式:S=ah÷2,把数据代入公式解答.解:(1)3.14×42÷2=3.14×16÷2=50.24÷2=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.(2)3.14×(10÷2)2﹣10×(10÷2)÷2×2=3.14×25﹣10×5÷2×2=78.5﹣50=28.5(平方厘米);答:阴影部分的面积是28.5平方厘米.【点评】解答求阴影部分的面积关键是观察分析图形是由哪几部分组成的,是各部分的面积和、还是求各部分的面积差,再根据相应的面积公式解答.25.【分析】组合图形的面积等于底为35米,高为12米的三角形面积加上底为50米,高为33米的平行四边形的面积;根据三角形和梯形面积公式解答即可.解:33×50+35×12÷2=1650+210=1860(平方米)答:图形的面积是1860平方米.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.五.解答题(共3小题)26.【分析】本题可用长80米、宽40米的长方形面积减去边长10米的正方形面积求出菜园的面积,长方形面积=长×宽,正方形面积=边长×边长.解:80×40﹣10×10=3200﹣100=3100(平方米)答:这个菜园的面积是3100平方米.【点评】本题主要考查了学生利用长方形的面积公式解题的能力,找出正确的计算组合图形的面积的方法是解题关键.27.【分析】根据题意:如图,已知两块阴影部分的面积和比三角形EFG的面积大10平方厘米,则三角形EFG的面积+10平方厘米+梯形BCFG的面积=平行四边形ABCD的面积,又因为三角形EFG的面积+梯形BCFG的面积=三角形BCF的面积,所以三角形BCF的面积+10平方厘米=平行四边形ABCD的面积;CF是平行四边形的高,根据平行四边形的面积=底×高,则高CF=平行四边形的面积÷底即可.解:(10×8÷2+10)÷10=(40+10)÷10=50÷10=5(厘米)答:CF长5厘米.【点评】解决此题的关键用直角三角形的面积+10平方厘米代替平行四边形的面积,根据面积公式求出CF.28.【分析】(1)先利用长方形的面积公式S=ab计算出圆白菜地的面积,再用它的面积除以每棵圆白菜的占地面积,即可得解;(2)依据梯形的面积公式S=(a+b)×h÷2,代入数据即可求解.解:(1)8×4.5÷0.15=36÷0.15=240(棵)答:一共可以种240棵.(2)(4.8+10.5﹣4.5)×(8﹣2)÷2=10.8×6÷2=32.4(平方米)答:茄子地一共有32.4平方米.【点评】此题主要考查长方形和梯形的面积公式的灵活应用.。
北师大五年级上册第六单元《组合图形的面积》教学设计一、教材简析“组合图形的面积”是北师大版小学数学五年级上册的重要内容之一,其核心目标在于引导学生通过实际问题来理解和掌握多边形面积的计算方法。
“组合图形的面积”作为“多边形的面积”章节的最后一个教学主题,可包含前三个小节的教学内容(平行四边形的面积、三角形的面积、梯形的面积)。
基于问题导学,该课程的教学不应仅仅停留在理论和公式的层面,更重要的是引导学生将这些知识应用于解决实际问题过程中,应用于利用平行四边形、三角形、梯形面积的计算公式解决生活中的实际问题中。
二、学情分析五年级学生思维能力、抽象推理能力和解决问题的能力都在快速提升。
在数学学习方面,他们已经掌握了基本的算术运算和初步的几何知识,具备了学习更复杂数学概念如多边形面积的基础。
在学习“组合图形的面积”前,他们已经学习了平行四边形、三角形和梯形的面积计算方法。
另外,他们能够处理稍微复杂的数学问题,并能在一定程度上从实际生活中抽象出数学问题。
三、教学目标1.数学抽象培养学生从具体的几何图形中抽象出关键数学概念的能力。
2.数学建模培养学生将实际问题转化为数学模型的能力。
3.数学运算引导学生练习和应用多种数学运算知识解决实际问题的能力,特别是与计算多边形面积相关的公式和方法,包括对基础算术运算法则的应用和理解。
四、教学重难点教学重点:掌握组合图形的计算与画图方法,并能将这些技能应用于解决实际问题中。
教学难点:引导学生从实际问题中抽象出数学模型,并正确运用组合图形的相关知识计算其面积。
五、教学过程(一)课程导入:引入实际问题在“组合图形的面积”的课程导入阶段,教师可以提出一个与学生生活紧密相关的问题作为切入点。
教师:同学们,今天我们学习“组合图形的面积”。
请大家看看教室,它是一个标准的矩形吗?这对计算其面积有何影响?学生甲:老师,教室不是标准矩形,有些角落凸出来了。
教师:很好!那我们该如何计算它的面积呢?有什么想法吗?学生乙:我们可以把教室分成几个矩形和三角形,单独计算它们的面积,然后加起来。
《组合图形的面积》(教案)五年级上册数学北师大版我今天要为大家讲授的是五年级上册数学北师大版的《组合图形的面积》。
一、教学内容我们今天的学习内容主要包括教材第六章第三节“组合图形的面积”这一部分。
我会引导大家通过实际操作,理解组合图形面积的计算方法,并能够灵活运用到具体问题中。
二、教学目标通过本节课的学习,我希望大家能够理解组合图形的概念,掌握计算组合图形面积的方法,并能够运用到实际问题中。
三、教学难点与重点重点是让大家理解组合图形的概念,掌握计算组合图形面积的方法。
难点则是如何将组合图形的各个部分正确地分开,并分别计算它们的面积。
四、教具与学具准备我已经准备好了组合图形的模型和计算器,大家需要准备的则是笔记本和笔,用来记录重要的知识点和做随堂练习。
五、教学过程我会通过一个实际的情景引入,比如一个教室的地面由一个矩形和两个直角三角形组成,我会让大家思考如何计算这个教室地面的面积。
在讲解完理论知识后,我会给大家一些例题,让大家通过实际操作,运用所学的知识来计算组合图形的面积。
我会给大家一些随堂练习,让大家能够在实践中进一步理解和掌握计算组合图形面积的方法。
六、板书设计板书设计主要包括组合图形的概念,计算组合图形面积的方法,以及一些关键的步骤和公式。
七、作业设计作业主要包括一些计算组合图形面积的题目,我会让大家运用所学的知识,计算出题目的答案。
八、课后反思及拓展延伸课后,我会让大家反思今天的学习,思考还有哪些地方没有理解,哪些地方还需要加强。
同时,我也会给大家一些拓展延伸的材料,让大家能够进一步深入学习组合图形的相关知识。
重点和难点解析在《组合图形的面积》这节课中,有几个重点和难点是我希望大家能够特别关注的。
计算组合图形面积的方法。
计算组合图形面积的关键是将组合图形分解成简单的几何图形,然后分别计算每个几何图形的面积,将它们的面积相加。
在这个过程中,正确地将组合图形分解成简单的几何图形是非常重要的。
尊敬的评委、老师们:大家好!我是北师大版数学五年级上册第六单元《组合图形的面积》的说课稿撰写者。
今天,我将为大家详细介绍这个单元的教学内容、目标和教学方法。
一、单元内容介绍北师大版数学五年级上册第六单元《组合图形的面积》主要包括以下几个部分:1. 组合图形的意义:由几个简单的图形,通过不同的方式组合而成的图形。
2. 求组合图形面积的方法:分割求和法、添补求差法。
3. 实际应用:解决实际问题,如计算不规则图形的面积等。
二、单元教学目标1. 让学生掌握组合图形的概念,能够识别和理解组合图形。
2. 培养学生运用分割、添补等方法求组合图形面积的能力。
3. 培养学生解决实际问题的能力,提高学生运用数学知识解决生活问题的意识。
4. 培养学生的空间想象能力、逻辑思维能力和创新能力。
三、单元教学方法1. 情境导入:通过生活实例,引导学生认识组合图形,激发学生的学习兴趣。
2. 自主探究:让学生通过实际操作、观察、思考,发现组合图形的特征,总结求组合图形面积的方法。
3. 合作交流:引导学生分组讨论,分享学习心得,互相借鉴,提高学生的合作能力。
4. 巩固练习:设计具有梯度的练习题,让学生在实践中巩固所学知识,提高解决问题的能力。
5. 总结提升:引导学生总结本单元的学习内容,形成知识体系,提高学生的归纳总结能力。
四、教学设计1. 导入新课:通过展示生活中的组合图形,如家具、建筑等,引导学生认识组合图形,激发学生的学习兴趣。
2. 探究新知:让学生通过实际操作,尝试分割和添补组合图形,总结求组合图形面积的方法。
3. 巩固练习:设计具有梯度的练习题,让学生在实践中巩固所学知识,提高解决问题的能力。
4. 应用拓展:让学生运用所学知识解决实际问题,如计算不规则图形的面积等。
5. 总结提升:引导学生总结本单元的学习内容,形成知识体系,提高学生的归纳总结能力。
五、教学评价1. 学生能够正确识别和理解组合图形。
2. 学生能够运用分割、添补等方法求组合图形面积。