(新)人教版九年级数学上册:期末难点突破 突破八 圆与一元二次方程(二)
- 格式:pdf
- 大小:26.34 KB
- 文档页数:1
21.2 解一元二次方程考点一.直接降次解一元二次方程(1)依据平方根的意义,将形如 2x p = 的一元二次方程“降次”转化为两个一元一次方程. (2)步骤:①将方程转化为2x p =(或()2mx n p +=)的形式; ②分三种情况降次求解:(ⅰ)当0p >时, 1x p =-2x p = ;(ⅱ)当0p =时, 120x x == ;(ⅲ)当0p <时,方程 无实数根 .考点二.用配方法解一元二次方程(1)定义:通过配成 完全平方 形式来解一元二次方程的方法,叫做配方法. (2)利用配方法解一元二次方程的一般步骤: 一移:将常数项移到方程等号的右边.二除:如果二次项系数不是1,将方程两边同时除以二次项系数,将其化为1.三配:方程两边都加上 一次项系数一半的平方 ,将方程左边配成完全平方的形式.四开:如果方程的右边是一个非负数,就可以直接降次解方程;如果是一个负数,则原方程无实数根. (3)配方法解一元二次方程:①配方后,化为2()x m n +=型的方程,当0n ≥时,可用直接开方法求解. ②若0n =时,方程有两相等的根,即12x x m ==-,而不是一个根x m =-.③为便于配方,配方前应把二次项系数化为 1 ,要注意出现只在方程一边加上一次项系数一半的平方这种错误的情况.考点三.用公式法解一元二次方程(1)一元二次方程根的判别式:一般地,式子 24b ac - 叫做方程()200ax bx c a ++=≠根的判别式,通常用希腊字母∆表示,即24b ac ∆=-.①当∆>0时,方程()200ax bx c a ++=≠有两个不相等的实数根,即x =.②当∆=0时,方程()200ax bx c a ++=≠有两个相等的实数根,即122bx x a==-. ③当∆<0时,方程()200ax bx c a ++=≠没有实数根. (2)求根公式:当0∆≥时,方程()200ax bx c a ++=≠的实数根可写为 x = 的形式,这个式子叫做一元二次方程()200ax bx c a ++=≠的求根公式. (3)公式法解一元二次方程的步骤:①把方程化为一般形式;②确定a 、b 、c 的值;③计算24b ac -的值;④当240b ac -≥时,把a 、b 、c 的值代入一元二次方程的求根公式,求得方程的根;当240b ac -<时,方程 没有实数根 .考点四.用因式分解法解一元二次方程(1)当方程缺少一次项时,可考虑用 平方差公式 分解因式.(2)当方程缺少常数项时,可考虑用 提公因式法 分解因式,且方程一定有一根为0. (3)当方程中含有括号时,不要急于去括号,应观察是否能看作 整体 ,直接因式分解.考点五.一元二次方程的根与系数的关系如果方程()200ax bx c a ++=≠有两个实数根1x ,2x ,那么12x x += b a - ,12x x ⋅= ca.技巧归纳.选择合适的方法解一元二次方程配方法 完全平方公式 所有一元二次方程 公式法 配方法所有一元二次方程因式分解法若0ab =,则0a =或0b =一边为0,另一边易于分解成两个一次因式的积的一元二次方程(1)在没有规定解法时,解一元二次方程可以按下列次序选择解法:直接降次法→因式分解法→公式法→配方法.(2)如果二次项系数为1,一次项系数为偶数,用配方法比较简单,否则,因其步骤较为烦琐,一般不用配方法.(3).涉及两根的代数式的重要变形:(1)()2221212122x x x x x x +=+-; (2)()()221212124x x x x x x -=+-; (3)12121211x x x x x x ++=; (4)()212121221122x x x x x x x x x x +-+=题型一:用配方法解一元二次方程1.用配方法解一元二次方程27120x x -+=,配方后的方程为( )A .27124x ⎛⎫-= ⎪⎝⎭B .27124x ⎛⎫+= ⎪⎝⎭C .()2737x -=D .()2737x +=2.用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( ) A .103B .73C .2D .433.用配方法解下列方程: (1)2352x x -=;(2)289x x +=;(3)212150x x +-=;(4)21404x x --=; (5)2212100x x ++=; (6)()22040x px q p q ++=-≥.题型二:由判别式判断根的情况4.关于x 的一元二次方程2420x x -+=的根的情况是( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .不能确定5.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定6.关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个实数根,则k 的取值范围( ) A .k ≥﹣1B .k ≥﹣1且k ≠0C .k >﹣1且k ≠0D .k ≤﹣1题型三:估计根的情况判断参数范围7.若方程230x x m -+=有两个不相等的实数根,则m 的值可以是( ) A .5B .4C .3D .28.已知关于x 的一元二次方程()21220k x x -+-=有实数根,则k 的取值范围是( )A .12k >B .12k ≥C .12k >且1k ≠ D .12k ≥且1k ≠ 9.关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是( )A .18k <-B .18k ≤-C .18k >-D .18k ≥-题型四:用公式法解一元二次方程10.关于x 的一元二次方程ax 2+bx +c =0的两根分别为12x x ==,下列判断一定正确的是( ) A .a =﹣1B .c =1C .ac =1D .1ca=-11.若x =是某个一元二次方程的根,则这个一元二次方程可以是( )A .23210x x +-=B .22410x x +-=C .2230x x -++=D .23210x x --=12.已知关于x 的一元二次方程()22140mx m x m +-+-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)当2m =时,用合适的方法求此时该方程的解.题型五:用因式分解法解一元二次方程13.已知1和2是关于x 的一元二次方程20ax bx c ++=的两根,则关于x 的方程2(1)(1)0a x b x c ++++=的根为( ) A .0和1B .1和2C .2和3D .0和314.若关于x 的方程ax 2+bx +c =0的解是x 1=3,x 2=−5,则关于y 的方程a (y +1)2+b (y +1)+c =0的解是( ) A .14y =,24y =- B .12y =,26y =- C .14y =,26y =-D .12y =,24y =-15.用因式分解法解一元二次方程 (1)()()41570x x +-=; (2)2(23)4(23)x x +=+.题型六:一元二次方程的根与系数的关系16.已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( )A .7B .7-C .6D .6-17.已知关于x 的一元二次方程()220x m x m +++=,(1)求证:无论m 取何值,原方程总有两个不相等的实数根. (2)若1x ,2x 是原方程的两根,且12112x x +=-,求m 的值. 18.关于x 的一元二次方程2(3)220x k x k ---+=. (1)求证:方程总有两个实数根;(2)若方程的两根分为1x 、2x ,且22121219x x x x ++=,求k 的值.一、单选题19.一元二次方程2480x x +-=的解是( )A .1222x x =+=-B .1222x x =+=-C .1222x x =-+=--D .1222x x =-+=--20.在用配方法解方程2340x x +-=时,可以将方程转化为2325()24x +=其中所依据的一个数学公式是( )A .22()()a b a b a b -=+-B .2222()aab b a b ++=+C .2222()a ab b a b -+=-D .x =21.一元二次方程2610x ++=的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根D .有两个不相等的实数根22.下列解方程变形正确的是( ) A .若23x x =,则3x =B .若22(31)(56)x x -=+,则3156x x -=+C .若2410x x ++=,则2(2)3x +=D .若()()262x x x x +=+,则2x =或23x +=23.已知一元二次方程 220x ax b --= 的两个根分别为 1x 和 2x ,且 22121216x x x x +=-,则 的值为( )A .B .3C .D .424.已知a ,b 是方程230x x +-=的两个实数根,则22022a b -+的值是( ) A .2026B .2024C .2022D .202025.用配方法解方程2230x x --=,配方正确的是( ) A .()212x -=B .()214x -=C .()212x +=D .()214x +=26.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k2+k ﹣1=0有实数根. (1)求k 的取值范围;(2)若此方程的两实数根x 1,x2满足x 12+x22=11,求k 的值. 27.按要求解方程.(1)2(32)24x +=(直接开方法) (2)2314x x -=(公式法)(3)()()221321x x +=+(因式分解) (4)223990x x --=(配方法)一:选择题28.设关于x 的方程()2290ax a x a +++=,有两个不相等的实数根12,x x ,且121x x ,那么实数a 的取值范围是( )A .211a <-B .2275a <<C .25a >D .2011a -<< 29.以下关于一元二次方程20(a 0)++=≠ax bx c 的根的说法中,不正确的是( ) A .若c =0,则方程20ax bx c ++=一定有一根为0; B .若0b =,则方程20ax bx c ++=一定有两个实数根; C .若0a b c -+=,则方程20ax bx c ++=必有一根为-1; D .若0ac <,则方程20ax bx c ++=必有两个不相等的实数根.30.已知三角形的两边长为3和6,第三边的长是方程27120x x -+=的一个根,则这个三角形的周长是( ) A .12B .13C .12或13D .1531.若a≠b ,且22410,410a a b b -+=-+=则221111a b +++的值为( ) A .14B .1C ..4D .332.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( ) A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-33.若α、β为方程2x 2-5x -1=0的两个实数根,则2235++ααββ的值为( ) A .-13B .12C .14D .1534.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( ) A .k >12B .k≥12C .k >12且k ≠1D .k ≥12且k ≠1二、填空题35.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________. 36.一元二次方程2420x x -+=的两根为1x ,2x ,则2111242x x x x -+的值为____________ .37.关于x 的一元二次方程x 2﹣2kx +k 2﹣k =0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____. 38.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为________.39.如果m ,n 是两个不相等的实数,且满足m 2﹣m =3,n 2﹣n =3,那么代数式2n 2﹣mn +2m +2015=_____________. 40.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法,正确的有_____(填序号). ①方程220x x --=是“倍根方程”;②若(2)()0x mx n -+=是“倍根方程”,则22450m mn n ++=; ③若,p q 满足2pq =,则关于x 的方程230px x q ++=是“倍根方程”; ④若方程20ax bx c ++=是“倍根方程”,则必有229b ac =.41.已知实数a ,b 满足条件2720a a -+=,()2720b b a b -+=≠,则b a a b+=________.42.关于x 的方程mx 2+x ﹣m +1=0,有以下三个结论:①当m =0时,方程只有一个实数解;②当m ≠0时,方程有两个不等的实数解;③无论m 取何值,方程都有一个负数解,其中正确的是__(填序号).三、解答题43.已知关于x 的一元二次方程2(3)0x m x m ---=. (1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.44.用指定的方法解下列方程: (1)2(21)9x +=;(直接开平方法) (2)23520x x --=;(配方法) (3)22450x x --=;(公式法)(4)2(3)4(3)0x x x ---=.(因式分解法)45.选择适当方法解下列方程 (1)(3x ﹣1)2=(x ﹣1)2 (2)3x (x ﹣1)=2﹣2x46.关于x 的一元二次方程x 2﹣(m ﹣3)x ﹣m 2=0. (1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x 1,x 2,且|x 1|=|x 2|﹣2,求m 的值及方程的根.47.已知关于x 的一元二次方程2220x mx m m +++=有实数根. (1)求m 的取值范围;(2)若该方程的两个实数根分别为1x 、2x ,且221212x x +=,求m 的值.48.用因式分解法解下列方程: (1)212350x x -+= ; (2) 23(23)2(23)0x x ---=; (3) 229(2)16(25)x x +=-; (4) 2(3)5(3)60x x +-++=.49.用适当的方法解下列方程: (1)2420x x --=; (2)(1)(2)10x x -+=;(3)211(1)(1)32x x -=-.50.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=, 4,4n m ∴==.根据你的观察,探究下面的问题:(1)已知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值. (3)若已知24,6130a b ab c c -=+-+=,求a b c -+的值.1.A 【分析】两边配上一次项系数一半的平方,写成完全平方式即可得到答案. 【详解】∵27120x x -+=, ∴2712x x -=-,则2494971244x x -+=-+, 即27124x ⎛⎫-= ⎪⎝⎭,故选:A .2.B 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,继而得出答案. 【详解】解:∵23610x x +-=, ∴2361x x +=,2123x x +=,则212113x x ++=+,即()2413x +=,∴1a =,43b =,∴73a b +=. 故选:B .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 3.(1)12312x x ==-,(2)121,9x x ==-(3)12651,651x x =-=-(4)12225,225x x =+=-(5)121,5x x =-=-(6)24p p q x -±-=【分析】利用配方法求解即可.(1)解:3x2−5x =2移项得:x2-53x =23,配方得:x2-53x +2536=23+2536,合并得:(x -56)2=4936,解得:x 1=56+76=2,x 2=56-76=-13;(2)解:x2+8x =9配方得:x2+8x +16=9+16,合并得:(x +4)2=25,解得x 1=1,x 2=-9;(3)解:x2+12x −15=0移项得:x 2+12x +36=15+36,配方得:(x +6)2=51解得x 1=-6x 2(4)解:14x2−x −4=0去分母得:24160x x --=,移项得:2416x x -=,配方得:x2-4 x +4=16+4,合并得:(x -2)2=20,解得:x 1=2+x 2=2-(5)解:2x2+12x +10=0 系数化为1得:2650x x ++=,移项得:265x x +=-,配方得:x2+6x +9=-5+9,合并得:(x +3)2=4,解得:x 1=-1,x 2=--5;(6)解:x2+px +q =0,移项得:2x px q +=-,配方得:x2+px +24p =-q +24p ,合并得:(x +2p )2=244p q -,解得x【点睛】本题主要考查了配方法解一元二次方程,熟知配方法是解题的关键. 4.B 【分析】先求出根的判别式∆的值,然后根据∆的值判断即可. 【详解】∵根的判别式224(4)41280b ac ∆=-=--⨯⨯=> ∴该一元二次方程的根的情况是有两个不相等的实数根. 故选B .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 5.C 【分析】利用一元二次方程的根的判别式即可求解. 【详解】解:由根的判别式得:Δ=b 2-4ac =k 2+8>0, ∴原方程有两个不相等的实数根. 故选:C .【点睛】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(Δ=b 2-4ac )可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0 时,方程无实数根.上述结论反过来也成立. 6.B 【分析】根据一元二次方程根的判别式及一元二次方程的定义进行解答即可. 【详解】解:∵方程kx 2﹣2x ﹣1=0有两个实数根, ∴24b ac ∆=-2(2)4(1)k =--⨯-440k =+≥且0k ≠, 解得k ≥﹣1且k ≠0. 故选:B .【点睛】本题考查一元二次方程根的判别式,掌握当∆>0时,方程有两个不相等的实数根;当∆=0时,方程有两个相等的实数根;∆<0时,方程有没有实数根是解题关键.另外一元二次方程还需二次项系数不为0.【详解】解:方程230x x m -+=有两个不相等的实数根,∴此方程根的判别式()2340m ∆=-->,解得94m <,观察四个选项可知,只有选项D 符合, 故选:D .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8.D 【分析】根据一元二次方程有实数根的条件:二次项系数不为0,根的判别式大于等于0;即可进行解答.【详解】解:∵关于x 的一元二次方程()21220k x x -+-=有实数根,∴()()21024120k k -≠⎧⎨=-⨯-⨯-≥⎩, 解得:12k ≥且1k ≠. 故选:D .【点睛】本题主要考查了一元二次方程有实数根的情况,熟练地掌握根的判别式在不同情况下根的情况是解题的关键.当240b ac -≥时,一元二次方程有实数根;否则,无实数根.9.A 【分析】由方程没有实数根结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出结论. 【详解】解:∵一元二次方程220x x k +-=没有实数根,∴()2Δ1420k =-⨯⨯-<,解得18k <-.故选:A .【点睛】本题考查了根的判别式,注意记住一元二次方程根的情况与判别式∆的关系:(1)∆>0⇔方程有两个不相等的实数根;(2)∆=0⇔方程有两个相等的实数根;(3)∆<0⇔方程没有实数根. 10.D 【分析】根据一元二次方程的求根公式可得答案.【详解】解:根据一元二次方程的求根公式可得:1x 2x =,∵关于x 的一元二次方程20ax bx c ++=的两根分别为1x =,2x =∴22a =,44ac =- ∴1a =,1c =-, ∴则1ac =-,1ca=-, 故选:D .【点睛】本题主要考查了一元二次方程的求根公式,属于基础题目.11.D 【分析】根据x =得二次项系数a =3,一次项系数b =-2,常数项c =-1,即可得到方程.【详解】解:根据x a =3,一次项系数b =-2,常数项c =-1,∴这个一元二次方程是23210x x --=, 故选:D .【点睛】此题考查了一元二次方程的求根公式,正确掌握一元二次方程的求根公式是解题的关键. 12.(1)112m ->,且0m ≠ (2)12x =-,212x =【分析】(1)由一元二次方程有两个不相等的实数根可知,∆>0且0m ≠,即可求解; (2)将2m =代入方程,可得22320x x +-=,用公式法即可求解(方法不唯一).(1)解:由题意得:∆>0,即:()()221440m m m --->,224414160m m m m -+-+>,解得:112m ->,∵该方程为一元二次方程,∴0m ≠,∴当112m ->,且0m ≠时,方程有两个不相等的实数根;(2)解:当m =2时,方程为22320x x +-=,∵∆=9+4×2×2=25>0,∴354x -±==,∴22x =-,212x =. 【点睛】本题主要考查了一元二次方程的定义、一元二次方程根的判别式与根的关系以及一元二次方程的解法. 13.A 【分析】设1,x y 则2(1)(1)0a x b x c ++++=为:20,ay by c ++= 则1y =或2,y = 从而可得答案. 【详解】解:设1,x y 则2(1)(1)0a x b x c ++++=为:20,ay by c ++=∵1和2是关于x 的一元二次方程20ax bx c ++=的两根,1y =∴或2,y =11x 或12,x解得:120,1,x x ==即2(1)(1)0a x b x c ++++=的根为120,1,x x == 故选A【点睛】本题考查的是一元二次方程的特殊解法,掌握“整体未知数法解方程”是解本题的关键.14.B 【分析】设t =y +1,则原方程可化为at 2+bt +c =0,根据关于x 的一元二次方程ax 2+bx +c =0的解为x 1=3,x 2=-5,得到t 1=3,t 2=-5,于是得到结论. 【详解】解:设t =y +1, 2∵关于x 的一元二次方程ax 2+bx +c =0的解为x 1=3,x 2=-5, ∴t 1=3,t 2=-5, ∴y +1=3或y +1=-5, 解得y 1=2,y 2=-6. 故选:B .【点睛】此题主要考查了换元法解一元二次方程,关键是正确找出两个方程解的关系.15.(1)114x =-,275x =(2)132x =-,212x =【分析】(1)将一元二次方程化为两个一元一次方程即可; (2)将一元二次方程化为两个一元一次方程即可.(1)解:()()41570x x +-=;410x +=,570x -=,解得:114x =-,275x =(2)解:()()223423x x +=+,()()2234230x x +-+=,()()232340x x ++-=;()230x +=,()2340x +-=解得:132x =-,212x =.【点睛】本题考查因式分解法解一元二次方程,解题关键是将它化为两个一元一次方程. 16.B 【分析】根据根与系数关系求出2x =3,a =3,再求代数式的值即. 【详解】解:∵一元二次方程220x x a --=的两根分别记为1x ,2x , ∴1x +2x =2, ∵11x =-, ∴2x =3,∴1x ·2x =-a =-3, ∴a =3,∴22123917a x x --=--=-.故选B .【点睛】本题考查一元二次方程的根与系数关系,代数式的值,掌握一元二次方程的根与系数关系,代数式的值是解题关键. 17.(1)见解析 (2)2m =【分析】(1)根据一元二次方程根的判别式24b ac ∆=-,证明24b ac ∆=-恒大于0即可得出结论;(2)根据一元二次方程根与系数的关系12bx x a +=-,12c x x a=,代入即可求出m 的值.(1) 证明:∵22242440b acmm m ∆>,∴无论m 取何值,原方程总有两个不相等的实数根; (2)解:由题可知,()122m x x =-++,12x x m =,∴()1212122112m x x x x x x m-+++===-, 解得2m =, 经检验m =2有意义.【点睛】此题考查了一元二次方程中根的判别式,根与系数的关系,熟练掌握一元二次方程中根的判别式,根与系数的关系是本题的关键. 18.(1)见解析; (2)k =7或k =-3.【分析】(1)根据方程的系数结合根的判别式可得出Δ=(k +1)2≥0,由此可证出方程总有两个实数根;(2)根据一元二次方程的根与系数的关系可以得到x 1+x 2=k -3,x 1x 2=-2k +2,再将它们代入22121219x x x x ++=,即可求出k 的值. (1)∵b 2-4ac =[-(k -3)]2-4×1×(-2k +2)=k 2+2k +1=(k +1)2≥0, ∴方程总有两个实数根; (2)由根与系数关系得x 1+x 2=k -3,x 1x 2=-2k +2,∵22121219x x x x ++=,∴()2121219x x x x +-=,∴()232219k k ---+=(),即24210k k --=, 解得:k =7或k =-3.【点睛】本题考查了一元二次方程ax 2+bx +c =0根的判别式和根与系数的关系的应用,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根;(4)x 1+x 2=-b a,x 1•x 2=ca.【详解】解:∵2480x x +-=, ∴248x x +=, ∴24412x x ++=, ∴()2212x +=,∴2x +=±,解得1222x x =-+=-- 故选D .【点睛】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键. 20.B 【分析】根据配方法解方程的基本步骤去判断依据即可.【详解】用配方法解方程2340x x +-=时,可以将方程转化为2325()24x +=,其中所依据的一个数学公式是2222()a ab b a b ++=+.故选:B .【点睛】本题考查了配方法解方程的基本依据,熟练掌握配方的依据是完全平方公式是解题的依据. 21.C 【分析】先求一元二次方程根的判别式,然后根据判别式的意义判断根的情况.【详解】解:∵(24610∆=-⨯⨯=,∴方程有两个相等的实数根. 故选:C .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 22.C 【分析】利用因式分解法求解、直接开平方法变形和配方法变形求解即可判断. 【详解】解:A 、若23x x =, 移项得230x x -= -=(3)0x x则30x x ==,,故该选项不符合题意; B 、若22(31)(56)x x -=+开平方得31(56)x x -=±+,故该选项不符合题意; C 、若2410x x ++= 则2443x x ++=2(2)3x +=,故该选项符合题意;D 262x x x x +=+移项得()()6220x x x x +-+= 提公因式得()520x x +=则x =0或x =-2,故该选项不符合题意. 故选C .【点睛】本题考查了提公因式因式分解法、直接开平方法和配方法解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.23.A 【分析】根据一元二次方程根与系数的关系求得12122,x x b x x a =-+=,代入代数式即可求解. 【详解】解:∵一元二次方程 220x ax b --= 的两个根分别为 1x 和 2x , ∴12122,x x b x x a =-+=,∵221212x x x x ()1212x x x x =+2ab =-,22121216x x x x +=-, ∴216ab -=-, ∴8ab =,=故选A .【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键. 24.A 【分析】根据一元二次方程的解及根与系数的关系可得出a 2+a =3,a +b =−1,将其代入即可求出结论. 【详解】解:∵a ,b 是方程x 2+x −3=0的两个实数根, ∴a 2+a =3,a +b =−1, ∴b =-a -1,22022a b ∴-+()212022a a =---+ 212022a a =+++312022=++=2026 故选:A .【点睛】本题考查了一元二次方程的解及根与系数的关系,代数式求值问题,熟练掌握和运用一元二次方程的解及根与系数的关系是解决本题的关键.25.B 【分析】先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边写成完全平方的形式即可. 【详解】解:2230x x --=2214x x -+=,()214x -=.故选:B .【点睛】本题考查了解一元二次方程−配方法:将一元二次方程配成()2x m n +=的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.26.(1)k≤58;(2)k=﹣1.【详解】【分析】(1)根据方程有实数根得出△=[﹣(2k ﹣1)]2﹣4×1×(k 2+k ﹣1)=﹣8k+5≥0,解之可得;(2)利用根与系数的关系可用k 表示出x 1+x 2和x 1x 2的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】(1)∵关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根,∴△≥0,即[﹣(2k ﹣1)]2﹣4×1×(k 2+k ﹣1)=﹣8k+5≥0, 解得k≤58;(2)由根与系数的关系可得x 1+x 2=2k ﹣1,x 1x 2=k 2+k ﹣1,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(2k ﹣1)2﹣2(k 2+k ﹣1)=2k 2﹣6k+3, ∵x 12+x 22=11,∴2k 2﹣6k+3=11,解得k=4,或k=﹣1, ∵k≤58,∴k=4(舍去), ∴k=﹣1.【点睛】本题考查了根的别式、根与系数的关系,利用完全平方公式将根与系数的关系的代数式变形是解题中一种经常使用的解题方法.27.(1)x 1x 2= ;(2)x 1= x 2(3)x 1=﹣12,x 2=1;(4)x 1=21,x 2=﹣19【详解】解:(1)()23224x +=,32x +=±32x =-±x =12x x ∴== (2)2314x x -=,()()24431161228=--⨯⨯-=+=,x ===12x x == (3)()()221321x x +=+,()()212130,x x ++-= ()()21220,x x +-=210x +=或220x -=, 1211.2x x =-=,(4)223990x x --=, 2 21400x x -+=,()21400x -=,120x -=±, 120x =±, 122119.x x ==-,28.D 【分析】根据一元二次方程根的判别式求出a 的取值范围,再由根与系数的关系求出a 的取值范围,找到公共解集即可解答.【详解】解:根据题意得,0a ≠ ()2Δ2490a a a =+-⨯>2244360a a a ∴++-> 235440a a ∴-++> (52)(72)0a a ∴-++>520720a a -+>⎧∴⎨+>⎩,解得2275a -<<或520720a a -+<⎧⎨+<⎩,无解121x x <<1210,10x x (1)(1)0x x ∴--<1212()10x x x x121229,9a a a x a x x x 29()10a a 21010a 211a211a 综上,2011a -<< 故选:D .【点睛】本题考查一元二次方程根的判别式、根与系数的关系等知识,是重要考点,掌握相关知识是解题关键. 29.B 【分析】根据解一元二次方程的方法,判别式的意义,一元二次方程的解的定义逐项判断即可.【详解】解:A 、若c =0,则方程为20ax bx +=,即()0x ax b +=,∴方程20ax bx c ++=一定有一根为0,正确,不符合题意;B 、若0b =,则方程为20ax c +=,∵244b ac ac ∆=-=-,∴只有当ac ≤0时,即0∆≥,方程20ax bx c ++=有两个实数根,故原说法错误,符合题意;C 、将x =-1代入方程20(a 0)++=≠ax bx c 可得:0a b c -+=,∴若0a b c -+=,则方程20ax bx c ++=必有一根为-1,正确,不符合题意;D 、∵ac <0,∴Δ=b 2−4ac >0,∴方程ax 2+bx +c =0必有两个不相等的实数根,正确,不符合题意;故选:B .【点睛】此题主要考查了解一元二次方程,一元二次方程的解,一元二次方程根的情况与判别式△的关系:Δ>0⇔方程有两个不相等的实数根;Δ=0⇔方程有两个相等的实数根,Δ<0⇔方程没有实数根.30.B 【分析】根据一元二次方程的解法,求出方程的根,然后根据三角形的三边关系判断是否可以构成三角形,最后计算周长即可。
人教版九年级数学上册期末易错难点突破专练:一元二次方程实际应用(一)1.某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg 与3.6万kg,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg.如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?2.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD 平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?3.某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少a%;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少a%.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少a%,求a的值.4.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?5.如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?6.某文明小区有50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次活动.为提高大家的积极性,6月份准备把活动一升级为活动二:“垃圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.7.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加一个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q 值与当年用甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.8.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?9.维康药店购进一批口罩进行销售,进价为每盒(二十只装)40元,如果按照每盒50元的价格进行销售,每月可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每月减少20盒.(1)维康药店要保证每月销售此种口罩盈利6000元,又要使消费者得到实惠,则每盒口罩可涨价多少元?(2)若使该口罩的月销量不低于300盒,则每盒口罩的售价应不高于多少元?10.某商店将进货价为8元/件的商品按10元/件售出,每天可售200件,通过调查发现,该商品若每件涨0.5元,其销量就减少10件.(1)请你帮店主设计一种方案,使每天的利润为700元.(2)将售价定为多少元时,能使这天利润最大?最大利润是多少元?参考答案1.解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x,根据题意得,2.5(1+x)2=3.6,解得:x=0.2,x=﹣2.2(不合题意舍去),答:该养殖场蛋鸡产蛋量的月平均增长率为20%;(2)解法一:3.6×(1+20%)=4.32万(kg),4.32÷0.32=13.5(个),3.6÷0.32=11.25(个),∴13.5﹣11.25=2.25(个),故至少再增加3个销售点.解法二:设至少再增加y个销售点,根据题意得,3.6+0.32y≥3.6×(1+20%),解得:y≥,答:至少再增加3个销售点.2.解:设小路的宽应为xm,根据题意得:(16﹣2x)(9﹣x)=112,解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽应为1m.3.解:(1)设该菜市场共有x个4平方米的摊位,则有2x个2.5平方米的摊位,依题意,得:20×4x+20×2.5×2x=4500,解得:x=25.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25×2×40%=20(个),5月份参加活动一的4平方米摊位的个数为25×20%=5(个).依题意,得:20(1+2a%)×20×2.5×a%+5(1+6a%)×20×4×a%=[20(1+2a%)×20×2.5+5(1+6a%)×20×4]×a%,整理,得:a2﹣50a=0,解得:a1=0(舍去),a2=50.答:a的值为50.4.解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,依题意,得:(x﹣100)[300+5(200﹣x)]=32000,整理,得:x2﹣360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.5.解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1=,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.6.(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250套80平方米的住宅.(2)设该小区有m套80平方米住宅,则50平方米住宅有2m套,由题意得:参与活动一:50平方米住宅每户所交物管费为100元,有2m×40%=0.8m户参与活动一,80平方米住宅每户所交物管费为160元,有m×20%=0.2m户参与活动一;参与活动二:50平方米住宅每户所交物管费为100(1﹣%)元,有0.8m(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有0.2m(1+6a%)户参与活动二.由题意得100(1﹣%)•0.8m(1+2a%)+160(1﹣%)•0.2m(1+6a%)=[0.8m(1+2a%)×100+0.2m(1+6a%)×160](1﹣a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=,∴a=50.答:a的值为50.7.解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)第二年用乙方案治理Q值降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.8.解:设修建的路宽为x米.则列方程为20×30﹣(30x+20x﹣x2)=551,解得x1=49(舍去),x2=1.答:修建的道路宽为1米.9.解:(1)设每盒口罩可涨价x元,由题意,得:(x+50﹣40)(500﹣20x)=6000,解得x1=5,x2=10(不合题意,舍去).答:每盒口罩可涨价5元;(2)解:设每盒口罩的售价为m元,则500﹣20(m﹣50)≥300,解得,m≤60.答:每盒口罩的售价应不高于60元.10.解:(1)设涨价x元,(10+x﹣8)×(200﹣20x)=700,解得x1=3,x2=5,∴此时的售价为10+3=13或10+5=15,答:售价为13元或15元时,每天的利润可得到700元;(2)利润为:(10+x﹣8)×(200﹣20x)=﹣20x2+160x+400=﹣20(x﹣4)2+720,∵a=﹣20,∴当涨价4元时即售价为14元时,利润最大,为720元.。
专题 1.4一元二次方程应用(7个考点七大题型)【题型1变化率问题】【题型2传播问题】【题型3树枝分叉问题】【题型4单循环和双循环问题】【题型4销售利润与一次函数综合问题】【题型5销售利润每每问题】【题型6几何图形问题】【题型7几何中动点问题】1.(2023•渝中区校级模拟)我校初三某班第一次体育模拟测试平均分为43.2分,经过专业的体育指导和训练后,在之后的第二次和第三次体育模拟测试中,班级平均分稳步提升,第三次体育模拟测试平均分达到46.7分,设该班每次测试班级平均分较上次的增长率相同,均为x,则可列方程为()A.43.2(1+x)=46.7B.46.7(1﹣x)=43.2C.43.2(1+x)2=46.7D.46.7(1﹣x)2=43.2【答案】C【解答】解:根据题意得:43.2(1+x)2=46.7.故选:C.2.(2023•重庆模拟)某社区为改善环境,加大对绿化的投入,4月对绿化投入25万元,计划6月绿化投入49万元,5月、6月绿化投入的月平均增长率相同.设这两月绿化投入的月平均增长率为x,根据题意所列方程为()A.25(1+x)2=49B.25(1+x)+25(1+2x)=49C.25(1+x)+25(1+x)2=49D.25+25(1+x)+25(1+x)2=49【答案】A【解答】解:根据题意得:25(1+x)2=49.故选:A.3.(2023春•萨尔图区校级期中)某校图书馆六月份借出图书100本,计划七、八月份一共借出图书480本,设七、八月份借出的图书每月平均增长率为x,则根据题意列出的方程是()A.100(1+x)2=480B.100(1+x)+100(1+x)2=480C.100(1﹣x)2=480D.100+100(1+x)+100(1+x)2=480【答案】B【解答】解:由题意得,100(1+x)+100(1+x)2=480,故选:B.4.(2023•渝中区校级二模)随这疫情消退我国经济强势崛起,2023年某外贸企业二月份的销售额为3亿元,四月份的销售额为6.75亿元.设该企业二月到四月销售额平均月增长率为x,根据题意,可列出的方程是()A.3(1+x)=6.75B.3(x+1)2=6.75C.3+3(1+x)2=6.75D.3+3(1+x)+3(1+x)2=6.75【答案】B【解答】解:若设该企业二月到四月销售额平均月增长率为x,则四月份的产值为3(1+x)(1+x)=3(1+x)2,由此得到方程:3(x+1)2=6.75.故选:B.5.(2023•长沙一模)长沙已成为国内游客最喜欢的旅游目的地城市之一,调查显示,长沙在2021年五一假期,共接待游客200万人次,在2023年五一假期,共接待游客288万人次.(1)求长沙2021至2023五一假期接待游客人次的平均增长率;(2)茶颜悦色已经成为外地游客在长沙的打卡地,其中幽兰拿铁和声声乌龙是游客最爱的两款产品,已知幽兰拿铁的单价比声声乌龙贵2元,某导游花费216元购买幽兰拿铁的杯数是96元购声声乌龙的两倍,求幽兰拿铁的单价.【答案】(1)20%;(2)18元.【解答】解:(1)设长沙2021至2023五一假期接待游客人次的平均增长率为x,由题意得:200(1+x)2=288,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),∴x的值为20%,答:长沙2021至2023五一假期接待游客人次的平均增长率为20%;(2)设幽兰拿铁的单价为m元,则声声乌龙的单价为(m﹣2)元,由题意得:=×2,解得:m=18,经检验,m=18是原方程的解,且符合题意,答:幽兰拿铁的单价为18元.6.(2023•南海区一模)富强村2020年的人均收入为3.6万元,2022年的人均收入为4.356万元.(1)求富强村人均收入的年平均增长率;(2)如果该村人均收入的年平均长率不变,请估计今年富强村的人均收入为多少万元.【答案】(1)富强村人均收入的年平均增长率为10%;(2)估计今年富强村的人均收入为4.7916万元.【解答】解:(1)设富强村人均收入的年平均增长率为x,依题意,得:3.6(1+x)2=4.356,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:富强村人均收入的年平均增长率为10%;(2)4.356×(1+10%)=4.7916(万元).答:估计今年富强村的人均收入为4.7916万元.7.(2023•澄城县一模)随着环保意识日益深入,我国新能源汽车的生产技术也不断提升.市场上某款新能源汽车1月份的售价为25万元/辆,3月份下降到20.25万元/辆,求该款汽车售价的月平均下降率.【答案】10%.【解答】解:设该款汽车售价的月平均下降率是x,由题意得:25(1﹣x)2=20.25,解得:x1=0.1=10%,x2=1.9(不符合题意,舍去),∴该款汽车售价的月平均下降率是10%.8.(2023•兴庆区校级一模)有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x 个人,可到方程为()A.1+2x=81B.1+x2=81C.1+x+x2=81D.(1+x)2=81【答案】D【解答】解:x+1+(x+1)x=81,整理得(1+x)2=81.故选:D.9.(2022秋•齐河县期末)新冠病毒传染性极强,如果有1人患病,经过两轮传染后有361人患病,设每轮传染中平均一个人传染了x个人,下列方程正确的是()A.(1+x)2=361B.x2=361C.1+x+x2=361D.x(1+x)=361【答案】A【解答】解:∵每轮传染中平均一个人传染了x个人,∴第一轮传染中有x人被传染,第二轮传染中有x(1+x)人被传染.根据题意得:1+x+x(1+x)=361,即(1+x)2=361.故选:A.10.(2022秋•方城县期末)新冠疫情牵动人心,若有一人感染了新冠,在每轮传染中平均一个人可以传染x个人,经过两轮传染后共有169人感染,若不加以控制,第三轮传染后感染人数为()A.338B.256C.2197D.2028【答案】C【解答】解:设在每轮传染中平均一个人可以传染x个人,[x(x+1)+x+1]=169,即(1+x)2=169,解得x1=12,x2=﹣14(舍),∴每轮传染中平均一个人可以传染12个人,∴第三轮传染后感染人数为169+169×12=2197,故选:C.11.(2023春•诸暨市月考)有2个人患了流感,经过两轮传染后共有50人患了流感,则每轮传染中平均一个人传染的人数是人.【答案】4.【解答】解:设每轮传染中平均一个人传染的人数是x人,则第一轮传染中有2x人被传染,第二轮传染中有x(2+2x)被传染,根据题意得:2+2x+x(2+2x)=50,整理得:(1+x)2=25,解得:x1=4,x2=﹣6(不符合题意,舍去),∴每轮传染中平均一个人传染的人数是4人.12.(2023春•金安区校级月考)去年8月以来,非洲猪瘟疫情在某国横行,今年猪瘟疫情发生势头明显减缓.假如有一头猪患病,经过两轮传染后共有64头猪患病.(1)每轮传染中平均每头患病猪传染了几头健康猪?(2)如果不及时控制,那么三轮传染后,患病的猪会不会超过500头?【答案】(1)每轮传染中平均每头猪传染了7头健康猪;(2)患病的猪会超过500头,理由见解析.【解答】解:(1)设每轮传染中平均每头猪传染了x头健康猪,依题意,得:1+x+(1+x)x=64,解得:x1=7,x2=﹣9(不合题意,舍去).答:每轮传染中平均每头猪传染了7头健康猪.(2)64×7=448(头).∴448+64=512>500,∴患病的猪会超过500头,答:患病的猪会超过500头.13.(2022秋•甘井子区校级期末)有一个人患了流感,经过两轮传染后共有144个人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人患流感?【答案】(1)11人;(2)1728人.【解答】解:(1)设平均一人传染了x人,x+1+(x+1)x=144,x1=11或x2=﹣13(舍去).答:平均一人传染11人.(2)经过三轮传染后患上流感的人数为:144+11×144=1728(人),答:经过三轮传染后患上流感的人数为1728人.14.(2022秋•天河区校级期末)截止到2022年1月,新冠肺炎疫情在中国已经得到有效控制,但在全球却持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有196人患新冠肺炎,求每轮传染中平均每个人传染了几个人?【答案】每轮传染中平均每个人传染了13个人.【解答】解:设每轮传染中平均每个人传染了x个人,则第一轮中有x人被传染,第二轮中有x(1+x)人被感染,根据题意得:1+x+x(1+x)=196,整理得:(1+x)2=196,解得:x1=13,x2=﹣15(不符合题意,舍去).答:每轮传染中平均每个人传染了13个人.15.(2022秋•大连期末)有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?【答案】见试题解答内容【解答】解:(1)设每轮传染中平均一个人传染x个人,根据题意得:1+x+x(x+1)=81,整理,得:x2+2x﹣80=0,解得:x1=8,x2=﹣10(不合题意,舍去).答:每轮传染中平均一个人传染8个人.(2)81+81×8=729(人).答:经过三轮传染后共有729人会患流感.16.(2023•虎林市校级一模)某种植物的主干长出若干为数目的支干,每个支干又长出相同数目的小分支,主干、支干和小分支的总数是21,则每个支干长出小分支的个数是()A.6B.4C.3D.5【答案】B【解答】解:设每个支干长出小分支的个数是x,由题意得:x2+x+1=21,解得:x1=4,x2=﹣5(舍去);∴每个支干长出小分支的个数是4.故选:B.17.(2023•黑龙江一模)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57个,则这种植物每个支干长出的小分支的个数是()A.8个B.7个C.6个D.5个【答案】B【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=57,即(x+8)(x﹣7)=0,解得:x=7或x=﹣8(不合题意,舍去);∴x=7,即这种植物每个支干长出的小分支的个数是7个,故B正确.故选:B.18.(2022秋•青川县期末)某数学活动小组在开展野外项目实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分枝,主干、枝干和小分枝的总数是31,则这种植物每个枝干长出的小分支个数是()A.4B.5C.6D.7【答案】B【解答】解:根据题意,主干是1,设长出的枝干有x枝,∴1+x+x2=31,即x2+x﹣30=0,解方程得,x1=5,x2=﹣6(舍去),∴这种植物每个枝干长出的小分枝个数5.故选:B.19.(2022秋•武昌区校级期中)某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,每个枝干长出8个小分支.【答案】8.【解答】解:设每个枝干长出x个小分支,则主干上长出了x个枝干,根据题意得:x2+x+1=73.解得x1=﹣9(舍去),x2=8.即每个枝干长出8小分支.故答案是:8.20.(2022秋•澄海区期末)某校“生物研学”活动小组在一次野外研学实践时,发现某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.若主干、支干和小分支的总数是91,求这种植物每个支干长出的小分支个数是多少?【解答】解:设这种植物每个支干长出的小分支个数是x,根据题意,可得1+x+x2=91,整理得x2+x﹣90=0,解得x1=9,x2=﹣10(不合题意,舍去),答:这种植物每个支干长出的小分支个数是9.21.(2022秋•滨海新区校级期末)某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,每个枝干长出多少小分支?若设每个枝干长出x个小分支.(Ⅰ)分析:根据问题中的数量关系,填表:①主干的数目为1;②从主干中长出的枝干的数目为x;(用含x的式子表示)③又从上述枝干中长出的小分支的数目为x2;(用含x的式子表示)(Ⅱ)完成问题的求解.【答案】(I)①1;②x;③x2;(II)9个.【解答】解:(Ⅰ)根据题意得:①主干的数目为1;②从主干中长出的枝干的数目为x;③又从上述枝干中长出的小分支的数目为x2;故答案为:①1;②x;③x2;(Ⅱ)依题意,得:1+x+x2=91,整理,得:x2+x﹣90=0,解得:x1=9,x2=﹣10(不合题意,舍去).答:每个枝干长出9个小分支.22.(2023•东莞市二模)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.7B.8C.9D.10【解答】解:设共有x支队人伍参加比赛,根据题意,可得,解得x=10或x=﹣9(舍),∴共有10支队伍参加比寒,故选:D.23.(2023•闽清县校级模拟)某乒乓球比赛的每两队之间都进行1场比赛,共要比赛28场,设共有x支球队参加该比赛,则符合题意的方程是()A.x2=28B.x2=28×2C.D.x(x﹣1)=28×2【答案】D【解答】解:根据题意得,即x(x﹣1)=28×2,故选:D.24.(2022秋•南华县期末)某女子冰壶比赛有若干支队伍参加了双循环比赛,双循环比赛共进行了56场,共有多少支队伍参加比赛?()A.8B.10C.7D.9【答案】A【解答】解:设有x支队伍.由题意得:x(x﹣1)=56.解得:x1=8,x2=﹣7(舍).故选:A.25.(2023•博罗县一模)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,则本次比赛共有参赛队伍()A.8支B.9支C.10支D.11支【答案】C【解答】解:设共有x支队伍参加比赛,根据题意,可得,解得x=10或x=﹣9(舍),∴共有10支队伍参加比赛.故选:C.26.(2022秋•集贤县期末)在一次同学聚会上,大家一见面就相互握手(每两人只握一次).大家共握了21次手.设参加这次聚会的同学共有x人,根据题意,可列方程为()A.x(x+1)=21B.x(x+1)=21C.x(x﹣1)=21D.x(x﹣1)=21【答案】D【解答】解:设参加这次聚会的同学共有x人,由题意得:,故选:D.27.(2023春•拱墅区校级期中)生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出方程是()A.x(x+1)=182B.x(x﹣1)=182C.D.【答案】B【解答】解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣1)=182,故选:B.28.(2022秋•大丰区期末)为了迎接第二十二届世界杯足球赛,卡塔尔某地区举行了足球邀请赛,规定参赛的每两个队之间比赛一场,赛程计划安排7天,每天安排4场比赛.设比赛组织者邀请了x个队参赛,则下列方程正确的是()A.B.x(x﹣1)=4C.x(x+1)=28D.【答案】D【解答】解:根据题意得:x(x﹣1)=4×7,即x(x﹣1)=28.故选:D.29.(2023•四川模拟)命题人“魔力”去参加同学聚会,每两个人相互赠送礼品,他发现共送礼40件,若设有x人参加聚会,根据题意可列方程为()A.B.x(x﹣1)=40C.D.x(x+1)=40【答案】B【解答】解:设有x人参加聚会,则每人送出(x﹣1)件礼物,由题意得:x(x﹣1)=40.故选:B.30.(2023春•安徽月考)网课期间小夏写了封保护眼睛的倡议书,用微博转发的方式传播,设计了如下转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共157人参与了此次活动,则x为12人.【答案】12.【解答】解:依题意,得:1+x+x2=157,解得:x1=12,x2=﹣13(不合题意,舍去).故答案为:12.31.(2022秋•公安县月考)在一次同学聚会上,每两个人之间都互相赠送了一份礼物,若一共送出了380份礼物,则参加聚会的同学的人数是20.【答案】20.【解答】解:设有x人参加这次聚会,∵每两人都互赠了一件礼物,∴每人要送出(x﹣1)件礼物,依题意得x(x﹣1)=380,解得:x1=20,x2=﹣19(不符合题意,舍去),故答案为:20.32.(2022秋•白云区期末)一次足球联赛,赛制为双循环形式(每两队之间都赛两场),共要比赛90场,共有多少个队参加比赛?【答案】共有10支队参加比赛.【解答】解:设有x队参加比赛.依题意,得x(x﹣1)=90,(x﹣10)(x+9)=0,解得x1=10,x2=﹣9(不合题意,舍去).答:共有10支队参加比赛.33.(2023•中山市校级模拟)某超市以每千克40元的价格购进菠萝蜜,计划以每千克60元的价格销售,为了让顾客得到实惠.现决定降价销售,已知这种菠萝蜜销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式.(2)若超市要想获利2400元,且让顾客获得更大实惠,这种菠萝蜜每千克应降价多少元?【答案】(1)y=20x+60(0<x<20);(2)这种干果每千克应降价12元.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),将(2,100),(5,160)代入y=kx+b得:,解得:,∴y与x之间的函数关系式为y=20x+60(0<x<20).故答案为:y=20x+60(0<x<20).(2)根据题意得:(60﹣x﹣40)(20x+60)=2400,整理得:x2﹣17x+60=0,解得:x1=5,x2=12,又∵要让顾客获得更大实惠,∴x=12.答:这种干果每千克应降价12元.34.(2023•杨浦区三模)某商店购进了一种生活用品,进价为每件8元,销售过程中发现,该商品每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数),部分对应值如表:每件售价x(元)91113每天的销售量y(件)1059585(1)求y与x的函数解析式;(2)如果该商店打算销售这种生活用品每天获得425元的利润,那么每件生活用品的售价应定为多少元?【答案】(1)y=﹣5x+150(8≤x≤15,且x为整数);(2)13元.【解答】解:(1)设y与x的函数解析式为y=kx+b(k≠0),将(9,105),(11,95)代入y=kx+b得:,解得:,∴y与x的函数解析式为y=﹣5x+150(8≤x≤15,且x为整数);(2)根据题意得:(x﹣8)(﹣5x+150)=425,整理得:x2﹣38x+325=0,解得:x1=13,x2=25(不符合题意,舍去).答:每件生活用品的售价应定为13元.35.(2022秋•云梦县期中)某景区新开发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于52元,并且为整数;销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如表所示:销售单价x(元/件)…354045…每天销售数量y(件)…908070…(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)若要使每天销售所得利润不低于1200元,请直接写出销售单价x的所有可能取值.【答案】(1)y=﹣2x+160;(2)销售单价应定为50元;(3)50,51,52.【解答】解:(1)设每天的销售数量y(件)与销售单价x(元/件)之间的关系式为y=kx+b,把(35,90),(40,80)代入得:,解得,∴y=﹣2x+160;(2)根据题意得:(x﹣30)•(﹣2x+160)=1200,解得:x1=50,x2=60,∵规定销售单价不低于成本且不高于52元,∴x=50,答:销售单价应定为50元;(3)根据题意得:(x﹣30)•(﹣2x+160)≥1200,解得:50≤x≤60,∵销售单价不低于成本且不高于52元,∴30≤x≤52,∴50≤x≤52,∴x的所有可能取值为50,51,52.36.(2022秋•铁西区期中)某商场销售一种市场需求较大的健身器材,已知每件产品的进价为40元,每年销售该种产品的总费用(不含进货费用)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元/件)之间存在着一次函数关系y=kx+b,且x=60时,y=5;x=80,y=4.(1)求出y与x的解析式;(2)若商场希望该种产品一年的销售利润为55万元,请你为商场定一个销售单价.【答案】(1);(2)商场的销售单价是90元或110元.【解答】解:(1)将x=60时,y=5;x=80,y=4;代入y=kx+b得:,解得:,∴y与x之间的函数关系式为;(2)由题意得:,整理得:x2﹣200x+9900=0,解得:x1=90,x2=110,答:商场的销售单价是90元或110元.37.(2023•南海区校级模拟)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如表所示的一次函数关系.售价x(元/千克)…20.52426.526…销售量y(千克)…39322728…(1)某天这种水果的售价为25元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【答案】(1)当天该水果的销售量为30千克;(2)该天水果的售价为25元.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(24,32)、(26,28)代入y=kx+b得:,解得:,∴y=﹣2x+80,当x=25时,y=﹣2×25+80=30,答:当天该水果的销售量为30千克;(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:该天水果的售价为25元.38.(2023•泸县校级一模)某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系,其图象如图所示.设该商场销售这种商品每天获利w(元).(1)求y与x之间的函数关系式;(2)求w与x之间的函数关系式;(3)该商场规定这种商品每件售价不低于进价且不高于38元,商品要想获得600元的利润,每件商品的售价应定为多少元?【答案】(1)y=﹣2x+120;(2)w=﹣2x2+160x﹣2400;(3)30元.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知:,解得,故y与x的函数关系式为y=﹣2x+120;(2)∵y=﹣2x+120,∴w=(x﹣20)y=(x﹣20)(﹣2x+120)=﹣2x2+160x﹣2400,即w与x之间的函数关系式为w=﹣2x2+160x﹣2400;(3)根据题意得:600=﹣2x2+160x﹣2400,∴x1=30,x2=50(舍),∵20≤x≤38,∴x=30.答:每件商品的售价应定为30元.39.(2023春•嵊州市校级期中)超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利该店采取了降价措施,在让顾客得到更大实惠的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价6元,则平均每天销售数量为多少件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【答案】(1)平均每天销售数量为32件;(2)当每件商品降价20元时,该商店每天销售利润为1200元.【解答】解:(1)根据题意得:20+6×2=32(件),答:平均每天销售数量为32件;(2)设每件商品降价x元,则每件盈利(40﹣x)元,平均每天可售出(20+2x)元,依题意得:(40﹣x)(20+2x)=1200,整理得:x2﹣30x+200=0,解得:x1=10,x2=20,又要让顾客得到更大实惠,∴x=20.答:当每件商品降价20元时,该商店每天销售利润为1200元.40.(2023春•庐阳区校级期中)某公司2月份销售新上市的A产品20套,由于该产品的经济适用性,销量快速上升,4月份该公司销售A产品达到45套,并且2月到3月和3月到4月两次的增长率相同.(1)求该公司销售A产品每次的增长率;(2)若A产品每套盈利2万元,则平均每月可售30套,为了尽量减少库存,该公司决定采取适当的降价措施,经调查发现,A产品每套每降0.5万元,公司平均每月可多售出20套;若该公司在5月份要获利70万元,则每套A产品需降价多少?【答案】(1)该公司销售A产品每次的增长率为50%;(2)每套A产品需降价1万元.【解答】解:(1)设该公司销售A产品每次的增长率为x,依题意,得:20(1+x)2=45,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).答:该公司销售A产品每次的增长率为50%.(2)设每套A产品需降价y万元,则平均每月可售出(30+×20)套,依题意,得:(2﹣y)(30+×20)=70,整理,得:4y2﹣5y+1=0,解得:y1=,y2=1.答∵尽量减少库存,∴y=1.答:每套A产品需降价1万元.41.(2023春•宁波期中)某商品进价30元,销售期间发现,当销售单价定价50元时,每天可售出100个.临近五一,商家决定开启大促,经市场调研发现,销售单价每下降2元,每天销量增加20个,设每个商品降价x元.(1)求每天销量y(个)关于x(元)的函数关系式;(2)求该商品的销售单价是多少元时,商家每天获利1760元;(3)请说明:商家每天的获利是否能达到3000元?【答案】(1)y=10x+100;(2)38元;(3)商家每天的获利不能达到3000元,理由如下.【解答】解:(1)根据题意得:y=100+×20,即y=10x+100;(2)根据题意得:(50﹣x﹣30)(10x+100)=1760,整理得:x2﹣10x﹣24=0,解得:x1=12,x2=﹣2(不符合题意,舍去),∴50﹣x=50﹣12=38.答:该商品的销售单价是38元时,商家每天获利1760元;(3)商家每天的获利不能达到3000元,理由如下:假设商家每天的获利能达到3000元,根据题意得:(50﹣x﹣30)(10x+100)=3000,整理得:x2﹣10x+100=0,∵Δ=b2﹣4ac=(﹣10)2﹣4×1×100=﹣300<0,∴该方程没有实数根,∴假设不成立,即商家每天的获利不能达到3000元.42.(2022秋•代县期末)某电器商店销售某品牌冰箱,该冰箱每台的进货价为2500元,已知该商店去年10月份售出50台,第四季度累计售出182台.(1)求该商店11,12两个月的月均增长率;(2)调查发现,当该冰箱售价为2900元时,平均每天能售出8台;售价每降低50元,平均每天能多售出4台.该商店要想使该冰箱的销售利润平均每天达到5000元,求每台冰箱的售价.【答案】(1)20%;(2)2750元.【解答】解:(1)设该商店11,12两个月的月均增长率为x,则该商店去年11月份售出50(1+x)台,12月份售出50(1+x)2台,根据题意得:50+50(1+x)+50(1+x)2=182,整理得:25x2+75x﹣16=0,解得:x1=0.2=20%,x2=﹣3.2(不符合题意,舍去).答:该商店11,12两个月的月均增长率为20%;(2)设每台冰箱的售价为y元,则每台的销售利润为(y﹣2500)元,平均每天可售出(8+4×)台,根据题意得:(y﹣2500)(8+4×)=5000,整理得:y2﹣5500y+7562500=0,解得:y1=y2=2750.答:每台冰箱的售价为2750元.43.(2021秋•铁西区校级月考)宾馆有50间房供游客居住,当每间房每天定价为180元时宾馆会住满;当每间房每天的定价加10元时,就会空一间房,如果有游客居住,宾馆还需对居住的每间房每天支出20元的费用.若宾馆每天想获得的利润为10890元,应该将每间房每天定价为多少元?【答案】应该将每间房每天定价为350元.【解答】解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.整理,得x2﹣700x+122500=0,解得x1=x2=350.答:应该将每间房每天定价为350元.44.(2023春•瓯海区期中)某商场在去年底以每件120元的进价购进一批同型号的服装,一月份以每件150元的售价销售了320件,二、三月份该服装畅销,销量持续走高,在售价不变的情况下,三月底统计知三月份的销量达到了500件.(1)求二、三月份服装销售量的平均月增长率;(2)从四月份起商场因换季清仓采用降价促销的方式,经调查发现,在三月份销量的基础上,该服装售价每降价5元,月销售量增加10件,当每件降价多少元时,四月份可获利10400元?【答案】(1)25%;(2)每件降价10元,四月份可获利10400元.【解答】解:(1)设二、三月份销售量的平均月增长率为x,根据题意得:320(1+x)2=500,解得:x1=0.25,x2=﹣2.25(不合题意,舍去).答:二、三月份销售量的平均月增长率为25%.(2)设每件降价y元,根据题意得:,整理得:y2+220y﹣2300=0,解得:y1=10,y2=﹣230(不合,舍去).答:每件降价10元,四月份可获利10400元.45.(2023春•涡阳县期中)如图,长方形铁皮的长为10cm,宽为8cm,现在它的四个角上剪去边长为xcm的正方形,做成底面积为24cm2的无盖的长方体盒子,则x的值为()A.2B.7C.2或7D.3或6【答案】A【解答】解:∵长方形铁皮的长为10cm,宽为8cm,且在它的四个角上剪去边长为xcm的正方形,∴做成无盖的长方体盒子的底面是长为(10﹣2x)cm,宽为(8﹣2x)cm的长方形.根据题意得:(10﹣2x)(8﹣2x)=24,整理得:x2﹣9x+14=0,解得:x1=2,x2=7(不符合题意,舍去),∴x的值为2.故选:A.46.(2023春•襄州区校级月考)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?【答案】小路的宽应为1m.【解答】解:设小路的宽应为xm,根据题意得:(16﹣2x)(9﹣x)=112,解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽应为1m.47.(2022秋•从化区期末)某农场要建一个矩形动物场,场地的一边靠墙(墙AB长度不限),另外三边用木栏围成,木栏总长20米,设动物场CD边的长为xm,矩形面积为ym2.(1)矩形面积y=﹣2x2+20x(用含x的代数式表示);(2)当矩形动物场面积为48m2时,求CD边的长.(3)能否围成面积为60m2矩形动物场?说明理由.【答案】(1)﹣2x2+20x;(2)4m或6m;(3)不能,理由见解析.【解答】解:(1)根据题意,y=x(20﹣2x)=﹣2x2+20x,。
解一元二次方程考点一解一元二次方程——直接开平方法考点二解一元二次方程——配方法考点三根据判别式判断一元二次方程根的情况考点四解一元二次方程——公式法考点五解一元二次方程——因式分解法(含十字相乘法)考点六解一元二次方程——换元法考点一解一元二次方程——直接开平方法例题:(2022·上海·八年级期末)解方程:(1)x(x+5)=x-4(2)4(x﹣1)2=9.(3)()21160x+-=;(4)100(x-1)2=121.【变式训练】1.(2022·广东·模拟预测)方程23(21)0x--=的解是_______.2.(2022·全国·九年级)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成abcd,定义abcd=ad﹣bc,上述记号就叫做2阶行列式.若11xx+-181xxx-=+,则x=___.考点二解一元二次方程——配方法例题:(2022·河南安阳·九年级期末)解下列方程:(1)2220x x--=;(2)23620x x-+=【变式训练】1.(2022·云南·红河县教育科学研究室九年级期末)用配方法解一元二次方程2620x x++=,变形后的结果正确的是( )A .2(3)2x +=-B .2(3)2x +=C .2(3)7x -=D .2(3)7x += 2.(2022·辽宁大连·模拟预测)解方程:2480x x +-=.考点三 根据判别式判断一元二次方程根的情况例题:(2022·云南·昆明八中模拟预测)下列一元二次方程中,没有实数根的是( )A .230x =B .(3)(2)0x x -+=C .22550x x -+=D .2440x x ++=【变式训练】1.(2022·浙江温州·中考真题)若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( ) A .36 B .36- C .9 D .9- 2.(2022年河南省洛阳市中招第二次调研数学试题)关于x 的一元二次方程2210ax x 有两个实数根,则a 的取值范围是( )A .1a ≤-且0a ≠B .1a ≥-且0a ≠C .1a <D .1a >-考点四 解一元二次方程——公式法例题:(2022·云南文山·九年级期末)按要求解方程.(1)2x 2-5x +1=0(公式法) (2)23410x x -+=.(公式法)【变式训练】1.(2022·重庆市育才中学八年级期中)解方程:(1)2260x x --=; (2)23620x x -+=2.(2022·山东烟台·八年级期中)已知关于x 的方程21(1)230m m x x +--+=是一元二次方程.(1)求m 的值;(2)解这个一元二次方程.考点五 解一元二次方程——因式分解法(含十字相乘法)例题:(2022·四川成都·九年级期末)解下列一元二次方程.(1)x 2﹣4x =5; (2)2(x +1)2=x (x +1).【变式训练】1.(2022·江苏·苏州草桥中学八年级期中)解方程:(1) 290x ;(2)2230x x --=.2.(2022·黑龙江·哈尔滨市第六十九中学校八年级期中)解下列方程:(1)2325x x -=(2)24(3)(3)0x x x -+-=考点六 解一元二次方程——换元法例题:(2022·江苏南京·二模)若关于x 的方程ax 2+bx +c =0的解是x 1=3,x 2=−5,则关于y 的方程a (y +1)2+b (y +1)+c =0的解是( )A .14y =,24y =-B .12y =,26y =-C .14y =,26y =-D .12y =,24y =-【变式训练】1.(2022·湖南邵阳·九年级期末)请你先认真阅读下列材料,再参照例子解答问题:已知()()3410x y x y +-++=-,求x y +的值.解:设t x y =+,则原方程变形为()()3410t t -+=-,即220t t +-=∴()()210t t +-=得t 1=﹣2,t 2=1∴2x y +=-或1x y +=已知()()2222427+-++=x y x y ,求22x y +的值.2.(2022·四川泸州·一模)请阅读下列材料:解方程:(x 2﹣1)2﹣5(x 2﹣1)+4=0.解法如下:将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则(x 2﹣1)2=y 2,原方程可化为y 2﹣5y +4=0,解得y 1=1,y 2=4.(1)当y =1时,x 2﹣1=1,解得x =2(2)当y =4时,x 2﹣1=4,解得x =5综合(1)(2),可得原方程的解为x 12x 22,x 35x 45参照以上解法,方程x 4﹣x 2﹣6=0的解为 _____.一、选择题1.(2022·甘肃武威·中考真题)用配方法解方程x 2-2x =2时,配方后正确的是( )A .()213x +=B .()216x +=C .()213x -=D .()216x -= 2.(2022·吉林省第二实验学校模拟预测)方程28160x x -+=的根的情况是( )A .有两个相等的实数根.B .只有一个实数根C .没有实数根D .有两个不相等的实数根3.(2022·河南·新乡市第一中学九年级期中)若关于x 的方程220x mx -+-=有实数根,则m 的值可以是( )A .0B .1C .2D .34.(2022·全国·九年级)如果二次三项式x 2+px +q 能分解成(x +3)(x ﹣1)的形式,则方程x 2+px +q =0的两个根为( )A .x 1=﹣3,x 2=1B .x 1=﹣3;x 2=﹣1C .x 1=3;x 2=﹣1D .x 1=3;x 2=15.(2022·河北张家口·一模)于实数a ,b 先定义一种新运算“∴”如下:a ∴b =()222,2,()a b a a b ab b a b ⎧+≥⎨+<⎩,若18m =★,则实数m 等于( )A .6B .2C .2或4-D .2或4-或6二、填空题6.(2022·云南·中考真题)方程2x 2+1=3x 的解为________.7.(2022·辽宁丹东·九年级期末)将方程22490x x --=配方成()2x m n +=的形式为______.8.(2022·吉林白山·二模)若关于x 的一元二次方程2(9)0x c --=无实数根,则c 的取值范围是____________. 9.(2022·新疆·乌鲁木齐八一中学九年级期中)已知关于x 的方程2320kx x -+=有两个实数根,则k 的取值范围为___________.10.(2022·浙江台州·二模)已知关于x 的一元二次方程20ax bx c ++=(a ,b ,c 为常数,且0a ≠),此方程的解为12x =,23x =.则关于x 的一元二次方程2930ax bx c -+=的解为______.三、解答题11.(2022·全国·九年级)解方程.(1)2(32)25x +=(2)2314x x -=(3)(()221)321x x +=+ (4)27100x x -+=12.(2022·全国·九年级)按指定的方法解下列方程:(1)x 2﹣6x ﹣7=0(配方法)(2)2x ﹣6=(x ﹣3)2(因式分解法)(3)3x 2﹣4x +1=0(公式法)(4)5(x +1)2=10(直接开平方法)13.(2022·湖南永州·二模)已知关于x 的一元二次方程x 2−(k +1)x +2k −3=0.(1)当k =3时,求一元二次方程x 2−(k +1)x +2k −3=0的解;(2)求证:无论k 为何实数,方程总有两个不相等的实数根.14.(2022·江苏·苏州市吴中区城西中学八年级期中)已知关于x 的一元二次方程2(1)220x k x k -++-=.(1)求证:方程总有两个实数根;(2)若ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为6,当ABC 是等腰三角形时,求k 的值.15.(2021·河南信阳·九年级阶段练习)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值. 解方程:2224250x x x x +++=提示:可以用“换元法”解方程.22(0)x x t t +=,则有222x x t +=.原方程可化为:2450t t +-=续解:2(2)9t +=16.(2021·福建·莆田第二十五中学九年级期中)阅读下面材料:并解答问题.为解方程222(1)5(1)40x x ---+=,我们可以将x 2-1视为一个整体,然后设21x y -=,则222(1)x y -=,原方程可化为2540y y -+=,解此方程,得121,4y y ==.当1y =时,211x -=,22x =,∴2x =当4y =时,214x -=,∴5x =∴原方程的解为12342,2,5,5x x x x =-==-以上解题方法就叫换元法,请利用换元法解方程.222()4()120x x x x ----=.。
21.3 实际问题与一元二次方程1.列一元二次方程解应用题的一般步骤(1)审:读懂题目,弄清题意,明确 已知量、 未知量 ,以及它们之间的关系. (2)设:设出 未知数 .(3)列:找出 相等关系 ,列出方程. (4)解:解方程,求出 未知数 的值. (5)验:检验 方程的解 是否符合实际意义. (6)答:写出 答案 .2.常见实际问题(1)传播问题:传染源+第一轮被传染的+第二轮被传染的=第二轮传染后的总数. (2)平均增长(降低)率问题:①设基数为a ,平均增长率为x ,则第一次增长后的值为()1a x +,两次增长后的值为()21a x +,依次类推,n 次增长后的值为 ()1na x + .②设基数为a ,平均降低率为x ,则第一次降低后的值为()1a x -,两次降低后的值为()21a x -,依次类推,n 次降低后的值为 ()1na x - . (3)几何图形面积问题:几何图形应用题,关键是将不规则图形分割或组合成 规则图形 ,找出未知量与已知量的内在联系,根据面积公式或体积公式列出方程. (4)数字问题:若一个两位数十位、个位上的数字分别为a 、b ,则这个两位数表示为 10a b + ;若一个三位数百位、十位、个位上的数字分别为a 、b 、c ,则这个三位数表示为 10010a b c ++ . (5)单、双循环问题:设参加队伍有n 个队,则单循环问题中总的比赛场数为 ()112n n - 场;双循环问题中总的比赛场数为 场()1n n -. (6)销售利润问题: =-利润售价进价;-==利润售价进价利润率进价进价;()=⨯+售价进价利润率;=-=⨯1总利润总售价总成本单个利润总销售.(7)存款利息问题:利息本金利率.=+本息和本金利息;=⨯题型一:传播问题1.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程()A.1+x=225 B.1+x2=225C.(1+x)2=225 D.1+(1+x2)=2252.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?题型二:增长率问题3.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1004.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.题型三:数字问题5.如图所示的是某月的日历表,在此日历表上可以按图示形状圈出位置相邻的6个数(如:8,14,15,16,17,24).如果圈出的6个数中,最大数x与最小数的积为225,那么根据题意可列方程为()A.x(x+8)=225 B.x(x+16)=225C.x(x﹣16)=225 D.(x+8)(x﹣8)=2256.一个两位数,个位上的数比十位上的数小4,且个位数与十位数的平方和比这个两位数小4,设个位数是x,则所列方程为()A.x2+(x+4)2=10(x-4)+x-4 B.x2+(x+4)2=10x+x+4C.x2+(x+4)2=10(x+4)+x-4 D.x2+(x-4)2=10x+(x-4)-4题型四:营销问题7.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?8.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?题型五:工程问题9.随着铁路运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元,在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)10.甲、乙两工程队共同承建某高速路隧道工程,隧道总长2000米,甲、乙分别从隧道两端向中间施工,计划每天各施工6米.因地质情况不同,两支队伍每合格完成1米隧道施工所需成本不一样.甲每合格完成1米,隧道施工成本为6万元;乙每合格完成1米,隧道施工成本为8万元.(1)若工程结算时乙总施工成本不低于甲总施工成本的43,求甲最多施工多少米?(2)实际施工开始后因地质情况比预估更复杂,甲乙两队每日完成量和成本都发生变化.甲每合格完成1米隧道施工成本增加m万元时,则每天可多挖12m米,乙因特殊地质,在施工成本不变的情况下,比计划每天少挖14m米,若最终每天实际总成本比计划多(11m-8)万元,求m的值.题型六:行程问题11.甲、乙两个机器人分别从相距70m的A、B两个位置同时相向运动.甲第1分钟走2m,以后每分钟比前1分钟多走1m,乙每分钟走5m.(1)甲、乙开始运动后多少分钟第一次同时到达同一位置?(2)如果甲、乙到达A或B后立即折返,甲继续每分钟比前1分钟多走1m,乙继续按照每分钟5m的速度行走,那么开始运动后多少分钟第二次同时到达同一位置?12.某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如下表.与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为x(0<x<0.5).注:步数×平均步长=距离.(1)根据题意完成表格填空;(2)求x的值;(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.题型七:图表信息问题13.近年来,随着城市居民入住率的增加,污水处理问题成为城市的难题.某城市环境保护局协同自来水公司为鼓励居民节约用水,减少污水排放,规定:居民用水量每月不超过a吨时,只需交纳10元水费,如果超过a吨,除按10元收费外,超过部分,另按每吨5a元收取水费(水费+污水处理费).(1)某市区居民2018年3月份用水量为8吨,超过规定水量,用a的代数式表示该用户应交水费多少元;(2)下表是这户居民4月份和5月份的用水量和缴费情况;月份用水量(吨)交水费总金额(元)4 7 705 5 40根据上表数据,求规定用水量a的值.14.为了节约用水,不少城市对用水大户作出了两段收费的规定.某市规定:月用水量不超过规定标准a吨时,按每吨1.6元的价格交费,如果超过了标准,超标部分每吨还要加收a100元的附加费用.据统计,某户7、8两月的用水量和交费情况如下表:月份用水量(吨)交费总数(元)7 140 2648 95 152(1)求出该市规定标准用水量a的值;(2)写出交费总数y(元)与用水量x(吨)的函数关系式,并利用函数关系计算,当某月份用水量为150吨时,应交水费多少元?题型八:动态几何题15.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ 的面积为15cm2,则点P运动的时间是()A.2s B.3s C.4s D.5s16.如图所示,A,B,C,D为矩形的四个顶点,AB=16cm,AD=8cm,动点P,Q分别从点A,C同时出发,点P 以3cm/s的速度向B移动,一直到达B为止;点Q以2cm/s的速度向D移动.当P,Q两点从出发开始几秒时,点P和点Q的距离是10cm.(若一点到达终点,另一点也随之停止运动)()A.2s或235s B.1s或225s C.225s D.2s或225s17.如图,在长方形ABCD中,边AB、BC的长(AB<BC)是方程x2-7x+12=0的两个根.点P从点A出发,以每秒1个单位的速度沿△ABC边A→B→C→A的方向运动,运动时间为t(秒).(1)求AB与BC的长;(2)当点P运动到边BC上时,试求出使AP长为10时运动时间t的值;(3)当点P运动到边AC上时,是否存在点P,使△CDP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.一、单选题18.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为x m,则下面所列方程正确的是().A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=57019.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人20.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.721.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C .200+200×3x =1000D .200[1+(1+x )+(1+x )2]=100022.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有( ) A .9人B .10人C .11人D .12人23.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同. (1)求每个月生产成本的下降率; (2)请你预测4月份该公司的生产成本.24.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x 元,则每天的销售量是 斤(用含x 的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?一:选择题25.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是( ) A .22500(1)9100x += B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=26.某商场在销售一种糖果时发现,如果以20元/kg 的单价销售,则每天可售出100kg ,如果销售单价每增加0.5元,则第天销售量会减少2kg.该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x 元/kg ,依题意可列方程为( ) A .()()2010021800x x +-= B .()22010018000.5x x ⎛⎫⎪=⎭-⎝+ C .20100218000.5x x -⎛⎫-⨯= ⎪⎝⎭D .()1002201800x x ⎡⎤--=⎣⎦27.某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x ,那么,符合题意的方程是( )A .()0.6310.68x +=B .()20.6310.68x += C .()0.63120.68x +=D .()20.63120.68x +=28.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .180(1﹣x )2=461B .180(1+x )2=461C .368(1﹣x )2=442D .368(1+x )2=44229.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( ) A .560(1+x )2=315 B .560(1-x )2=315 C .560(1-2x )2=315D .560(1-x 2)=31530.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( ) A .x(x+1)=1035B .x(x-1)=1035C .12x(x+1)=1035D .12x(x-1)=103531.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ). A .8%B .9%C .10%D .11%二、填空题32.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m²,设道路的宽为x m ,则根据题意,可列方程为_______.33.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.34.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为_____.35.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.36.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x,则可列方程为________.37.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.38.中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为_____.(用百分数表示)三、解答题39.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.8 32 29.6 28 …售价x(元/千克)…22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?40.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A、B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加20%9a,求a的值.41.为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位∶台)和销售单价x(单位∶万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?42.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?43.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.44.已知:如图A,B,C,D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从A,C同时出发,点P 以3cm/S的速度向点B移动,一直到达点B为止,点Q以2cm/S的速度向点D移动(1)P,Q两点从出发点出发几秒时,四边形PBCQ面积为33cm²(2)P,Q两点从出发点出发几秒时,P,Q间的距离是为10cm.45.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.46.为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)满足如图所示的一次函数关系.(1)求月销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?47.某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次活动.为提离大家的积极性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调查与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2%a,每户物管费将会减少3%10a;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6%a,每户物管费将会减少1%4a.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少518%a,求a的值.48.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点Q从点A开始沿AB边向点B以1cm/s的速度移动,点P从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P、Q两点同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)△PBQ的面积能否等于7cm2?试说明理由.1.C 【分析】此题可设1人平均感染x 人,则第一轮共感染(1)x +人,第二轮共感染(1)1(1)(1)x x x x x +++=++人,根据题意列方程即可.【详解】解:设1人平均感染x 人,依题意可列方程:2(1)225+=x .故选:C .2.(1)每轮传染中平均每个人传染了15个人;(2)按照这样的传染速度,第三轮传染后,共有4096人患病.【分析】(1)设每轮传染中平均每个人传染了x 个人,根据一人患病后经过两轮传染后共有256人患病,即可得出关于x 的一元二次方程,解之即可得出结论;(2)根据经过三轮传染后患病人数=经过两轮传染后患病人数×(1+15),即可求出结论.【详解】(1)设每轮传染中平均每个人传染了x 个人,依题意,得:1+x +x (1+x )=256,解得:x 1=15,x 2=﹣17(不合题意,舍去).答:每轮传染中平均每个人传染了15个人.(2)256×(1+15)=4096(人).答:按照这样的传染速度,第三轮传染后,共有4096人患病.【点睛】此题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3.A 【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x ,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x )吨,2018年蔬菜产量为80(1+x )(1+x )吨,预计2018年蔬菜产量达到100吨,即: 80(1+x )2=100,故选A .【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.4.(1)6万座;(2)70%.【分析】(1)2020年全省5G 基站的数量=目前广东5G 基站的数量×4,即可求出结论; (2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,根据2020年底及2022年底全省5G 基站数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)由题意可得:到2020年底,全省5G 基站的数量是1.546⨯=(万座).答:到2020年底,全省5G 基站的数量是6万座.(2)设年平均增长率为x ,由题意可得:()26117.34x +=, 解得:10.7=70%x =,2 2.7x =-(不符合,舍去)答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5.C 【分析】最大数为x ,则我们只需要将最小数用x 表示出来即可列出方程.【详解】∵最大数为x ,∴最小数用x 表示为:x-16,∴列方程为:x (x ﹣16)=225,故选:C【点睛】本题考查列一元二次方程,解题关键是根据题干找出等量关系式,然后根据等量关系式来列方程. 6.C 【分析】由题意知,这个两位数的十位数字为x +4,则这个两位数为10(x +4)+x ,其个位数字与十位数字的平方和为x 2+(x +4)2;根据其个位数字与十位数字的平方和比这个两位数小4,可得方程,【详解】依题意得十位数字为:x +4,则这个数为:10(x +4)+x ,个位数字与十位数字的平方和为:x 2+(x +4)2. ∵个位数字与十位数字的平方和比这两位数小4,∴x 2+(x +4)2=10(x +4)+x -4.故选C.【点睛】本题主要考查一元二次方程的应用,解题关键根据等量关系列出方程;7.(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件; (2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.【详解】(1)若降价3元,则平均每天销售数量为20+2×3=26件. (2)设每件商品应降价x 元时,该商店每天销售利润为1200元.根据题意,得(40-x )(20+2x )=1200,整理,得x 2-30x +200=0,解得:x 1=10,x 2=20.∵要求每件盈利不少于25元,∴x 2=20应舍去,∴x =10.答:每件商品应降价10元时,该商店每天销售利润为1200元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.8.(1)4元或6元;(2)九折【分析】(1)设每千克核桃降价x 元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.【详解】解:(1)设每千克核桃应降价x 元根据题意,得(60﹣x ﹣40)(100+x 2×20)=2240, 化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元此时,售价为:60﹣6=54(元),54100%=90%60⨯ 答:该店应按原售价的九折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.9.(1)甲队单独完成这项工程需15个月,乙队单独完成这项工程需10个月.(2)甲队最多施工6个月才能使工程款不超过1500万元.【分析】(1)若乙队单独完成这项工程需x 个月,则甲队单独完成这项工程需x+5个月,等量关系为:“两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍”.(2)设甲队施工m 个月,求出乙施工的时间,根据工程款不超过1350万元,列不等式求解.【详解】解:(1) 设乙队单独完成这项工程需x 个月,则甲队单独完成这项工程需x+5个月,根据题意,得()()x x 56x x 5+=++,即2x 7x 300--=,解得12x 10x 3==-,(不合题意,舍去).∴x 515+=.。
一元二次方程知识归纳与题型突破(12类题型)一、一元二次方程的定义(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高01 思维导图02 知识速记次数是2”;“二次项的系数不等于0”;“整式方程”.二、一元二次方程的一般形式(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.三、一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax 2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).四、解一元二次方程-直接开平方形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.②降次的实质是由一个二次方程转化为两个一元一次方程.③方法是根据平方根的意义开平方.五、解一元二次方程-配方法(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.六、解一元二次方程-公式法(1)把a acbbx24 2-±-=(b2﹣4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(2)用求根公式解一元二次方程的方法是公式法.(3)用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.七、解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(2)因式分解法解一元二次方程的一般步骤:到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.八、由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.九、一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程题型一 利用一元二次方程的定义判断是否是一元二次方程例1.(23-24八年级下·黑龙江哈尔滨·阶段练习)下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .212xx +=C .221x x y +=+D .()()22131x x+=+ 1.(2023·江苏盐城·模拟预测)下列方程是一元二次方程的是( )A .20ax bx c ++=B x=C .21220x x ++=D .()22134m x x +-=【答案】D【分析】此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.根据一元二次方程的定义进行判断即可03 题型归纳【详解】解:A 、当0a =时不是一元二次方程,故本选项不符合题意;B 、该方程不是整式方程,故本选项不符合题意;C 、该方程不是整式方程,故本选项不符合题意;D 、该方程符合一元二次方程的定义,是一元二次方程,故本选项正确;故选:D .2.(23-24八年级下·山东烟台·期中)下列方程中,关于x 的一元二次方程是( )A .7x y -=B .220x x ++=C .120x x +=D .()232x x x -=+3.(23-24八年级下·山东烟台·期中)下列方程中:①2210x x -+=;②20ax bx c ++=;③22350x x +-=;④20x -=;⑤()2212x y -+=;⑥()()22132x x x --=,一元二次方程的个数为( )A .1B .2C .3D .4⑥()()22132x x x --=,即730x -+=,未知数的最高次不是2,不是一元二次方程;∴一元二次方程有2个,故选:B .题型二 一元二次方程的一般形式例2. (23-24八年级下·黑龙江哈尔滨·阶段练习)方程()()320x x +-=化为一元二次方程的一般形式是 .【答案】260x x +-=【分析】此题考查了一元二次方程的一般形式,即20(0)ax bx c a ++=¹.其中a 是二次项系数,b 是一次项系数,c 是常数项.去括号合并同类项整理即可.【详解】解:∵()()320x x +-=∴22360x x x -+-=∴260x x +-=故答案为:260x x +-=巩固训练1.(23-24八年级下·广西崇左·期中)把方程()()223243x x +=-化为一元二次方程的一般形式是 .2.(23-24八年级下·山东东营·阶段练习)把一元二次方程()()112x x x +-=化成一般形式后得到二次项系数是 ,一次项系数是 ,常数项是 .【答案】 1 2 1-【分析】此题主要考查了一元二次方程的一般形式.首先利用平方差公式进行计算,再整理得到2210x x +-=,然后再确定二次项、一次项系数和常数项.【详解】解:方程()()112x x x +-=整理为一般形式为2210x x +-=,∴二次项系数是1,一次项系数是2,常数项是1-,故答案为:1,2,1-.3.(23-24九年级上·四川南充·阶段练习)方程2(21)(3)1x x x +-=-化为一般形式为,二次项系数、一次项系数、常数项的和为.题型三 利用一元二次方程的定义求参数例3.(23-24八年级下·安徽六安·阶段练习)若关于x 的方程()211450mm x x +++-=是一元二次方程,则m 的值是( )A .0B .1-C .1D .1±【答案】C【分析】本题考查一元二次方程的定义,掌握一元二次方程的定义是解题的关键.理解一元二次方程的定义,需要抓住两个条件:①二次项系数不为0;②未知数的最高次数为2;结合一元二次方程的定义,可以得到关于m 的方程和不等式,求解即可得到m 的值.【详解】解:Q 关于x 的方程()211450m m x x +++-=是一元二次方程,\21012m m +¹ìí+=î,解得1m =.故选:C .巩固训练1.(2024八年级下·安徽·专题练习)关于x 的方程||(2)23m m x mx -++=是一元二次方程,则m 值为( )A .2或2-B .2C .2-D .0m ³且2m ¹【答案】C【分析】此题主要考查了一元二次方程的定义,根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【详解】解:∵关于x 的方程||(2)23m m x mx -++=是一元二次方程,∴||2m =且20m -¹,解得2m =-.故选:C .2.(23-24八年级下·安徽亳州·期中)若()22210mm x mx ---+=是一元二次方程,则m 的值为( )A .2B .2-C .2或2-D .3.(23-24八年级下·安徽池州·期末)若关于x 的方程22(2)430kk x x --+-=是一元二次方程,则k = .【答案】2-【分析】本题考查了一元二次方程,熟记定义是解题关键.根据一元二次方程的定义(只含有一个未知数,并且未知数的最高次数2的整式方程,叫做一元二次方程)即可得.【详解】解:∵关于x 的方程22(2)430k k x x --+-=是一元二次方程,∴22220k k ì-=í-¹î,解得2k =-,故答案为:2-.题型四 一元二次方程的解求参数的值例4. (2024·江苏镇江·二模)已知2x =是方程230x x c -+=的一个根,则实数c 的值是.【答案】2【分析】本题主要考查了一元二次方程的解,把2x =代入230x x c -+=即可求出c 的值.【详解】解:把2x =代入230x x c -+=,可得出22320c -´+=,解得:2c =,故答案为:2.巩固训练1.(23-24八年级下·浙江杭州·期中)关于x 的一元二次方程2320x x m ++-=有一个根为0,则m 的值是( )A .1B .1±C .2D .2±2.(2024·山东济南·三模)关于x 的一元二次方程2420x x m -+=的一个根14x =,则m =.【答案】0【分析】本题考查了一元二次方程,把14x =代入方程2420x x m -+=,解关于m 的方程即可.【详解】解:把14x =代入方程2420x x m -+=得161620m -+=解得:0m =故答案为:0.3.(2024·山东济南·二模)已知关于x 的一元二次方程2260x mx +-=的一个根是3,则m 的值是 .【答案】4-【分析】根据一元二次方程2260x mx +-=的一个根是3,将3x =代入原方程得到关于m 的一元一次方程进而即可解答.本题考查了一元二次方程的根,一元一次方程的解,理解一元二次方程的根是解题的关键.【详解】解:∵关于x 的一元二次方程2260x mx +-=的一个根是3,∴将3x =代入方程2260x mx +-=得:223360m ´+-=,解得:4m =-,故答案为:4-.题型五 一元二次方程的解求代数式的值例5. (2024·青海玉树·三模)若3x =是关于x 的方程26ax bx -=的解,则202493a b -+的值为.1.(2024·四川南充·中考真题)已知m 是方程2410x x -=+的一个根,则(5)(1)m m +-的值为.【答案】4-【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x -=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解.【详解】解:∵m 是方程2410x x -=+的一个根,∴241m m +=(5)(1)m m +-255m m m =-+-245m m =+-15=-4=-,故答案为:4-.2.(2024·江苏常州·二模)已知m 为方程 ²360x x --=的一个根,则代数式²36m m -+-的值是.3.(2024·福建·模拟预测)已知m 为方程2320240x x +-=的根,那么32220272024m m m +-+的值为【答案】0【分析】本题考查了一元二次方程的解的定义;将方程的根代入方程,化简得232024m m +=,将代数式变形,整体代入求值即可.【详解】∵m 为方程2320240x x +-=的根,∴2320240m m +-=,∴232024m m +=,∴原式3223320242024m m m m m =+---+223320242024()()m m m m m m =+-+-+2024202420242024m m =--+0=.故答案为:0.题型六 一元二次方程的解的估算例6. (23-24八年级下·黑龙江大庆·阶段练习)根据表格中的数据:估计一元二次方程20ax bx c ++=(a ,b ,c 为常数,0a ¹)一个解x 的范围为( )x 0.51 1.5232ax bx c++28181042-A .0.51x <<B .1 1.5x <<C .1.52x <<D .23x <<1.(23-24八年级下·浙江杭州·阶段练习)已知2310x x -+=,依据下表,它的一个解的范围是( )x 2.52.6 2.7 2.8231x x -+0.25-0.04-0.190.44A .2.5 2.6x <<B .2.6 2.7x <<C .2.7 2.8x <<D .不确定【答案】B 【分析】本题主要考查了一元二次方程根的估算,由表格可知,231x x -+的值随着x 的增大而增大,那么在2.6与2.7之间必然有一个数使得代数式231x x -+的值为0,据此可得答案.【详解】解:由表格可知,231x x -+的值随着x 的增大而增大,当 2.6x =时,2310.040x x -+=-<,当 2.7x =时,2310.190x x -+=>,那么在2.6与2.7之间必然有一个数使得代数式231x x -+的值为0,∴方程2310x x -+=的一个解的范围为2.6 2.7x <<.故选:B .2.(23-24八年级下·江苏苏州·期中)观察表格,一元二次方程22 1.10x x --=的一个解的取值范围是.x 1.3 1.4 1.51.6 1.7 1.8 1.922 1.1x x --0.71-0.54-0.35-0.14-0.090.340.61【答案】1.6 1.7x <<【分析】本题考查了估算一元二次方程的近似解.根据图表数据找出一元二次方程等于0时,未知数的值的范围,即可得到答案.【详解】解: 1.6x =时,0.14y =-, 1.7x =时,0.09y =,∴一元二次方程22 1.10x x --=的解的范围是1.6 1.7x <<.故答案为:1.6 1.7x <<题型七 用配方法配一元二次方程例7.(23-24八年级下·浙江金华·221x x -=,配方后得到的方程是( )A .2(1)2x -=B .()212x +=C .2(1)0x +=D .2(1)0x -=【答案】A【分析】本题考查了配方法解一元二次方程,将方程两边同时加上一次项系数一半的平方,再写成完全平方式即可得出答案.【详解】解:∵221x x -=,∴22111x x -+=+,即2(1)2x -=,故选:A .巩固训练1.(2024·山西阳泉·三模)用配方法解一元二次方程28100x x -+=配方后得到的方程是( )A .()2854x +=B .()2854x -=C .()246x +=D .()246x -=【答案】D【分析】本题主要考查了一元二次方程的配方法.把常数项移到等式右边后,利用完全平方公式配方得到结果,即可做出判断.【详解】解:28100x x -+=,移项得:2810x x -=-,配方得:28161016x x +=-+-,整理得:()246x -=,故选:D .2.(2024·内蒙古呼和浩特·模拟预测)用配方法解一元二次方程22510x x --=,配方正确的是( )A .2533416x æö-=ç÷èø B .2541416x æö-=ç÷èø C .252724x æö-=ç÷èø D .252924x æö-=ç÷èø3.(23-24八年级下·安徽淮北·阶段练习)用配方法解方程23430x x --=,应把它先变形为( )A .221339x æö-=ç÷èø B .2203x æö-=ç÷èø C .21839x æö-=ç÷èø D .211039x æö-=ç÷èø题型八 解一元二次方程例8.(23-24九年级·江苏·假期作业)解关于x 的方程(因式分解方法):(1)230x =;(2)7(3)39x x x -=-.1.(2024八年级下·浙江·专题练习)解方程:(1) 2490x -=;(2)()221491x +-=.【答案】(1)17x =,27x =-(2)14x =,26x =-【分析】本题考查解一元二次方程:(1)利用直接开平方法求解;(2)先移项,再利用直接开平方法求解.【详解】(1)解:2490x -=,249x =,∴7=±x ,∴17x =,27x =-;(2)解:()221491x +-=,()2125x +=,∴15x +=±,∴14x =,26x =-.2.(23-24九年级上·安徽芜湖·期中)用适当的方法解方程:()()22325x x -=+3.(23-24八年级下·广西崇左·期中)解方程:(1)22350x x --=;(2)()2326x x +=+.【答案】(1)17x =,25x =-(2)13x =-,21x =-【分析】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,解一元二次方程的方法有直接开平方法、因式分解法、配方法、公式法等.(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)解:22350x x --=,因式分解得()()750x x -+=,即70x -=或50x +=,解得17x =,25x =-.(2)解:()2326x x +=+,移项得()()23230x x +-+=,因式分解得()()3320x x ++-=,即30x +=或320x +-=,解得13x =-,21x =-.4.(23-24八年级下·全国·假期作业)用公式法解下列方程:(1)2120x x --=;(2)22530x x +-=;(3)22770x x -+=.5.(23-24九年级上·海南省直辖县级单位·期末)用配方法解方程:(1)242x x+=;(2)27304x x--=;(3)2483x x-=-;(4)2441018x x x++=-题型九 解一元二次方程中错解复原问题例9:(2024·江西吉安·三模)小明解一元二次方程2++=的过程如下,请你仔细阅读,并回答问题:x x2530(1)小明解此方程使用的是______法;小明的解答过程是从第______步开始出错的.(2)请写出此题正确的解答过程.1.(23-24八年级下·全国·2+=解:∵a =b =c =∴(2244320b ac D =-=-=>,∴2x ==,∴12x =,22x =-.请你分析以上解答过程有无错误,如有错误,指出错误的地方,并写出正确的结果.2.(23-24八年级下·广西百色·期中)小涵与小彤两位同学解方程()()2366x x x -=-的过程如下:小涵的解题过程:第1步:两边同时除以()6x -得36x x =-,第2步:移项,得36x x =-,第3步:解得2x =-.小彤的解题过程:第1步:移项,得()()23660x x x ---=,第2步:提取公因式,得()()6360x x x ---=.第3步:则60x -=或360x x --=,第4步:解得16x =,22x =.(1)小涵和小彤的解法都不正确,小涵第一次出错在第_____步,小彤第一次出错在第_____步;(2)请你给出正确的解法,并结合你的经验提出一条解题注意事项.【答案】(1)1,2(2)正确的解法见解析,16x =,23x =-.注意事项:移项时要注意改变符号,或(除数不能为0)【分析】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.(1)根据等式的性质和因式分解法则即可得出答案;(2)利用因式分解法解答即可.【详解】(1)解:小涵的解法中,因为()6x -可能为0,所以不能两边同时除以()6x -,即第一次出错错在第1步;小彤的解法中,第1步移项没错,第2步提取公因式后有一项忘记变号,即第一次出错错在第2步;故答案为:1;2;(2)解:正确的解法是:()()2366x x x -=-,移项,得()()23660x x x ---=,提取公因式,得()()6360x x x --+=,则60x -=或360x x -+=,解得1263x x ==-,,注意事项:在利用因式分解法解一元二次方程时,注意把方程一边的多项式正确因式分解.题型十 根据判别式判断一元二次方程根的情况例10.(23-24九年级下·云南昆明·阶段练习)已知关于x 的一元二次方程2550x x -+=的根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定【答案】A【分析】本题考查了一元二次方程20(0)ax bx c a ++=¹根的判别式24=b ac D -与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0D >时,一元二次方程有两个不相等的实数根;当Δ0=时,一元二次方程有两个相等的实数根;当Δ0<时,一元二次方程没有实数根.【详解】解:∵2550x x -+=,∴()2541550D =--´´=>,∴方程两个不相等的实数根.故选A .巩固训练1.(2024·河南周口·三模)关于x 的一元二次方程2220x mx +-=的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根2.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=¹,当240b ac D =->时,方程有两个不相等实数根;当240b ac D =-=时,方程的两个相等的实数根;当24<0b ac D =-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--´´=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-´´-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--´´=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--´´= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .3.(23-24八年级下·安徽六安·阶段练习)下列方程中,没有实数根的是( )A .22x x=B .2210x x -+=C .260x x --=D .224x x =-【答案】D【分析】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200ax bx c a ++=¹,当240b ac D =->时,方程有两个不相等的实数根;当240b ac D =-=时,方程有两个相等的实数根;当24<0b ac D =-时,方程没有实数根是解题的关键.分别计算四个方程的根的判别式,然后根据判别式的意义判断根的情况.【详解】解:A 、22x x =可化为:220x x -=2(1)42010D =--´´=>Q ,\方程有两个不相等的实数根;B 、2210x x -+=()2Δ24110=--´´=Q ,\方程有两个相等的实数根;C 、260x x --=()2Δ141(6)250=--´´-=>,\方程有两个不相等的实数根;D 、224x x =-可化为:2240x x -+=2(2)414120D =--´´=-<Q ,\方程没有实数根;故选:D .题型十一 利用一元二次方程根与系数的关系求值例11.(2024·江西宜春·模拟预测)一元二次方程2310x x --=的两根分别为a ,b ,则()ab a b += .1.(2024·江西吉安·一模)已知方程2430x x --=的两个根分别为1x ,2x ,则12x x 的值为 .2.(2024·广东深圳·模拟预测)若1x ,2x 是方程2210x x --=的两个根,则121222x x x x +-的值为 .∴121x x =-,122x x +=,∴()()121212122222215x x x x x x x x +-=+-=´--=,故答案为:5.3.(2024·江苏南京·三模)设12x x 、是方程2320210x x --=的两个根,则21122x x x -+= .【答案】2024【分析】本题主要考查一元二次方程根与系数关系,方程解的定义,掌握一元二次方程根与系数关系,方程解的定义是解题的关键.根据根与系数关系得到123x x +=,之后将1x 代入方程中得到211320210x x -=-,变形为21132021x x -=,两式相加即可得到答案.【详解】解:Q 12x x 、是方程2320210x x --=的两个根,\ 123x x +=,211320210x x -=-,\ 21132021x x -=,\ 22112111220213230224x x x x x x x -+=-+=+=+.故答案为:2024.4.(2024·山东济宁·一模)设a ,b 是一元二次方程23170x x +-=的两个根,则252a a b ++=.题型十二 用一元二次方程解决与图形有关的问题例12:(23-24八年级下·黑龙江哈尔滨·期末)一个矩形蔬菜大棚长32m ,宽20m ,其中有两横两竖四条小路,横竖小路的宽度相同,小路的面积占整个大棚面积的532.(1)小路的宽度是多少?(2)蔬菜的种植需要两组工人来完成,甲组每平方米50元,乙组每平方米60元,若完成此大棚的种植不超过30000元,至少安排甲组种植多少平方米?1.(23-24八年级下·黑龙江哈尔滨·期末)李大爷用30米的栅栏围成一个菜园,围成的菜地是如图所示的矩形ABCD.设边AD的长为x(单位:米),矩形ABCD的面积为S(单位:平方米).(1)求S与x之间的函数解析式(不要求写出自变量x的取值范围);<,请求出此时AD的长.(2)若矩形ABCD的面积为54平方米,且AB AD2.(重庆市两江新区2023-2024学年八年级下学期期末考试数学试题)新高考采用“312++”的模式,对生物学科提出了更高的要求.某学校生物组为培养同学们观察、归纳的能力,组建了生物课外活动小组.在一次野外实践时,同学们发现一种水果黄瓜的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21.(1)这种水果黄瓜每个支干长出多少小分支?(2)学校打算建立一块矩形的生物种植田来种植这种水果黄瓜,一面利用学校的墙(墙的最大可用长度为10米),其余部分需要用总长为22米的栅栏围成,且矩形中间需用栅栏隔开,栅栏因实验需要,有两个宽为1米的门(门无需栅栏,如图所示).设种植田的宽AB 为m 米.若该种植田的面积为36平方米(栅栏的占地面积忽略不计),求该种植田的宽m .【答案】(1)4个(2)6米【分析】本题考查一元二次方程的实际应用:(1)设这种水果黄瓜每个支干长出的小分支个数是x ,根据主干、支干和小分支的总数是21,即可得出关于x 的一元二次方程,解之取其正值即可得出答案.(2)设种植田的宽AB 为m 米,则长BC 为()2232m -+米,根据题意列一元二次方程组,解方程组,再根据10BC £对求出的根进行取舍.【详解】(1)解:设这种水果黄瓜每个支干长出x 个小分支,由题意得:2121x x ++=,解得14x =,25x =-(舍),即这种水果黄瓜每个支干长出4个小分支;(2)解:设种植田的宽AB 为m 米,则长BC 为()2232m -+米,由题意得:()223236m m ×-+=,整理得:28120m m -+=,解得12m =,26m =,当2m =时,223221810BC =-´+=>,不合题意,舍去;当6m =时,22362610BC =-´+=<,符合题意;综上可知,该种植田的宽m 为6米.。
一元二次方程(知识归纳+题型突破)1、理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.2、会用一元二次方程根的判别式判别方程是否有实根及两个实根是否相等.3、了解--元二次方程的根与系数的关系.4、能根据具体问题的实际意义,检验方程解的合理性.1.一元二次方程的相关概念(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.(2)一般形式:ax 2+bx +c =0(a ≠0),其中ax 2、bx 、c 分别叫做二次项、一次项、常数项,a 、b 、c 分别称为二次项系数、一次项系数、常数项.2.一元二次方程的解法(1)直接开平方法:形如(x +m )2=n (n ≥0)的方程,可直接开平方求解.(2)因式分解法:可化为(ax +m )(bx +n )=0的方程,用因式分解法求解.(3)公式法:一元二次方程ax 2+bx +c =0的求根公式为x b 2-4ac ≥0).(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.3.根的判别式(1)当Δ=24b ac ->0时,原方程有两个不相等的实数根.(2)当Δ=24b ac -=0时,原方程有两个相等的实数根.(3)当Δ=24b ac -<0时,原方程没有实数根.4.列一元二次方程解应用题(1)解题步骤:①审题;②设未知数;③列一元二次方程;④解一元二次方程;⑤检验根是否有意义;⑥作答.(2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.①平均增长率(降低率)问题:公式:b =a (1±x )n ,a 表示基数,x 表示平均增长率(降低率),n 表示变化的次数,b 表示变化n 次后的量;②利润问题:利润=售价-成本;利润率=利润/成本×100%;③传播、比赛问题:④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.注意:运用一元二次方程解决实际问题时,方程一般有两个实数根,则必须要根据题意检验根是否有意义.题型一一元二次方程的解【例1】(2023春·浙江温州·八年级校考期中)已知关于x 的一元二次方程210ax bx ++=有一个根是x m =,则方程20x bx a ++=有一个根是()A .x m =B .x m=-C .1x m=D .1x m=-巩固训练:1.(2023·全国·九年级专题练习)若关于x 的一元二次方程()223790m x x m -++-=的一个根为0,则m 的值为()A .3B .0C .3-D .3-或32.(2023春·山东东营·八年级东营市实验中学校考期中)若m 是一元二次方程220x x --=的一个根,则代数式222m m -的值为()A .0B .2C .2-D .43.(2023春·山东济宁·八年级济宁学院附属中学校考期中)已知m 是一元二次方程2520x x --=的一个根,则代数式220235m m -+的值是()A .2020B .2021C .2022D .20234.(2023·全国·九年级专题练习)已知关于x 的一元二次方程20ax bx c ++=,若0a b c ++=,则此方程必有一个根为()A .0B .1C .-1D .±15.(2023春·浙江宁波·八年级校考阶段练习)若关于x 的一元二次方程()2200ax bx a ++=≠有一根为2023x =,则一元二次方程()212a x bx b -+-=-必有一根为()A .2021B .2022C .2023D .20246.(2023春·山东泰安·八年级统考期中)若2250x x --=的一个解为a ,则()()231a a a a -+-的值为()A .5B .4CD .5-7.(2022秋·上海静安·八年级上海市民办扬波中学校考期中)若1x =-是方程230x mx --=的一个根,则m 的值为.8.(2023·全国·九年级专题练习)(2023·山东枣庄·统考中考真题)若3x =是关于x 的方程26ax bx -=的解,则202362a b -+的值为.9.(2023春·江苏南通·八年级南通田家炳中学校考阶段练习)关于x 的一元二次方程22(1)2230k x x k k -+--+=的一个根为0,则k =.10.(2023·四川·九年级专题练习)先化简,再求值2211121x x x x x ⎛⎫+-÷ ⎪+++⎝⎭,其中x 的值是方程2230x x --=的根.题型二一元二次方程的解法【例2】(2023秋·河南许昌·九年级许昌市第一中学校联考期末)下面是小明同学解一元二次方程2223x x -=的过程,请认真阅读并完成相应的任务.2223x x -=.解:二次项系数化为1,得2312x x -=,第一步移项,得2312x x -=,第二步配方,得239124x x -+=,第三步变形,得2312x ⎛⎫-= ⎪⎝⎭,第四步开方,得312x -=±,第五步解得112x =,252x =,第六步(1)上面小明同学的解法中运用“配方法”将一元二次方程“降次”为两个一元一次方程,体现的数学思想是______,其中“配方法”依据的一个数学公式是______;(2)上述解题过程,从第______步开始出现错误,请写出正确的解答过程.【例3】(2023春·北京门头沟·八年级统考期末)阅读材料,并回答问题:小明在学习一元二次方程时,解方程2230x x --=的过程如下:解:∵2a =,1b =-,3c =-①∴()()2241423b ac =-=--⨯⨯-∆②124230=-=-<③∴此方程无解问题:(1)上述过程中,从步开始出现了错误(填序号);(2)发生错误的原因是:;(3)在下面的空白处,写出正确的解答过程.【例4】(2023·全国·九年级专题练习)按要求解方程(1)21(2603y -=(直接开平方法);(2)231220x x --=(配方法);260x --=(公式法)(4)21(2)12x x -=-(因式分解法)(5)2(35)5(35)60x x ---+=(换元法)【例5】(2023春·陕西咸阳·八年级统考期末)先阅读下面的内容,再解答问题.【阅读】例题:求多项式2224m mn n +++的最小值.解:()()2222224244m mn n m mn n m n +++=+++=++,∵()20m n +≥,∴()244m n ++≥∴多项式2224m mn n +++的最小值是4(1)请写出例题解答过程中把一个三项二次式转化为一个二项式的平方运用的公式是______;(2)求多项式2224230x xy y -+-+的最大值.巩固训练1.(北京市石景山区2022-2023学年八年级下学期期末数学试题)解方程243x x -=,下列用配方法进行变形正确的是()A .2(2)19x -=B .2(4)7x -=C .2(2)4x -=D .2(2)7x -=2.(2022秋·上海奉贤·八年级校考期中)用配方法解一元二次方程282x x -=-时,在方程两边应同时加上()A .4B .8C .16D .643.(2023·全国·九年级专题练习)用配方法解方程2410x x +-=,配方后得到的方程()A .2(2)5x +=B .2(2)5x -=C .2(4)3x +=D .2(4)3x -=4.(2023春·浙江杭州·八年级统考期末)用配方法解一元二次方程2290x x --=配方后可变形为()A .()2110x -=B .()2110x +=C .()218x -=-D .()218x +=-5.(2023春·山东威海·八年级统考期末)用配方法解方程2610x x --=,若配方后结果为2()x m n -=,则n 的值为()A .10-B .10C .3-D .96.(2022秋·山西太原·九年级校考阶段练习)在解方程22410x x ++=时,对方程进行配方,图1是小思做的,图2是小博做的,对于两人的做法,说法正确的是()A .两人都正确B .小思正确,小博不正确C .小思不正确,小博正确D .两人都不正确7.(2023秋·山西长治·九年级统考期末)用配方法解一元二次方程289x x -=时,变形正确的是()A .2(4)9x -=B .2(4)9x +=C .2(4)25x -=D .2(4)25x +=8.(2022秋·天津滨海新·九年级校考期中)若()()160x y x y ++--=,则x y +的值是()A .2B .3C .2-或3D .2或3-9.(2023秋·湖南湘西·九年级统考期末)一元二次方程2830x x +-=配方后可化为.10.(2022秋·甘肃平凉·九年级校考阶段练习)已知实数x 满足2220()(23)x x x x ----=,则代数式22020x x -+的值为.11.(2022秋·上海青浦·八年级校考期中)用配方法解一元二次方程:22510x x +-=12.(2023春·安徽合肥·八年级统考期末)用配方法解方程:()()311x x -+=.13.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)解方程:23270x x --=14.(2022秋·天津津南·九年级校考期中)选取最恰当的方法解方程:(1)()2214x +=(2)23648x x -=15.(2023春·黑龙江哈尔滨·八年级哈尔滨市萧红中学校考阶段练习)用指定的方法解下列方程(1)26160x x +-=(配方法)(2)21090x x ++=(公式法)16.(2023春·辽宁大连·八年级统考期末)解方程:(1)22310x x -+=(用公式法)(2)2470x x --=(用配方法)17.(2022秋·湖北荆州·九年级校考期中)请用指定方法解下列方程:(1)公式法:2120x x +-=;(2)因式分解法:241440x -=.18.(2023春·山东威海·八年级统考期末)按指定方法解方程:(1)()()223143x x -=+;(因式分解法)(2)22330x x --=.(配方法)题型三一元二次方程根的判别式【例6】(2023春·山东济宁·八年级济宁学院附属中学校考期中)已知关于x 的方程()()221200mx m x m +-+=≠.(1)求证:无论m 取何值,这个方程总有实数根;(2)若等腰ABC 的底边长1a =,另两边b 、c 恰好是这个方程的两个根,求ABC 的周长.巩固训练1.(2023·吉林·统考中考真题)一元二次方程2520x x -+=根的判别式的值是()A .33B .23C .17D2.(2023春·北京昌平·八年级统考期末)下列方程中有两个不相等的实数根的方程是()A .2440x x -+=B .2510x x --=C .2230x x -+=D .2220x x -+=3.(2022秋·天津滨海新·九年级校考期中)关于x 的方程()220x m x m +++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定4.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)下列二次三项式在实数范围内一定能因式分解的是()A .223x x ++B .222x x m --C .22x x m--D .22345x xy y -+5.(2022秋·山西临汾·九年级统考期末)关于x 的方程2320ax x +-=有实数根,则a 的取值范围是()A .98≥-a B .98≥-a 且0a ≠C .98a >-D .98a >-且0a ≠6.(2022秋·河南南阳·九年级南阳市第三中学校考阶段练习)方程()21210m x x ---=有两个实数根,则m 的取值范围()A .34m -≤≤且12m ≠B .4m ≤且12m ≠C .34m -≤<D .34m -≤<且12m ≠7.(2023春·浙江绍兴·八年级统考期末)已知()1a a >是关于x 的方程20x bx b a -+-=的实数根.下列说法:①此方程有两个不相等的实数根;②当1a t =+时,一定有1b t =-;③b 是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有()A .①②B .②③C .①③D .③④8.(2023秋·河南许昌·九年级许昌市第一中学校联考期末)对于实数a ,b ,定义新运算:2a b ab b =-※,若关于x 的方程1x k =※有两个相等的实数根,则k 的值是()A .4B .4-C .14D .14-9.(湖北省荆州市2022-2023学年九年级上学期期中数学试题)对于实数u 、v 定义一种运算“*”为:*u v uv v =+.若关于x 的方程1*(*)4x a x =-有两个相等的实数根,求满足条件的实数a 的值为.10.(2023·贵州·统考中考真题)若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是.11.(北京市石景山区2022-2023学年八年级下学期期末数学试题)已知关于x 的一元二次方程22210x kx k +-=-.(1)请判断这个方程根的情况;(2)若该方程有一个根小于1,求k 的取值范围.12.(2022秋·上海奉贤·八年级校考期中)已知关于x 的方程()()212110k x k x k +--+-=(1)当k 取什么值时,方程只有一个根?(2)若方程有两个不相等的实数根,求k 的取值范围.题型四一元二次方程的实际应用【例7】(北京市石景山区2022-2023学年八年级下学期期末数学试题)某工厂由于采用新技术,生产量逐月增加,原来月产量为2000件,两个月后增至月产量为3000件.若设月平均增长率为x ,则下列所列的方程正确的是()A .2000(1)3000x +=B .22000(1)3000x +=C .22000(1%)3000x +=D .20002000(1)3000x ++=【例8】(2022秋·山西吕梁·九年级校考阶段练习)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支.已知1个主干长出的枝干和小分支的总数是72,则这种植物每个枝干长出小分支的个数是()A .9B .8C .7D .6【例9】(2023春·八年级单元测试)如图,在Rt ABC 中,90B Ð=°,8AB =cm ,6BC =cm ,动点P 由点A 出发沿AB 方向向点B 匀速移动,速度为1cm/s ,动点Q 由点B 出发沿BC 方向向点C 匀速移动,速度为2cm/s .动点P ,Q 同时从A ,B 两点出发,当PBQ 的面积为152cm 时,动点P ,Q 的运动时间为s .【例10】(2022秋·上海青浦·八年级校考期中)为助力攻坚脱贫,某村村委会在网上直播销售该村优质农产品礼包,已知其3月份的销售量达到400包,若农产品礼包每包的进价25元,原售价为每包40元,该村在今年4月进行降价促销,经调查发现,若农产品礼包每包降价1元,销售量可增加5袋,当农产品礼包每包降价多少元时,这种农产品在4月份可获利4620元?巩固训练1.(2023·全国·九年级专题练习)广东春季是流感的高发时期,某校4月初有一人患了流感,经过两轮传染后,共25人患流感,假设每轮传染中平均每人传染x 人,则可列方程()A .2125x x ++=B .225x x +=C .()2125x +=D .()125x x x ++=2.(2022秋·陕西咸阳·九年级统考期中)有一人感染了某种病毒,若不及时控制就会传染其他人,假设每轮传染中平均一个人传染了x 个人,经过两轮传染后共有64人感染,则x 的值是()A .8B .7C .6D .53.(重庆市开州区2022-2023学年九年级上学期期末数学试题)李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,若设2月到4月每月盈利的平均增长率为x ,则可列方程为()A .22400(1)3456x +=B .22400(1)3456x -=C .()2400123456x +=D .()2400123456x -=4.(2023春·河北沧州·九年级校考阶段练习)国家卫健委临床检验中心数据,因疫情防控需求,全国新冠病毒核酸检测实验室数量从2020年的2081家,增长至2022年的1.31万家,如果这两年核酸检测实验室的年平均增长率为x ,则下列方程正确的是()A .342.08110(1) 1.3110x ⨯+=⨯B .3242.08110(1) 1.3110x ⨯+=⨯C .2081(12)13100x ⨯+=D .22081(12)13100x ⨯+=5.(2023·黑龙江·统考中考真题)如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m ,则小路的宽是()A .5mB .70mC .5m 或70mD .10m6.(2023·全国·九年级专题练习)如图,在一张长宽分别为50cm 和30cm 的长方形纸板上剪去四个边长为cm x 的小正方形,并用它做成一个无盖的小长方体盒子,若要使长方体盒子的底面积为2300cm ,求x 的值,根据题意,可列得的方程为()A .()()5030300x x --=B .()()502302300x x --=C .()()50230300x x --=D .215004300x -=7.(2023·江苏无锡·统考中考真题)《九章算术》中提出了如下问题:今有户不知高、广,竿不知长短,横之不出四尺,从之不出二尺,邪之适出,问户高、广、邪各几何?这段话的意思是:今有门不知其高宽:有竿,不知其长短,横放,竿比门宽长出4尺:竖放,竿比门高长出2尺:斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少?则该问题中的门高是尺.8.(2023秋·江西萍乡·九年级统考期末)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客尽可能多得实惠的前提下,商家还想获得6080元的利润,则该商品的销售定价为元.9.(2023春·八年级单元测试)在ABC 中,90ABC ∠=︒,4cm AB =,3cm BC =,动点P ,Q 分别从点A ,B 同时开始移动(移动方向如图所示),点P 的速度为1cm/s 2,点Q 的速度为1cm/s ,点Q 移动到点C 后停止,点P 也随之停止移动,若使PBQ 的面积为2154cm ,则点P 运动的时间是s .10.(2023春·山东德州·八年级校考阶段练习)如图,90AOB ∠=︒,36cm =OA ,12cm OB =,一个小球从点A 出发沿着AO 方向滚向点O ,另一小球立即从点B 出发,沿BC 匀速前进拦截小球,恰好在点C 处截住了小球.若两个小球滚动的速度相等,则另一个小球滚动的路程BC 是cm .11.(2023春·重庆渝北·八年级礼嘉中学校考期末)今年春季是甲流病毒的高发期.为了遏制甲流病毒的传播,建议市民朋友们在公共场合要佩戴口罩,现在,有一个人患了甲流,经过两轮传染后共有81个人患了甲流.(1)每轮传染中平均一个人传染了几个人?(2)某药房最近售出了100盒口罩.已知售出的95N 医用口罩的数量不超过普通医用口罩的4倍,每盒95N 医用口罩的单价为15元,每盒普通医用口罩的价格为10元,则售出95N 医用口罩和普通医用各多少盒时,总销售额最多?请说明理由.12.(2023·广东阳江·统考一模)自2023年1月以来,甲流便肆虐横行,成为当前主流流行疾病.某一小区有1位住户不小心感染了甲流,由于甲流传播感染非常快,小区经过两轮传染后共有121人患了甲流.(1)每轮感染中平均一个人传染几人?(2)如果按照这样的传播速度,经过三轮传染后累计是否超过1500人患了甲流?13.(2023春·安徽安庆·八年级安庆市石化第一中学校考期末)我市某超市于今年年初以每件30元的进价购进一批商品.当商品售价为40元时,一月份销售250件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到360件.设二、三这两个月的月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加6件,当商品降价多少元时,商场获利1950元?14.(北京市石景山区2022-2023学年八年级下学期期末数学试题)如图,矩形草地ABCD 中,16AB =m ,10AD =m ,点O 为边AB 中点,草地内铺了一条长和宽分别相等直角折线甬路(PO PQ =,OM QN =),若草地总面积(两部分阴影之和)为2132m ,求甬路的宽.15.(2022秋·上海奉贤·八年级校考期中)如图,正方形ABCD 分割成两个小正方形和两个长方形.(1)若正方形ABCD 边长为10,正方形BFPE 的面积是正方形PGDH 的一半,求正方形BFPE 的边BF 的长.(2)若正方形ABCD 面积为10,设BF x =,四边形APGD 的面积为y ,求y 关于x 的函数解析式,并写出定义域.(3)四边形APGD 的面积是否能够等于正方形ABCD 面积的一半,如果能,请求出BF 长,如果不能请说明理由.16.(2023春·江苏南通·八年级统考期末)某学校在“美化校园,幸福学习”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用20m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).75m,求AB的长;(2)若在直角墙角内点P处有一棵桂花树,且到墙CD的距离为12m,若要将这棵树围在矩形花园内(含边100m若能,求出AB的长;若不能,请说明理由.界,不考虑树的粗细),问该花园的面积能否为217.(2023·山东东营·统考中考真题)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为6402m的羊圈?(2)羊圈的面积能达到6502m吗?如果能,请你给出设计方案;如果不能,请说明理由.18.(2022秋·山西晋城·九年级统考期末)某公园中有一块长为32米,宽为20米的矩形花坛,现在要在花坛中间修建一条如图所示的文化长廊,已知长廊的宽度均相等,且横纵相交成直角,若要使花坛的种植面积为540平方米,问长廊的宽度应为多少米?19.(辽宁省辽阳市2022-2023学年九年级上学期期末数学试题)今年元旦期间,某网络经销商进购了一批节日彩灯,彩灯的进价为每条40元,当销售单价定为52元时,每天可售出180条,为了扩大销售,决定采取适当的降价措施,经调查:销售单价每降低1元,则每天可多售出10条.若设这批节日彩灯的销售单价为x(元),每天的销售量为y(条).(1)求每天的销售量y(条)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这批节日彩灯每天所获得的利润为2000元?20.(2023春·浙江金华·八年级义乌市绣湖中学教育集团校联考期中)某水果店以相同的进价购进两批樱桃,第一批80千克,每千克16元出售;第二批60千克,每千克18元出售,两批车厘子全部售完,店主共获利960元.(1)求樱桃的进价是每千克多少元?(2)该水果店一相同的进价购进第三批樱桃若干,第一天将樱桃涨价到每千克20元出售,结果仅售出40千克;为了尽快售完第三批樱桃,第二天店主决定在第一天售价的基础上降价促销,若在第一天售价基础上每降价1元,第二天的销售量就在第一天的基础上增加10千克.到第二天晚上关店时樱桃售完,店主销售第三批樱桃获得的利润为850元,求第二天樱桃的售价是每千克多少元?21.(2023春·安徽阜阳·八年级统考期末)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价-进货价)类别价格A款钥匙扣B款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数?(2)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?22.(2023春·浙江宁波·八年级统考期末)第19届亚运会即将在杭州举行,某商店购进一批亚运会纪念品进行销售,已知每件纪念品的成本是30元,如果销售单价定为每件40元,那么日销售量将达到100件.据市场调查,销售单价每提高1元,日销售量将减少2件.(1)若销售单价定为每件45元,求每天的销售利润;(2)要使每天销售这种纪念品盈利1600元,同时又要让利给顾客,那么该纪念品的售价单价应定为每件多少元?23.(2023春·江苏无锡·八年级统考期末)服装店购进一批甲、乙两种款型的时尚T恤衫,甲种款型共用了10400元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的2倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)该服装店第一个月甲种款型的T恤衫以200元/件的价格售出20件、乙种款型的T恤衫以250元/件的价格售出10件;为了促销,第二个月决定对甲、乙两种款式的T恤衫都进行降价a元销售,其中甲种款型的T恤衫的销售量增加4a件、乙种款型的T恤衫的销售增加a件,结果第二个月的销售总额比第一个月的销售总额增加了1000a元,求第二个月的销售利润.24.(2022秋·陕西咸阳·九年级统考期中)今年某村农产品喜获丰收,该村村委会在网上直播销售A、B两种优质农产品礼包.(1)已知今年7月份销售A 种农产品礼包256包,8、9月该礼包十分畅销,销售量持续走高,在售价不变的基础上,9月份的销售量达到400包.若设8、9两个月销售量的月平均增长率为x ,求x 的值;(2)若B 种农产品礼包每包成本价为16元,当售价为每包30元时,每月销量为200包.为了尽快减少库存,该村准备在10月进行降价促销,经调查发现,若B 种农产品礼包每包每降价1元,月销售量可增加20包,当B 种农产品礼包每包降价多少元时,该村销售B 种农产品礼包在10月份可获利2860元?25.(2023春·山东济南·八年级统考期末)如图,在ABC 中,90B Ð=°,6cm AB =,8cm BC =点P 从A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.点P ,Q 同时出发,当点Q 运动到点C 时,两点停止运动,设运动时间为t 秒.(1)填空:BQ =______cm ,PB =______cm ;(用含t 的代数式表示);(2)当t为几秒时,PQ 的长度等于(3)是否存在某一时刻t ,使四边形APQC 的面积等于ABC 面积的23?如果存在,求出t 的值,如果不存在,请说明理由.26.(2022秋·广东广州·九年级校考阶段练习)如图,在Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =.点P 、Q 同时由A 、C 两点出发,分别以1cm 和2cm s 的速度沿线段AC 、CB 匀速移动,当一点到达终点时,另一点也停止移动.(1)设经过t 秒,用含t 的代数式表示PC 、CQ .PC =______、CQ =______.(2)几秒后,PCQ △的面积是ABC 面积的1327.(2020秋·广东惠州·九年级惠州一中校考阶段练习)如图,在长方形ABCD 中,10cm AB =,12cm BC =,点P 从点A 开始沿边AB 向终点B 以2cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以3cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ =______cm ,PB =______cm (用含t 的代数式表示)(2)当t 为何值时,PQ 的长度等于10cm ?(3)是否存在t ,使得五边形APQCD 的面积等于278cm ?若存在,请求出t 的值;若不存在,请说明理由.28.(2022春·广西梧州·八年级校考期中)如图,在ABC ∆中,90B Ð=°,6cm AB =,8cm BC =点P 从A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.点P ,Q 同时出发,当点Q 运动到点C 时,两点停止运动,设运动时间为t 秒.(1)填空:BQ =___________cm ,PB =___________cm ;(用含t 的代数式表示)(2)当t 为几秒时,PQ 的长度等于8cm ?(3)是否存在某一时刻t ,使四边形APQC 的面积等于ABC 面积的23?如果存在,求出t 的值,如果不存在,请说明理由,29.(2023春·江苏泰州·八年级统考期末)问题:“某工程队准备修建一条长3000米的下水管道,由于采用新的施工方式,________________,提前2天完成任务,求原计划每天修建下水管道的长度?”条件:(1)实际每天修建的长度比原计划多25%;(2)原计划每天修建的长度比实际少75米.在上述的2个条件中选择1个________________(仅填序号)补充在问题的横线上,并完成解答.30.(2023春·重庆北碚·八年级西南大学附中校考期中)甲、乙两工程队合作完成某修路工程,该工程总长为4800米,原计划32小时完成.甲工程队每小时修路里程比乙工程队的2倍多30米,刚好按时完成任务.(1)求甲工程队每小时修的路面长度;(2)通过勘察,地下发现大型溶洞,此工程的实际施工里程比最初的4800米多了1000米,在实际施工中,m )小时;甲工程队的修路速度比原计划每乙工程队修路效率保持不变的情况下,时间比原计划增加了(25小时下降了3m米,而修路时间比原计划增加m小时,求m的值.31.(重庆市开州区2022-2023学年九年级上学期期末数学试题)随着人们对健康生活的追求,全民健身意识日益增强,徒步走成为人们锻炼的日常,中老年人尤为喜爱.(1)张大伯徒步走的速度是李大伯徒步走的1.2倍,张大伯走5分钟,李大伯走10分钟,共走800米,求张大伯和李大伯每分钟各走多少米?(2)天气好,天色早,张大伯和李大伯锻炼兴致很浓,又继续走,与(1)中相比,张大伯的速度不变,李大伯的速度每分钟提高了2a米,时间都各自多走了10a分钟,结果两人又共走了6900米,求a的值.。
期末专项复习—一元二次方程考点1 巧用一元二次方程的定义及相关概念求值 题型1 利用一元二次方程的定义确定字母的取值1.已知231m x -+=()是关于x 的一元二次方程,则m 的取值范围是( ) A .3m ≠ B .3m ≥C .2m -≥D .23m m -≥且≠2.已知关于x 的方程211210m xm m x +++--=()(). (1)m 取何值时,它是一元二次方程?并写出这个方程;(2)m 取何值时,它是一元一次方程?题型2 利用一元二次方程的项的概念求字母的取值1.若一元二次方程2243680a x a x a -+++-=()()没有常数项,则a 的值为________.2.已知关于x 的一元二次方程221510m x x m -++-=()的常数项为0,求m 的值.题型3 利用一元二次方程的根的概念求字母或代数式的值1.已知关于x 的方程20x bx a ++=的一个根是0a a -(≠),则a b -的值为( ) A .1-B .0C .1D .22.已知关于x 的一元二次方程2243160k x x k +++-=()的一个根为0,求k 的值.3.已知实数a 是一元二次方程2201610x x -+=的根,求代数式22120152016a a a +--的值.题型4 利用一元二次方程根的概念解决探究性问题1.已知m ,n 是方程2210x x --=的两个根,是否存在实数a 使22714367m m a n n -+--()()的值等于8?若存在,求出a 的值;若不存在,请说明理由.考点2 一元二次方程的解法归类 类型1 限定方法解一元二次方程方法1 形如20x m n n +=()(≥)的一元二次方程用直接开平方法求解1.方程24250x -=的解为( ) A .25x =B .52x =C .52x =±D .25x =±2.用直接开平方法解下列一元二次方程,其中无解的方程为( ) A .255x -= B .230x -=C .240x +=D .210x +=()方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解 1.用配方法解方程234x x +=,配方后的方程变为( )A .227x -=() B .221x +=() C .221x -=()D .222x +=() 2.解方程:2420x x +-=.3.已知221016890x x y y -+-+=,求xy的值.方法3 能化成形如0x a x b ++=()()的一元二次方程用因式分解法求解 1.一元二次方程22x x x -=-()的根是( ) A .1-B .0C .1和2D .1-和22.解下列一元二次方程:(1)220x x -=;(2)21690x -=;(3)2441x x =-.方法4 如果一个一元二次方程易于化为它的一般式,则用公式法求解 1.用公式法解一元二次方程2124x x =-,方程的解应是( )A .x =B .x =C .x =D .x =2.用公式法解下列方程.(1)23170x x +-=();(2)24352x x x --=-.类型2 选择合适的方法解一元二次方程 1.方程24490x -=的解为( )A .27x =B .72x = C .172x =,272x =-D .127x =,227x =-2.一元二次方程293x x -=-的根是( )A .3B .4-C .3和4-D .3和43.方程135x x +-=()()的解是( )A .11x =,23x =-B .14x =,22x =-C .11x =-,23x =D .14x =-,22x =4.解下列方程.(1)23360y y --=;(2)22310x x -+=.类型3 用特殊方法解一元二次方程 方法1 构造法1.解方程:2619100x x ++=.2.若m ,n ,p 满足8m n -=,2160mn p ++=,求m n p ++的值.方法2 换元法a .整体换元1.若280a b a b +++-=()(),则a b +的值为( ) A .4-或2 B .3或32- C .2-或4D .3或2-2.已知22260x xy y x y -++--=,则x y -的值是( ) A .2-或3 B .2或3- C .1-或6D .1或6-3.解方程:223220x x ---+=()().4.解方程:123448x x x x ----=()()()().b .降次换元1.解方程:432635623560x x x x -+-+=.c .倒数换元 1.解方程:2322x xx x --=-.方法3 特殊值法1.解方程:2013201420152016x x --=⨯()().考点3 根的判别式的四种常见应用题型1 利用根的判别式判断一元二次方程根的情况1.已知关于x 的方程2110kx k x +--=(),下列说法正确的是( ) A .当0k =时,方程无解 B .当1k =时,方程有一个实数解 C .当1k =-时,方程有两个相等的实数解 D .当0k ≠时,方程总有两个不相等的实数解2.已知方程220x x m --=没有实数根,其中m 是实数,试判断方程2210x mx mm +++=()有无实数根.题型2 利用根的判别式求字母的值或取值范围1.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根. (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.2.已知关于x 的一元二次方程2220mx m x -++=(), (1)证明:不论m 为何值,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.题型3 利用根的判别式求代数式的值1.已知关于x 的方程22140x m x +-+=()有两个相等的实数根,求21212m m m--+()的值.2.已知关于x 的一元二次方程2200mx nx m +-=(≠)有两个相等的实数根,求222416mn m n ++-()的值.题型4 利用根的判别式确定三角形的形状1.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根,试判断此三角形的形状.2.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程204a ca c x bx -+++=()有两个相等的实数根,试判断此三角形的形状.考点4 一元二次方程与三角形的综合 题型1 一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程27120x x -+=的解,则第三边的长为( ) A .3B .4C .3或4D .无法确定2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3cm 和7cm ,第三边长为cm a ,且整数a 满足210210a a -+=,求三角形的周长.题型2 一元二次方程与直角三角形的结合1.已知一个直角三角形的两条直角边的长恰好是方程217600x x -+=的两个根,则这个直角三角形的斜边长为________.2.已知a ,b ,c 分别是ABC △的三边,当0m >时,关于x 的一元二次方程220c x m b x m ++--=()()有两个相等的实数根,试判断ABC △的形状,并说明理由.3.已知ABC △的三边a ,b ,c 中,1a b =-,1c b =+,又已知关于x 的方程2420120x x b -++=的根恰为b 的值,求ABC △的面积.题型3 一元二次方程与等腰三角形的综合1.等腰三角形一条边的长为3,另两条边的长是关于x 的一元二次方程2120x x k -+=的两个根,则k 的值是( ) A .27B .36C .27或36D .182.已知关于x 的一元二次方程220a c x bx a c +++-=()(),其中a ,b ,c 分别为ABC △的三边的长. (1)如果1x =-是方程的根,试判断ABC △的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC △的形状,并说明理由;(3)如果ABC △是等边三角形,试求这个一元二次方程的根.考点5 根与系数的关系的四种应用类型 题型1 利用根与系数的关系求代数式的值1.设方程24730x x --=的两根为1x ,2x ,不解方程求下列各式的值. (1)1233x x --()(); (2)211211x xx x +++; (3)12x x -.题型2 利用根与系数的关系构造一元二次方程1.构造一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数.题型3 利用根与系数的关系求字母的值或取值范围1.已知关于x 的一元二次方程22210x mx m --+=的两根的平方和是294,求m 的值.2.已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)若该方程的一个根为1,求a 的值及该方程的另一根.题型4 巧用根与系数的关系确定字母系数的存在性4.已知1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根,是否存在实数k ,使12123222x x x x --=-()()成立?若存在,求出k 的值;若不存在,请说明理由.考点6:可化为一元二次方程的分式方程的应用 题型1 营销问题1.某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完,第二次去采购时发现批发价每件上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件,两批玩具的售价均为2.8元,问:第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)题型2 行程问题3.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后快车在慢车前12千米,快车到达 乙站比慢车早25分钟,快车和慢车每小时各行驶多少千米?应用3 工程问题4.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天 才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)若甲工程队单独施工a 天后,再由甲、乙两工程队合作________天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需收取施工费1万元,乙工程队施工每天需收取施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?考点7 几种常见的热门考点 题型1 一元二次方程的根1.若一元二次方程220150ax bx --=有一根为1x =-,则a b +=________.2.若关于x 的一元二次方程20ax bx c ++=有一根为1-,且2a =+-,求20162015a b c+()的值.题型2 一元二次方程的解法1.用配方法解方程2210x x --=时,配方后所得的方程为( )A .210x +=()B .210x -=()C .212x +=()D .212x -=() 2.一元二次方程2230x x --=的解是( ) A .11x =-,23x =B .11x =,23x =-C .11x =-,23x =-D .11x =,23x =3.选择适当的方法解下列方程:(1)21210x x x -+-=()();(2)221327x x x -=+-()().题型3 一元二次方程根的判别式1.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是( )A .1a <B .1a >C .1a ≤D .1a ≥2.已知关于x 的一元二次方程210x m +-=()有两个实数根,则m 的取值范围是( )A .34m -≥B .0m ≥C .1m ≥D .2m ≥3.在等腰三角形ABC 中,三边长分别为a ,b ,c .其中5a =,若关于x 的方程2260x b x b +++-=()() 有两个相等的实数根,求ABC △的周长.题型4 一元二次方程根与系数的关系1.已知α,β是关于x 的一元二次方程22230x m x m +++=()的两个不相等的实数根,且满足111αβ+=-,则m 的值是( )A .3B .1C .3或1-D .3-或1 2.关于x 的方程231210ax a x a -+++=()()有两个不相等的实数根1x ,2x ,且有12121x x x x a +-=-,求a 的值.3.设1x ,2x 是关于x 的一元二次方程222420x ax a a +++-=的两个实数根,当a 为何值时,2212x x +有最小值?最小值是多少?题型5 一元二次方程的应用1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?2.某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个图形,如图所示,甲、乙两点分别从直径的两端点A ,B 出发,以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程1cm ()与时间t s ()满足关系:2131022t t t =+(≥),乙以4cm/s 的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多长时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多长时间?题型6 新定义问题1.若1x ,2x 是关于x 的方程20x bx c ++=的两个实数根,且122x x k +=(k 是整数),则称方程20x bx c ++=为“偶系二次方程”.如方程26270x x --=,2280x x --=,227304x x +-=,26270x x +-=,2440x x ++=都是“偶系二次方程”.判断方程2120x x +-=是否是“偶系二次方程”,并说明理由.。
一元二次方程全章热门考点与重点题型解题技巧整理(解析) 考点1:巧用一元二次方程的定义及相关概念求值考点分析:巧用一元二次方程的定义及相关概念求值主要体现在:利用定义或项的概念求字母的值,利用根的概念求字母或代数式的值,利用根的概念解决探究性问题等. 题型1 利用一元二次方程的定义确定字母的取值1.已知(m -3)x 2+m +2x =1是关于x 的一元二次方程,则m 的取值范围是( D )A .m ≠3B .m ≥3C .m ≥-2D .m ≥-2且m ≠3点拨:由题意,得⎩⎪⎨⎪⎧m -3≠0,m +2≥0,解得m ≥-2且m ≠3.2.已知关于x 的方程(m +1)xm 2+1+(m -2)x -1=0.(1)m 取何值时,它是一元二次方程?并写出这个方程;(2)m 取何值时,它是一元一次方程?解:(1)当⎩⎪⎨⎪⎧m 2+1=2,m +1≠0时,它是一元二次方程,解得m =1. 当m =1时,原方程可化为2x 2-x -1=0.(2)当⎩⎪⎨⎪⎧m -2≠0,m +1=0或者当m +1+(m -2)≠0且m 2+1=1时,它是一元一次方程.解得m =-1或m =0.故当m =-1或m =0时,它是一元一次方程.题型2 利用一元二次方程的项的概念求字母的取值1.若一元二次方程(2a -4)x 2+(3a +6)x +a -8=0没有常数项,则a 的值为___8___.点拨:由题意得⎩⎪⎨⎪⎧a -8=0,2a -4≠0.解得a =8. 2.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-1=0的常数项为0,求m 的值.解:由题意,得⎩⎪⎨⎪⎧m 2-1=0,m -1≠0,解得m =-1.题型3 利用一元二次方程的根的概念求字母或代数式的值1.已知关于x的方程x2+bx+a=0的一个根是-a(a≠0),则a-b的值为(A) A.-1 B.0 C.1 D.2点拨:∵关于x的方程x2+bx+a=0的一个根是-a(a≠0),∴a2-ab+a=0. ∴a(a-b+1)=0. ∵a≠0,∴a-b=-1.2.已知关于x的一元二次方程(k+4)x2+3x+k2-16=0的一个根为0,求k的值.解:把x=0代入(k+4)x2+3x+k2-16=0,得k2-16=0,解得k1=4,k2=-4. ∵k+4≠0,∴k≠-4,∴k=4.3.已知实数a是一元二次方程x2-2 016x+1=0的根,求代数式a2-2 015a-a2+1 2 016的值.解:∵实数a是一元二次方程x2-2 016x+1=0的根,∴a2-2 016a+1=0.∴a2+1=2 016a,a2-2 016a=-1.∴a2-2 015a-a2+12 016=a2-2 015a-2 016a2 016=a2-2 015a-a=a2-2 016a=-1题型4 利用一元二次方程根的概念解决探究性问题1.已知m,n是方程x2-2x-1=0的两个根,是否存在实数a使(7m2-14m+a)(3n2-6n-7)的值等于8?若存在,求出a的值;若不存在,请说明理由.解:由题意可知m2-2m-1=0,n2-2n-1=0,∴(7m2-14m+a)(3n2-6n-7)=[7(m2-2m)+a][3(n2-2n)-7]=(7+a)(3-7)=-4(a +7),由-4(a+7)=8得a=-9,故存在满足要求的实数a,且a的值等于-9.考点2:一元二次方程的解法归类考点分析:解一元二次方程时,主要考虑降次,其解法有直接开平方法、因式分解法、配方法和公式法等.在具体的解题过程中,结合方程的特点选择合适的方法,往往会达到事半功倍的效果.类型1 限定方法解一元二次方程方法1 形如(x +m )2=n (n ≥0)的一元二次方程用直接开平方法求解1.方程4x 2-25=0的解为( C )A .x =25B .x =52C .x =±52D .x =±252.用直接开平方法解下列一元二次方程,其中无解的方程为( C )A .x 2-5=5B .-3x 2=0C .x 2+4=0D .(x +1)2=0方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解1.用配方法解方程x 2+3=4x ,配方后的方程变为( C )A .(x -2)2=7B .(x +2)2=1C .(x -2)2=1D .(x +2)2=22.解方程:x 2+4x -2=0.解:x 2+4x -2=0,x 2+4x =2,(x +2)2 =6,x +2 =±6,x 1=-2+6,x 2=-2- 6.3.已知x 2-10x +y 2-16y +89=0,求x y的值. 解:x 2-10x +y 2-16y +89=0,(x 2-10x +25)+(y 2-16y +64) =0,(x -5)2+(y -8)2 =0,∴x =5,y =8,∴x y =58.方法3 能化成形如(x +a )(x +b )=0的一元二次方程用因式分解法求解1.一元二次方程x (x -2)=2-x 的根是( D )A .-1B .0C .1和2D .-1和22.解下列一元二次方程:(1)x 2-2x =0;(2)16x 2-9=0;(3)4x 2=4x -1.解:(1)x 2-2x =0,x (x -2)=0,x 1=0,x 2=2.(2)16x 2-9=0,(4x +3)(4x -3)=0,x 1=-34,x 2=34. (3)4x 2=4x -1,4x 2-4x +1=0,(2x -1)2=0,x 1=x 2=12. 方法4 如果一个一元二次方程易于化为它的一般式,则用公式法求解1.用公式法解一元二次方程x 2-14=2x ,方程的解应是( B ) A .x =-2±52 B .x =2±52C .x =1±52D .x =1±322.用公式法解下列方程.(1)3(x 2+1)-7x =0;(2)4x 2-3x -5=x -2.解:(1)3(x 2+1)-7x =0,3x 2-7x +3=0,∴b 2-4ac =(-7)2-4×3×3=13,∴x =7±132×3=7±136.∴x 1=7+136,x 2=7-136. (2)4x 2-3x -5=x -2,4x 2-4x -3=0,∴b 2-4ac =(-4)2-4×4×(-3)=64,∴x =4±642×4, ∴x 1=32,x 2=-12.类型2 选择合适的方法解一元二次方程1.方程4x 2-49=0的解为( C )A .x =27B .x =72C .x 1=72,x 2=-72D .x 1=27,x 2=-272.一元二次方程x 2-9=3-x 的根是( C )A .3B .-4C .3和-4D .3和43.方程(x +1)(x -3)=5的解是( B )A .x 1=1,x 2=-3B .x 1=4,x 2=-2C .x 1=-1,x 2=3D .x 1=-4,x 2=24.解下列方程.(1)3y 2-3y -6=0;(2)2x 2-3x +1=0.解:(1)3y 2-3y -6=0,y 2-y -2=0,y 2-y +14-94=0,⎝⎛⎭⎫y -122=94,y -12=±32, ∴y 1=2,y 2=-1.(2)2x 2-3x +1=0,b 2-4ac =(-3)2-4×2×1=1,∴x =3±12×2,即x 1=1,x 2=12. 类型3 用特殊方法解一元二次方程方法1 构造法1.解方程:6x 2+19x +10=0.解:将原方程两边同乘6,得(6x )2+19×(6x )+60=0.解得6x =-15或6x =-4.∴x 1=-52,x 2=-23. 2.若m ,n ,p 满足m -n =8,mn +p 2+16=0,求m +n +p 的值.解:因为m -n =8,所以m =n +8.将m =n +8代入mn +p 2+16=0中,得n (n +8)+p 2+16=0,所以n 2+8n +16+p 2=0,即(n +4)2+p 2=0.又因为(n +4)2≥0,p 2≥0,所以⎩⎪⎨⎪⎧n +4=0,p =0,解得⎩⎪⎨⎪⎧n =-4,p =0.所以m =n +8=4, 所以m +n +p =4+(-4)+0=0.方法2 换元法a .整体换元1.若(a +b )(a +b +2)-8=0,则a +b 的值为( A )A .-4或2B .3或-32C .-2或4D .3或-22.已知x 2-2xy +y 2+x -y -6=0,则x -y 的值是( B )A .-2或3B .2或-3C .-1或6D .1或-63.解方程:(x -2)2-3(x -2)+2=0.解:(x -2)2-3(x -2)+2=0.设x -2=y ,原方程化为y 2-3y +2=0,解得y 1=1,y 2=2.当y =1时,x -2=1,x =3,当y =2时,x -2=2,x =4.∴原方程的解为x 1=3,x 2=4.4.解方程:(x -1)(x -2)(x -3)(x -4)=48.解:原方程即[(x -1)(x -4)][(x -2)(x -3)]=48,即(x 2-5x +4)(x 2-5x +6)=48.设y =x 2-5x +5,则原方程变为(y -1)(y +1)=48.解得y 1=7,y 2=-7.当x 2-5x +5=7时,解得x 1=5+332,x 2=5-332; 当x 2-5x +5=-7时,Δ=(-5)2-4×1×12=-23<0,方程无实数根.∴原方程的根为x 1=5+332,x 2=5-332.b .降次换元1.解方程:6x 4-35x 3+62x 2-35x +6=0.解:经验证x =0不是方程的根,原方程两边同除以x 2,得6x 2-35x +62-35x +6x 2=0, 即6⎝⎛⎭⎫x 2+1x 2-35⎝⎛⎭⎫x +1x +62=0. 设y =x +1x ,则x 2+1x 2=y 2-2, 原方程可变为6(y 2-2)-35y +62=0.解得y 1=52,y 2=103. 当x +1x =52时,解得x 1=2,x 2=12; 当x +1x =103时,解得x 3=3,x 4=13. 经检验,均符合题意.∴原方程的解为x 1=2,x 2=12,x 3=3,x 4=13.c .倒数换元1.解方程:x -2x -3x x -2=2.解:设x -2x =y ,则原方程化为y -3y=2, 整理得y 2-2y -3=0,∴y 1=3,y 2=-1.当y =3时,x -2x=3,∴x =-1. 当y =-1时,x -2x=-1,∴x =1. 经检验,x =±1都是原方程的根,∴原方程的根为x 1=1,x 2=-1.方法3 特殊值法1.解方程:(x -2 013)(x -2 014)=2 015×2 016.解:方程组⎩⎪⎨⎪⎧x -2 013=2 016,x -2 014=2 015的解一定是原方程的解,解得x =4 029. 方程组⎩⎪⎨⎪⎧x -2 013=-2 015,x -2 014=-2 016的解也一定是原方程的解,解得x =-2.∵原方程最多有两个实数解,∴原方程的解为x1=4 029,x2=-2.点拨:解本题也可采用换元法.设x-2 014=t,则x-2 013=t+1,原方程可化为t(t +1)=2 015×2 016,先求出t,进而求出x.考点3:根的判别式的四种常见应用考点分析:对于一元二次方程ax2+bx+c=0(a≠0),式子b2-4ac的值决定了一元二次方程的根的情况,利用根的判别式可以不解方程直接判断方程根的情况,反过来,利用方程根的情况可以确定方程中待定系数的值或取值范围.题型1 利用根的判别式判断一元二次方程根的情况1.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是(C)A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解点拨:当k=0时,方程为一元一次方程,解为x=1;当k≠0时,因为Δ=(1-k)2-4k·(-1)=k2+2k+1=(k+1)2≥0,所以当k=1时,Δ=4,方程有两个不相等的实数解;当k=-1时,Δ=0,方程有两个相等的实数解;当k≠0时,Δ≥0,方程总有两个实数解.故选C.2.已知方程x2-2x-m=0没有实数根,其中m是实数,试判断方程x2+2mx+m(m+1)=0有无实数根.解:∵x2-2x-m=0没有实数根,∴Δ1=(-2)2-4·(-m)=4+4m<0,即m<-1.对于方程x2+2mx+m(m+1)=0,Δ2=(2m)2-4·m(m+1)=-4m>4,∴方程x2+2mx+m(m+1)=0有两个不相等的实数根.题型2 利用根的判别式求字母的值或取值范围1已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.解:(1)根据题意得b2-4ac =4-4(2k -4)=20-8k>0,解得k<52. (2)由k 为正整数,可得k =1或k =2.利用求根公式可求出方程的根为x =-1±5-2k ,∵方程的根为整数,∴5-2k 为完全平方数,∴k 的值为2.2.已知关于x 的一元二次方程mx 2-(m +2) x +2=0,(1)证明:不论m 为何值,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.(1)证明:Δ=[-(m +2)]2-8m =m 2-4m +4=(m -2)2.∵不论m 为何值,(m -2)2≥0,即Δ≥0.∴不论m 为何值,方程总有实数根.(2)解:解关于x 的一元二次方程mx 2-(m +2)x +2=0,得x =m +2±Δ2m =m +2±(m -2)2m .∴x 1=2m ,x 2=1. ∵方程的两个根都是正整数,∴2m是正整数,∴m =1或m =2. 又∵方程的两个根不相等,∴m ≠2,∴m =1.题型3 利用根的判别式求代数式的值1.已知关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根,求m -1(2m -1)2+2m的值.解:∵关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根,∴Δ=(2m -1)2-4×1×4=0,即2m -1=±4.∴m =52或m =-32. 当m =52时,m -1(2m -1)2+2m =52-116+5=114;当m =-32时,m -1(2m -1)2+2m =-32-116-3=-526.2.已知关于x 的一元二次方程mx 2+nx -2=0(m ≠0)有两个相等的实数根,求mn 2(m +4)2+n 2-16的值. 解:由题意可知,b 2-4ac =n 2+8m =0,∴8m =-n 2,∴mn 2(m +4)2+n 2-16=mn 2m 2+8m +16+n 2-16=mn 2m 2+8m +n 2=mn 2m 2-n 2+n 2=mn 2m 2. ∵m ≠0,∴mn 2m 2=n 2m=-8.题型4 利用根的判别式确定三角形的形状1.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程(b -c )x 2+2(a -b )x +b -a =0有两个相等的实数根,试判断此三角形的形状解:∵一元二次方程(b -c )x 2+2(a -b )x +b -a =0有两个相等的实数根, ∴[2(a -b )]2-4(b -c )·(b -a )=0,∴4(a -b )(a -c )=0,∴a =b 或a =c ,∴此三角形是等腰三角形2.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程(a +c )x 2+bx +a -c 4=0有两个相等的实数根,试判断此三角形的形状.解:∵方程(a +c)x2+bx +a -c 4=0有两个相等的实数根, ∴Δ=b2-4(a +c)·a -c 4=b2-(a2-c2)=0, 即b2+c2=a2,∴此三角形是直角三角形.考点4:一元二次方程与三角形的综合考点分析:一元二次方程是初中数学重点内容之一,常常与其他知识结合,其中一元二次方程与三角形的综合应用就是非常重要的一种,主要考查一元二次方程的根的概念、根的判别式的应用、一元二次方程的解法及与等腰三角形、直角三角形的性质等知识的综合运用.题型1 一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程x2-7x+12=0的解,则第三边的长为(C)A.3B.4C.3或4D.无法确定2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3 cm和7 cm,第三边长为a cm,且整数a满足a2-10a+21=0,求三角形的周长.解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)当a=5时,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.同理可知a=6,a=8,a=9都不是方程的根,a=7是方程的根.(第二步)∴△ABC的周长是3+7+7=17(cm).上述过程中,第一步是根据三角形任意两边之和大于第三边,任意两边之差小于第三边,第二步应用的数学思想是__分类讨论_,确定a值的大小是根据_方程根的定义__.题型2 一元二次方程与直角三角形的结合1.已知一个直角三角形的两条直角边的长恰好是方程x2-17x+60=0的两个根,则这个直角三角形的斜边长为____13____.2.已知a,b,c分别是△ABC的三边,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,试判断△ABC的形状,并说明理由.解:△ABC 是直角三角形.理由如下: 原方程可化为(b +c )x 2-2m ax +cm -bm =0, Δ=4ma 2-4m (c -b )(c +b )=4m (a 2+b 2-c 2). ∵m >0,且原方程有两个相等的实数根,∴a 2+b 2-c 2=0,即a 2+b 2=c 2. ∴△ABC 是直角三角形.3.已知△ABC 的三边a ,b ,c 中,a =b -1,c =b +1,又已知关于x 的方程4x 2-20x +b +12=0的根恰为b 的值,求△ABC 的面积.解:将x =b 代入原方程,整理得4b 2-19b +12=0,解得b 1=4,b 2=34.当b 1=4时,a=3,c =5,∵32+42=52,即a 2+b 2=c 2,∴△ABC 为直角三角形,且∠C =90°.∴S △ABC =12ab =12×3×4=6;当b 2=34时,a =34-1<0,不合题意,舍去.因此,△ABC 的面积为6.题型3 一元二次方程与等腰三角形的综合1.等腰三角形一条边的长为3,另两条边的长是关于x 的一元二次方程x 2-12x +k =0的两个根,则k 的值是( B )A .27B .36C .27或36D .182.已知关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0,其中a ,b ,c 分别为△ABC 的三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (3)如果△ABC 是等边三角形,试求这个一元二次方程的根. 解:(1)△ABC 是等腰三角形.理由如下:把x =-1代入原方程,得a +c -2b +a -c =0,所以a =b ,故△ABC 是等腰三角形. (2)△ABC 是直角三角形.理由如下:方程有两个相等的实数根,则Δ=(2b )2-4(a +c )(a -c )=0,所以b 2-a 2+c 2=0,所以a 2=b 2+c 2,故△ABC 是直角三角形.(3)如果△ABC 是等边三角形,则a =b =c ,所以方程可化为2ax 2+2ax =0,所以2ax (x +1)=0,所以方程的解为x 1=0,x 2=-1.考点5:根与系数的关系的四种应用类型考点分析:利用一元二次方程的根与系数的关系可以不解方程,仅通过系数就反映出方程两根的特征.在实数范围内运用一元二次方程的根与系数的关系时,必须注意Δ≥0这个前提,而应用判别式Δ的前提是二次项系数不为0.因此,解题时要注意分析题目中有没有隐含条件Δ≥0和a ≠0.题型1 利用根与系数的关系求代数式的值1.设方程4x 2-7x -3=0的两根为x 1,x 2,不解方程求下列各式的值. (1)(x 1-3)(x 2-3);(2)x 2x 1+1+x 1x 2+1;(3)x 1-x 2.1.解:根据一元二次方程根与系数的关系,有 x 1+x 2=74,x 1x 2=-34.(1)(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9=-34-3×74+9=3.(2)x 2x 1+1+x 1x 2+1=x 2(x 2+1)+x 1(x 1+1)(x 2+1)(x 1+1)= x 12+x 22+x 1+x 2x 1x 2+x 1+x 2+1=(x 1+x 2)2-2x 1x 2+(x 1+x 2)x 1x 2+(x 1+x 2)+1=⎝⎛⎭⎫742-2×⎝⎛⎭⎫-34+74-34+74+1=10132.(3)∵ (x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫742-4×⎝⎛⎭⎫-34=9716, ∴x 1-x 2=±9716=±1497.题型2 利用根与系数的关系构造一元二次方程1.构造一个一元二次方程,使它的两根分别是方程5x 2+2x -3=0各根的负倒数. 解:设方程5x 2+2x -3=0的两根为x 1,x 2,则x 1+x 2=-25,x 1x 2=-35.设所求方程为y 2+py +q =0,其两根为y 1,y 2, 令y 1=-1x 1,y 2=-1x 2.∴p =-(y 1+y 2)=-⎝⎛⎭⎫-1x 1-1x 2=1x 1+1x 2=x 1+x 2x 1x 2=23,q =y 1y 2=⎝⎛⎭⎫-1x 1⎝⎛⎭⎫-1x 2=1x 1x 2=-53. ∴所求的方程为y 2+23y -53=0,即3y 2+2y -5=0.题型3 利用根与系数的关系求字母的值或取值范围1.已知关于x 的一元二次方程2x 2-mx -2m +1=0的两根的平方和是294,求m 的值..解:设方程两根为x 1,x 2,由已知得⎩⎨⎧x 1+x 2=m2,x 1x 2=-2m +12.∵x 12+x 22=(x 1+x 2)2-2x 1x 2=294, 即⎝⎛⎭⎫m 22-2×-2m +12=294, ∴m 2+8m -33=0. 解得m 1=-11,m 2=3.当m =-11时,方程为2x 2+11x +23=0, Δ=112-4×2×23<0,方程无实数根, ∴m =-11不合题意,舍去;当m =3时,方程为2x 2-3x -5=0,Δ=(-3)2-4×2×(-5)>0,方程有两个不相等的实数根,符合题意.∴m 的值为3.2.已知关于x 的方程x2+2x +a -2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)若该方程的一个根为1,求a 的值及该方程的另一根. 解:(1)∵22-4×1×(a -2)=12-4a>0,解得a<3. ∴a 的取值范围是a<3.(2)设方程的另一根为x1,由根与系数的关系得⎩⎪⎨⎪⎧1+x1=-2,1·x1=a -2,解得⎩⎪⎨⎪⎧a =-1,x1=-3.题型4 巧用根与系数的关系确定字母系数的存在性4.已知x 1,x 2是一元二次方程4kx 2-4kx +k +1=0的两个实数根,是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立?若存在,求出k 的值;若不存在,请说明理由.解:不存在.理由如下:∵一元二次方程4kx 2-4kx +k +1=0有两个实数根, ∴k ≠0,且Δ=(-4k )2-4×4k (k +1)=-16k ≥0, ∴k <0.∵x 1,x 2是方程4kx 2-4kx +k +1=0的两个实数根, ∴x 1+x 2=1,x 1x 2=k +14k. ∴(2x 1-x 2)(x 1-2x 2)=2(x 1+x 2)2-9x 1x 2=-k +94k .又∵(2x 1-x 2)(x 1-2x 2)=-32,∴-k +94k =-32,∴k =95.又∵k <0,∴不存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立.方法总结:对于存在性问题,先根据方程根的情况,利用根的判别式确定出未知字母的取值范围,再利用根与系数的关系求出已知式子中字母的值,验证字母的值是否在其取值范围内.考点6:可化为一元二次方程的分式方程的应用考点分析:可化为一元二次方程的分式方程的实际应用较广泛,一般应用于营销、行程、工程等问题中,解分式方程的基本思路就是化归,去掉分母后转化为一元二次方程,但最后一定要验根,有时可能会产生增根或不符合题意的根.题型1 营销问题1.某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完,第二次去采购时发现批发价每件上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件,两批玩具的售价均为2.8元,问:第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)1.解:方法一:设第二次采购玩具x 件,则第一次采购玩具(x -10)件,由题意得100x -10+0.5=150x.整理得x 2-110x +3 000=0, 解得x 1=50,x 2=60,经检验x 1=50,x 2=60都是原方程的解.当x =50时,第二次采购时每件玩具的批发价为150÷50=3(元),高于玩具的售价,不合题意,舍去;当x =60时,第二次采购时每件玩具的批发价为150÷60=2.5(元),低于玩具的售价,符合题意, 因此第二次采购玩具60件.方法二:设第一次采购玩具x 件,则第二次采购玩具(x +10)件,由题意得100x +0.5=150x +10, 整理得x 2-90x +2 000=0, 解得x 1=40,x 2=50,经检验,x 1=40,x 2=50都是原方程的解.第一次采购40件时,第二次采购40+10=50(件),批发价为150÷50=3(元),不合题意,舍去;第一次采购50件时,第二次采购50+10=60(件),批发价为150÷60=2.5(元),符合题意. 因此第二次采购玩具60件.2.小明的爸爸下岗后,做起了经营水果的生意,一天,他先去水果批发市场,用100元购甲种水果,用150元购乙种水果,乙种水果比甲种水果多购进10千克,乙种水果的批发价比甲种水果的批发价每千克高0.50元,然后到零售市场,都按每千克2.8元零售,结果乙种水果很快售完,甲种水果售出45时,出现滞销,他便按原售价的5折售完剩下的水果,请你帮小明的爸爸算一算,这天卖水果是赔钱了还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?2.解:设小明的爸爸购乙种水果x 千克,则购甲种水果(x -10)千克,所以甲种水果的批发价为每千克100x -10元,乙种水果的批发价为每千克150x 元.根据题意得150x -100x -10=0.5.方程两边同乘以x (x -10),整理得x 2-110x +3 000=0, 解之得x 1=50,x 2=60.经检验,x 1=50,x 2=60都是方程的根.当x =50时,乙种水果的批发价为每千克15050=3(元),高于水果零售价,不合题意,舍去.当x =60时,乙种水果的批发价为每千克15060=2.5(元),符合题意;甲种水果的批发价为每千克10060-10=2(元),也符合题意.因此,小明的爸爸购进乙种水果60千克,购进甲种水果60-10=50(千克),小明的爸爸这一天卖水果盈利:⎝⎛⎭⎫50×45×2.8+50×15×2.8×12+60×2.8-(100+150)=44(元).∴小明的爸爸这一天卖水果赚钱了,赚了44元.题型2 行程问题3.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后快车在慢车前12千米,快车到达乙站比慢车早25分钟,快车和慢车每小时各行驶多少千米?3.解:设慢车每小时行驶x 千米,则快车每小时行驶(x +12)千米,依题意得150x -150x +12=2560. 解得x 1=-72(不合题意,舍去),x 2=60. 所以x +12=72. ∴快车每小时行驶72千米,慢车每小时行驶60千米.应用3 工程问题4.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)若甲工程队单独施工a 天后,再由甲、乙两工程队合作________天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需收取施工费1万元,乙工程队施工每天需收取施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?解:(1)设乙工程队单独施工x 天完成此项工程,则甲工程队单独施工(x +30)天完成此项工程,由题意得20⎝⎛⎭⎫1x +1x +30=1,整理,得x 2-10x -600=0, 解得x 1=30,x 2=-20.经检验x 1=30,x 2=-20都是分式方程的解,但x 2=-20不符合题意,应舍去,故x =30,x +30=60. 故甲、乙两工程队单独完成此项工程分别需要60天,30天.(2)⎝⎛⎭⎫20-a 3 (3)由题意得1×a +(1+2.5)⎝⎛⎭⎫20-a3≤64,解得a ≥36. 故甲工程队至少要单独施工36天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元.考点7:几种常见的热门考点考点分析:一元二次方程题的类型非常丰富,常见的有一元二次方程的根、一元二次方程的解法、一元二次方程根的情况、一元二次方程根与系数的关系、一元二次方程的应用等,只要我们掌握了不同类型题的解法特点,就可以使问题变得简单,明了.题型1 一元二次方程的根1.若一元二次方程ax 2-bx -2 015=0有一根为x =-1,则a +b =________. 2.若关于x 的一元二次方程ax 2+bx +c =0有一根为-1,且a =4-c +c -4-2,求(a +b )2 0162 015c的值.1.2 015 点拨:把x =-1代入方程中得到a +b -2 015=0,即a +b =2 015. 2.解:∵a =4-c +c -4-2,∴c -4≥0且4-c ≥0,即c =4,则a =-2.又∵-1是一元二次方程ax 2+bx +c =0的根,∴a -b +c =0,∴b =a +c =-2+4=2.∴原式=(-2+2)2 0162 015×4=0.题型2 一元二次方程的解法1.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( D ) A .(x +1)2=0 B .(x -1)2=0 C .(x +1)2=2 D .(x -1)2=22.一元二次方程x 2-2x -3=0的解是( A ) A .x 1=-1,x 2=3 B .x 1=1,x 2=-3 C .x 1=-1,x 2=-3 D .x 1=1,x 2=3 3.选择适当的方法解下列方程: (1)(x -1)2+2x (x -1)=0; (2)x 2-6x -6=0;(3)6 000(1-x )2=4 860; (4)(10+x )(50-x )=800; (5)(2x -1)2=x (3x +2)-7. 3.解:(1)(x -1)2+2x (x -1)=0, (x -1)(x -1+2x ) =0, (x -1)(3x -1) =0, x 1=1,x 2=13.(2)x 2-6x -6=0, ∵a =1,b =-6,c =-6, ∴b 2-4ac =(-6)2-4×1×(-6)=60. ∴x =6±602=3±15, ∴x 1=3+15,x 2=3-15. (3)6 000(1-x )2=4 860, (1-x )2= 0.81, 1-x = ±0.9, x 1=1.9,x 2=0. 1. (4)(10+x )(50-x )=800, x 2-40x +300= 0, x 1=10,x 2=30. (5)(2x -1)2=x (3x +2)-7, 4x 2-4x +1 =3x 2+2x -7, x 2-6x +8 =0, x 1=2,x 2=4.题型3 一元二次方程根的判别式1.若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是( B ) A .a <1 B .a >1 C .a ≤1 D .a ≥12.已知关于x 的一元二次方程(x +1)2-m =0有两个实数根,则m 的取值范围是( B ) A .m ≥-34 B .m ≥0C .m ≥1D .m ≥23.在等腰三角形ABC 中,三边长分别为a ,b ,c .其中a =5,若关于x 的方程x 2+(b +2)x +(6-b )=0有两个相等的实数根,求△ABC 的周长.解:∵关于x 的方程x 2+(b +2)x +(6-b )=0有两个相等的实数根,∴Δ=(b +2)2-4(6-b )=0,∴b 1=2,b 2=-10(舍去).当a 为腰时,△ABC 周长为5+5+2=12.当b 为腰时,2+2<5,不能构成三角形.∴△ABC 的周长为12.题型4 一元二次方程根与系数的关系1.已知方程x 2-32x +1=0,构造个一元二次方程使它的根分别是原方程两根的倒数,则这个一元二次方程是( )A .x 2+32x +1=0B .x 2+32x -1=0C .x 2-32x +1=0D .x 2-32x -1=02.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( A ) A .3 B .1C .3或-1D .-3或13.已知关于x 的一元二次方程(x -1)(x -4)=p 2,p 为实数.(1)求证:方程有两个不相等的实数根.(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由).(1)证明:化简方程,得x 2-5x +4-p 2=0.Δ=(-5)2-4(4-p 2)=9+4p 2.∵p 为实数,则p 2≥0,∴9+4p 2>0.即Δ>0,∴方程有两个不相等的实数根.(2)解:当p 为0,2,-2时,方程有整数解.(答案不唯一)点拨:(1)先将一元二次方程化为一般形式,由题意得,一元二次方程根的判别式b 2-4ac =(-5)2-4×1×(4-p 2)=9+4p 2,易得,9+4p 2>0,从而得证.(2)一元二次方程的解为x =5±9+4p 22,若方程有整数解,则9+4p 2必须是完全平方数,故当p =0、2、-2时,9+4p 2分别对应9、25、25,此时方程的解分别为整数.4.关于x 的方程ax 2-(3a +1)x +2(a +1)=0有两个不相等的实数根x 1,x 2,且有x 1+x 2-x 1x 2=1-a ,求a 的值.解:由题意,得x 1+x 2=3a +1a ,x 1x 2=2(a +1)a ,∴3a +1a -2(a +1)a=1-a ,∴a 2-1=0,即a =±1.又∵方程有两个不相等的实数根,∴Δ=[-(3a +1)]2-4a ·2(a +1)>0,即(a -1)2>0,∴a ≠1,∴a =-1.5.设x 1,x 2是关于x 的一元二次方程x 2+2ax +a 2+4a -2=0的两个实数根,当a 为何值时,x 12+x 22有最小值?最小值是多少?解:∵方程有两个实数根,∴Δ=(2a )2-4(a 2+4a -2)≥0,∴a ≤12. 又∵x 1+x 2=-2a ,x 1x 2=a 2+4a -2,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=2(a -2)2-4.∵a ≤12,且2(a -2)2≥0,∴当a =12时,x 12+x 22的值最小. 此时x 12+x 22=2⎝⎛⎭⎫12-22-4=12,即最小值为12. 点拨:本题中考虑Δ≥0从而确定a 的取值范围这一过程易被忽略.题型5 一元二次方程的应用1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?解:设每件商品降价x 元,则售价为每件(60-x )元,每星期的销量为(300+20x )件. 根据题意,得(60-x -40)(300+20x )=6 080.解得x 1=1,x 2=4.又要顾客得实惠,故取x =4,即销售单价为56元.答:应将销售单价定为56元.2.小林准备进行如下操作实验:把一根长为4 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2.”他的说法对吗?请说明理由.解:(1)设剪成的较短的一段为x cm ,则较长的一段为(40-x ) cm ,由题意,得⎝⎛⎭⎫x 42+⎝⎛⎭⎫40-x 42=58,解得x 1=12,x 2=28.当x =12时,较长的一段为40-12=28(cm ),当x =28时,较长的一段为40-28=12<28(舍去).∴较短的一段为12 cm ,较长的一段为28 cm .(2)小峰的说法正确.理由如下:设剪成的较短的一段为m cm ,则较长的一段就为(40-m ) cm ,由题意得⎝⎛⎭⎫m 42+⎝⎛⎭⎫40-m 42=48,变形为m 2-40m +416=0.∵Δ=(-40)2-4×416=-64<0,∴原方程无实数解,∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.3.某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个图形,如图所示,甲、乙两点分别从直径的两端点A ,B 出发,以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程l (cm )与时间t (s )满足关系:l =12t 2+32t (t ≥0),乙以4 cm /s 的速度匀速运动,半圆的长度为21 cm .(1)甲运动4 s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多长时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多长时间?解:(1)当t =4时,l =12t 2+32t =12×42+32×4=14. 答:甲运动4 s 后的路程是14 cm .(2)设它们运动了m s ,根据题意,得12m 2+32m +4m =21. 解得:m 1=3,m 2=-14(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3 s .(3)设它们运动了n s 后第二次相遇,根据题意,得⎝⎛⎭⎪⎫12n 2+32n +4n =21×3. 解得n 1=7,n 2=-18(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7 s .4.如图,某海关缉私艇在C 处发现正北方向30海里的A 处有一艘可疑船只,测得它正以60海里/时的速度向正东方向航行.缉私艇随即调整方向,以75海里/时的速度航行,这样可同时到达B 处进行拦截.缉私艇从C 处到达B 处航行了多少小时?解:设缉私艇航行了x 小时到达B 处.根据题意,得302+(60x )2=(75x )2,解得x 1=23,x 2=-23(不符合题意,舍去). 答:缉私艇从C 处到达B 处航行了23小时. 点拨:本题是根据速度、时间、路程之间的关系和勾股定理等有关知识列方程解答,把几何知识、代数知识有机结合来进行解答.题型6 新定义问题1.若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且|x 1|+|x 2|=2|k |(k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0,x 2+4x +4=0都是“偶系二次方程”. 判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由.解:不是.理由如下:解方程x 2+x -12=0,得x 1=-4,x 2=3.|x 1|+|x 2|=4+3=2×|3.5|.∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”.。
人教版九年级数学上册期末易错难点突破专练:一元二次方程实际应用(五)1.如图,一农户要建一个矩形鸡舍,为了节省材料鸡舍的一边利用长为12米的墙,另外三边用长为25米的建筑材料围成,为方便进出,在垂直墙的一边留下一个宽1米的门,所围成矩形鸡舍的长、宽分别是多少时,鸡舍面积为80平方米?2.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示).(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?(3)在上述条件不变、销售正常情况下,商场日盈利可以达到2200元吗?如果可以,请求出x,如果不行,请说明理由.3.7至9月份“铁岭莲花湿地公园”迎来了荷花的盛放期,来此观赏荷花的游客络绎不绝,由此带动了湿地周边的餐饮服务业的发展;“听荷坊”宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与其价格x(元)(180≤x≤300)满足一次函数关系,部分对应值如表:x(元)180 260 280 300y(间)100 60 50 40(1)请求出y与x的函数关系式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元,每日空置的客房需支出各种费用60元;当房价为多少元时,宾馆当日可获利8450元?4.葡萄不仅味美可口,营养价值很高,而且用途广泛,堪称“果中珍品”,它既可鲜食又可加工成各种产品,如葡萄干、葡萄酒、葡萄汁等.当下正值食用葡萄的好时节,经过市场调研顾客最喜欢“黑珍珠”、“仙粉黛”两个品种,某商店老板看准商机,决定购进这两种葡萄销售,商店原计划在6月购进“黑珍珠”、“仙粉黛”两种葡萄共200千克,其中“仙粉黛”的质量至少是“黑珍珠”质量的3倍.(1)那么原计划今年6月至少购进“仙粉黛”多少千克?(2)今年6月商店按照原计划购进并售完“黑珍珠”、“仙粉黛”两种葡萄,且“仙粉黛”的质量恰好是原计划的最小值.今年7月商店按照“黑珍珠”与“仙粉黛”的质量比为1:3购进两种葡萄一共160千克,按照单价4:3售出,共得销售额1040元.通过7月对市场的观察,商店老板决定增加两种葡萄的进货量,同时降价促销;8月商店购进“黑珍珠”、“仙粉黛”的质量在6月的基础上分别增加了2a%、a%,同时为了尽快全部售出,每千克售价在今年7月份的基础上分别降价a%、a%(降价幅度不超过50%),最终8月的销售额比7月的销售额增加了535元.求a的值.5.如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A开始沿着边AB向点B以2cm/s的速度移动(不与点B重合),动点Q从点B开始沿着边BC向点C以4cm/s的速度移动(不与点C重合).若P、Q两点同时移动t(s);(1)当移动几秒时,△BPQ的面积为32cm2.(2)设四边形APQC的面积为S(cm2),当移动几秒时,四边形APQC的面积为108cm2?6.为了响应国家“房住不炒”的住房保障政策,某市自2017年开始实行了较严的“限购”“限贷”住房调控措施,却无形中引起了一波购房热潮,导致该市某区清水房均价从2017年的每平方米7000元上涨到2019年每平方米11830元.(1)求2017到2019年,平均每年增长的百分率.(2)假设2020年房子均价以相同的百分率增长,王老师有现金100万,个人住房公积金可贷40万,用这两笔钱可否在2020年买一套100平方米的房子?(房价以每平方米均价算)7.某经销商销售一种成本价为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元/kg)之间满足一次函数关系,对应关系如下表所示.x12 14 15 17y36 32 30 26(1)求y与x之间的函数解析式,并写出x的取值范围;(2)若该经销商想要使这种商品获得平均每天168元的利润,则售价应定为多少元?8.布谷一家有爸爸阿布、妈妈阿谷、女儿布谷三名家庭成员,2018年阿布个人收入50万,个人支出10万,阿谷个人收入20万,个人支出8万,布谷没有收入,个人支出10万.阿布和阿谷的总收入减去三人的个人支出再减去家庭公共支出即为年度结余.(1)若2018年年度结余不少于20万,则2018年家庭公共支出最多多少万?(2)若2018年家庭年度结余正好为20万,与2018年相比,2019年阿布个人收入增加a%,个人支出占其个人收入的(a+10)%,阿谷个人收入增加a%,个人支出占其个人收入的40%,布谷个人支出减少3万,家庭公共支出增加万,最终2019年年度结余为28万元,求a的值.9.如图,一块长和宽分别为100厘米和50厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为3600平方厘米,设截去正方形的边长为x厘米,求x的值.10.某商场打算购进甲乙两种水果.(1)已知甲种水果进价每千克4元,售价每千克6元,乙种水果进价每千克6元,要使乙种水果的利润率不低于甲种水果的利润率,则乙种水果的售价至少是每千克多少元?(2)该商场库存有甲种水果4000千克,乙种水果3000千克,由于疫情原因,商场计划甲种水果售价为4元/千克,乙种水果售价为5元/千克.随着疫情好转,实际销售时,甲种水果销售价格上涨a%,乙种水果的销售价格上涨a%,由于气候条件的影响,甲种水果与乙种水果分别有a%与a%的损坏而不能售出,结果售完之后所得的总销售额比原计划下降了300元,求a的值.参考答案1.解:设BC的长为xm,则AB的长为(25+1﹣x)m.依题意得:(25+1﹣x)x=80,化简,得x2﹣26x+160=0,解得:x1=10,x2=16(舍去),(25+1﹣x)=8米,答:若矩形猪舍的面积为80平方米,长和宽分别为10米和8米;2.解:(1)商场日销售量增加2x件,每件商品盈利(50﹣x)元,故答案为:2x、(50﹣x);(2)根据题意可得(30+2x)(50﹣x)=2100,解得:x=15或x=20,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x=20,答:每件商品降价20元,商场日盈利可达2100元.(3)根据题意可得(30+2x)(50﹣x)=2200,整理得到:x2﹣35x+350=0.由于△=b2﹣4ac=1225﹣1400=﹣175<0,所以该方程无解.故商场日盈利不可以达到2200元.3.解:(1)设y与x的函数关系式为y=kx+b,把(180,100),(260,60)分别代入解析式,得,解得,所以y与x的函数关系式为y=﹣x+190(180≤x≤300);(2)由题意可知:(x﹣100)(x+190)﹣60[100﹣(﹣x+190)]=8450,整理得:x2﹣420x+44100=0,解得x1=x2=210.答:当房价为210元时,宾馆当日可获利8450元,4.解:(1)设原计划今年6月购进“仙粉黛”x千克,则:x≥3(200﹣x).解得:x≥150,答:原计划今年6月至少购进“仙粉黛”150千克;(2)由题可得:6月购进“黑珍珠”50千克,“仙粉黛”150千克;7月购进“黑珍珠”40千克,“仙粉黛”120千克.设7月“黑珍珠”单价为4m,“仙粉黛”单价为3m,则有:40×4m+120×3m=1040,∴m=2.则7月“黑珍珠”单价为8元/千克,“仙粉黛”单价为6元/千克.列方程为:.令a%=t,则:80t2﹣134t+33=0,∴.又∵当时,,舍去.∴.∴a=30.答:a的值是30.5.解:(1)运动时间为t秒时(0≤t<6),PB=AB﹣2t=12﹣2t,BQ=4t,∴S△BPQ=PB•BQ=24t﹣4t2=32,解得:t1=2,t2=4.答:当移动2秒或4秒时,△BPQ的面积为32cm2.(2)S=S△ABC﹣S△BPQ=AB•BC﹣(24t﹣4t2)=4t2﹣24t+144=108,解得:t=3.答:当移动3秒时,四边形APQC的面积为108cm2.6.解:(1)设平均每年增长的百分率为x,根据题意得:7000(1+x)2=11830,解得:x1=0.3=30%,x2=﹣0.3(舍去).答:平均每年增长的百分率为30%.(2)由题意得2020年房子均价为11830×(1+30%)=15379(元).则100平方米房子需要15379×100=153.79(万元).因为王老师有100+40=140(万元),153.9>140,所以无法买到.7.解:(1)设关系式为y=kx+b,把(12,36)(14,32)代入得:,解得.故y与x的之间的函数关系式为y=﹣2x+60,通过验证(15,30)(17,26)满足上述关系式,因此y与x的之间的函数关系式就是y=﹣2x+60.x的取值范围为:10≤x≤18.(2)根据题意得:(x﹣10)(﹣2x+60)=168,解得:x1=16,x2=24(舍去).答:售价应定为16元/kg.8.解:(1)设2018年家庭公共支出x万,依题意有(50+20)﹣(10+8+10)﹣x≥20,解得x≤22.故2018年家庭公共支出最多22万;(2)依题意有:[50(1+a%)+20(1+a%)]﹣[50(1+a%)(a+10)%+20(1+a%)×40%+(10﹣3)]﹣(22+)=28,即0.005a2﹣0.05a=0,解得a1=0,a2=10.故a的值为0或10.9.解:设截去小正方形的边长x厘米,则(100﹣2x)(50﹣2x)=3600,解得x1=5,x2=70(不合题意舍去).故截去小正方形的边长为5厘米.即x的值是5.10.解:(1)设乙种水果的售价至少是每千克x元,依题意有(x﹣6)÷6≥(6﹣4)÷4,解得x≥9.故乙种水果的售价至少是每千克9元;(2)4000(1﹣a%)×4×(1+a%)+3000×(1﹣a%)×5×(1+a%)=4000×4+3000×5﹣300,化简得a2+50a﹣600=0,解得a1=10,a2=﹣60(舍去).故a的值为10.。