高三数学二轮专题复习教案数列
- 格式:doc
- 大小:359.00 KB
- 文档页数:8
2024届高三数学二轮专题复习教案——数列一、教学目标1.知识目标掌握数列的基本概念、性质和分类。
熟练运用数列的通项公式、求和公式。
能够解决数列的综合应用题。
2.能力目标提高学生分析问题和解决问题的能力。
培养学生的逻辑思维能力和创新意识。
二、教学内容1.数列的基本概念数列的定义数列的项、项数、通项公式数列的分类2.数列的性质单调性周期性界限性3.数列的求和等差数列求和公式等比数列求和公式分段求和4.数列的综合应用数列与函数数列与方程数列与不等式三、教学重点与难点1.教学重点数列的基本概念和性质数列的求和数列的综合应用2.教学难点数列求和的技巧数列与函数、方程、不等式的综合应用四、教学过程1.导入新课通过讲解一道数列的典型例题,引导学生回顾数列的基本概念、性质和求和公式,为新课的学习做好铺垫。
2.数列的基本概念(1)数列的定义:按照一定规律排列的一列数叫做数列。
(2)数列的项:数列中的每一个数叫做数列的项。
(3)数列的项数:数列中项的个数。
(4)数列的通项公式:表示数列中任意一项的公式。
(5)数列的分类:等差数列、等比数列、斐波那契数列等。
3.数列的性质(1)单调性:数列的项随序号增大而增大或减小。
(2)周期性:数列中某些项的值呈周期性变化。
(3)界限性:数列的项有最大值或最小值。
4.数列的求和(1)等差数列求和公式:S_n=n/2(a_1+a_n)(2)等比数列求和公式:S_n=a_1(1q^n)/(1q)(3)分段求和:根据数列的特点,将数列分为若干段,分别求和。
5.数列的综合应用(1)数列与函数:利用数列的通项公式研究函数的性质。
(2)数列与方程:利用数列的性质解决方程问题。
(3)数列与不等式:利用数列的性质解决不等式问题。
6.课堂练习(2)已知数列{a_n}的通项公式为a_n=n^2+n,求证数列{a_n}为单调递增数列。
(3)已知数列{a_n}的前n项和为S_n=n^2n+1,求证数列{a_n}为等差数列。
数列中的奇偶项问题一、新高考Ⅰ卷、全国Ⅰ卷数列考点分布 新高考Ⅰ卷考点分布与考查概况全国Ⅰ卷理科考点分布与考查概况年份 题号 分数 涉及知识点 题号分数 涉及知识点202014 5 两等差数列的公共项问题、 等差数列的前n 项和公式;核心素养:逻辑推理、数学运算 1712等差中项、等比数列的通项公式、 错位相减法求数列的前n 项和; 核心素养:逻辑推理、数学运算18 12 等比数列的通项公式、 数列求和;核心素养:逻辑推理、数学运算202116 5 构建数列模型,归纳通项公式错位相减法求数列的前n 项和; 逻辑推理、数学运算、数学建模 1912等差数列的通项公式、 数列的通项与前n 项和、积之间的关系; 核心素养:逻辑推理、数学运算1710数列的递推公式、 等差数列的定义、等差数列的前n 项和;核心素养:逻辑推理、数学运算二、真题回眸1.(2020·高考数学课标Ⅰ卷)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = ______________.2.(2021·全国高考)已知数列满足, (1)记,写出,,并求数列的通项公式; (2)求的前20项和.三、例题分析例1:已知数列)12()1(+-=n a nn ,求数列{}n a 的前n 项和n S .变式1:已知数列12sin )12()1(++-=πn n a nn ,求数列{}n a 的前n 项和=100S .{}n a 11a =11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数2n n b a =1b 2b {}n b {}n a变式2:已知数列12sin )12()1(++-=πn n a nn ,求数列{}n a 的前n 项和=102S .例2:已知数列{}n a 的前n 项和为2*4().n S n n n N =+∈ (1)求数列{}n a 的通项公式;(2)若数列{}n c 满足,11=c ,1n n n c c a ++=,求数列{c n }的通项公式及前n 项和.拓展:已知数列(),21+=n a n ().114321n n n a a a a a S +-++-+-= 求四、课堂小结:有关数列的奇偶项的问题是高考中经常涉及的问题,解决此类问题的关键在于搞清数列奇数项和偶数项的首项、项数、公差(比)等,涉及求通项公式、求和等。
城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
高三数学二轮复习教学案——等差数列与等比数列一、【填空】1.已知各项均为实数的数列{a n }为等比数列,且满足a 1+a 2=12,a 2a 4=1,则a 1=_______.2. 在等差数列{a n }中,若a 1,a 2 011为方程x 2-10x +16=0的两根,则a 2+a 1 006+a 2 010=__________________.3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=______________. 4.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为---------------5.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =____________.6. 已知等比数列{}n a 中,214S ,23a 33==,则1a =_____________________. 二、【解答】7. 成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.8.设{}n a 数列为等比数列,{}n b 数列为等差数列,且10b =,n n n c a b =+,若{}n c 是1,1,2,, 求{}n c 的前10项和.9. 等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.10. 已知数列{a n}满足如下图所示的程序框图.(1)写出数列{a n}的一个递推关系式;(2)证明:{a n+1-3a n}是等比数列,并求{a n}的通项公式;(3)求数列{n(a n+3n-1)}的前n项和T n.。
数列中的方程问题江苏省苏州中学 江小娟一.基础训练:1.已知数列{a n }的前n 项和S n 满足:S m +S n =S m +n ,且a 1=1.那么a 10= .2.已知数列{a n }的前n 项和S n 满足:=m n m n S S S +⋅,且a 1=2.那么a 10= .3.已知数列{}n a 中,121,0a a ==,若对任意的正整数m 和n (n >m )满足:22n m n m n m a a a a -+-=⋅,则119a = . 二:例题讲解1.已知数列{}n a 的前三项分别为15a =,26a =,38a =,且数列{}n a 前n 项和n S 满足2221()()2n m n m S S S n m +=+--,其中,m n 为任意正整数.求数列{}n a 的通项公式n a .变:设数列{}n a 的各项都为正数,前n 项和为n S ,对于任意正整数m ,n , 有1n m S +.若1234=1a a a a ,求,,及n a .2. 数列{a n }中,a 1 = 1,a 2 = 2.数列{b n }满足1(1)n n n n b a a +=+-,n *∈N .(1)若数列{a n }是等差数列,求数列{b n }的前6项和S 6;(2)若数列{b n }是公差为2的等差数列,求数列{a n }的通项公式;(3)若b 2n - b 2n - 1 = 0,21262n n nb b ++=,n *∈N ,求数列{a n }的前2n 项和T 2n .变:已知数列{}n a 满足12,a =前n 项和为n S ,11()2()n n npa n n a a n n ++-⎧=⎨--⎩为奇数为偶数.(1)若数列{}n b 满足221(1)n n n b a a n +=+≥,试求数列{}n b 前n 项和n T ;(2)若数列{}n c 满足2n n c a =,试判断{}n c 是否为等比数列,并说明理由;(3)在(2)的条件下,若{}n c 为等比数列,问是否存在*n N ∈,使得212(10)1n n S c +-=,若存在,求出所有的n 的值;若不存在,请说明理由.一.填空题:1. 12.5123.-1 二.解答题1. 令1,2n m ==,324441()1,29,102S S S S a =+-==令1m =,21221()(1),2n n S S S n +=+--令2m =,22241()(2),2n n S S S n +=+--∴4222123262(2)2,2n n n S S a S S n n n ++++=-=-+=+=++ ∴22,(3)n a n n =+≥又26a =符合,15a =不符合,∴5,(1)22,(2)n n a n n =⎧=⎨+≥⎩变:由条件,令1m n ==,得21S + ∴2222(1)2(1)S a S +=+.则2212S a +=.∴211a a =+. ∵11a =,∴22a =.令1,2m n ==,得31S +.则2334(4)4(4)a a a +=++. 令2,1m n ==,得31S +.则234(4)8a a +=. 解得344,8a a ==.得1m n S ++ 令1m =,得11n S ++ 令2m =,得21n S ++∴2111n n S S +++=+*n ∈N )2, 则数列{1}n S +(2,*)n n ∈N ≥是公比为2的等比数列. ∴11222n n n S -+=⋅=.12n n a -=2.解:(1)∵a 1 = 1,a 2 = 2,数列{a n }是等差数列,∴n a n =.则b 1 = b 3 = b 5 = 1,b 2 = 5,b 4 = 9,b 6 = 13.∴S 6 = b 1 + b 2 + … + b 6 = 30.(2)∵b 1 = a 2 - a 1 = 2 - 1 = 1,数列{b n }是公差为2的等差数列,∴b n = 2n - 1. ∵b 2n - 1 = a 2n - a 2n -1,b 2n = a 2n +1 + a 2n , ∴a 2n - a 2n -1 = 4n - 3,a 2n +1 + a 2n = 4n - 1. ∴a 2n +1 + a 2n - 1 = 2.则a 2n +3 + a 2n + 1 = 2.∴a 2n +3 = a 2n - 1.(*) ∵a 1 = 1,∴a 3 = 1.则a 4n - 3 = a 1 = 1,a 4n - 1 = a 3 = 1.∴a 2n - 1 = 1.则a 2n = 4n - 2.∴1()22().n n a n n ⎧=⎨-⎩为奇数,为偶数(3)∵b 2n - b 2n - 1 = 0,21262n n nb b ++=,n *∈N , 而b 2n - 1 = a 2n - a 2n -1,b 2n = a 2n +1 + a 2n ,b 2n + 1 = a 2n + 2 - a 2n + 1, ∴a 2n +1 + a 2n -1=0,22262n n n a a ++=(n *∈N ). 当n 是偶数,则21321242()()n n n T a a a a a a -=+++++++L L 22213[1)]1404()214nn n T -⨯-=+=--(当n 是奇数,则21232142()()n n n T a a a a a a -=+++++++L L 12231[1()]124305()1214n n --⋅-=++=--综上,229(1)1()22n n nT ---=-.2解:(Ⅰ)据题意得2214n n n b a a n +=+=-,所以{}n b 成等差数列,故222n T n n =--(Ⅱ)当12p =时,数列{}n c 成等比数列;当12p ≠时,数列{}n c 不为等比数列 理由如下:因为122212n n n c a pa n +++==+2(4)2n p a n n =--+42n pc pn n =--+,所以12(12)n n nc n p p c c +-=-+,故当12p =时,数列{}n c 是首项为1,公比为12-等比数列;当12p ≠时,数列{}n c 不成等比数列(Ⅲ)当12p =时,121()2n n n a c -==-,121214()2n n n n a b a n -+=-=---因为21112...n n S a b b b +=++++=2222n n --+(1n ≥) 212(10)1n n S c +-= ,244164n n n ∴++=,当n =1,2,左边<右边,当n =3,左边=右边,下证n =3是方程惟一的解. 设2()44416xf x x x =---(3)x ≥,则()()4ln 484xg x f x x '==--,2()(ln 4)480x g x '∴=->(2)x ≥,且(2)(2)0g f '=>,()f x ∴在[2,)+∞递增,且(30f =),(1)0f ≠, ∴仅存在惟一的3n =使得212(10)1n n S c +-=成立.《数列中的方程问题》的构思及体会江苏省苏州中学 江小娟数列的本质是离散函数,数列的通项公式n a ,前n 项和n S ,都可以看成是关于n 的函数解析式.因此,含有n a ,n S 的数列方程,也可以转化为函数方程问题。
高三数学复习教案:高考数学数列复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高三数学复习教案:高考数学数列复习教案希望能为您的提供到帮助。
本文题目:高三数学复习教案:高考数学数列复习教案【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课数列的概念【考点导读】1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2. 理解数列的通项公式的意义和一些基本量之间的关系;3. 能通过一些基本的转化解决数列的通项公式和前项和的问题。
【基础练习】1.已知数列满足,则 = 。
分析:由a1=0, 得由此可知: 数列是周期变化的,且三个一循环,所以可得:2.在数列中,若,,则该数列的通项 2n-1 。
3.设数列的前n项和为,,且,则 ____2__.4.已知数列的前项和,则其通项 .【范例导析】例1.设数列的通项公式是,则(1)70是这个数列中的项吗?如果是,是第几项?(2)写出这个数列的前5项,并作出前5项的图象;(3)这个数列所有项中有没有最小的项?如果有,是第几项? 分析:70是否是数列的项,只要通过解方程就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。
解:(1)由得:或所以70是这个数列中的项,是第13项。
高三二轮复习数列求和—裂项相消法教学设计内容教学目的掌握裂项相消求和的使用环境及一般过程和思路.教学重点难点识别裂项相消求和的使用环境.如何裂项?如何相消?教学过程过程一、强调本微课学习内容,学习目标,重难点,易错点。
学习目标:掌握裂项相消求和的使用环境及一般过程和思路.学习重点:识别裂项相消求和的使用环境.学习难点:如何裂项?如何相消?易错点:裂项时忘记配平,相消时留下哪些项?过程二、通过熟悉的典型例子入手,引导学生回顾裂项相消的具体类型。
裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n项和.看下面两个例子:)211(2121+-=+nnnn)(⎪⎭⎫⎝⎛+-+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-++⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-=+++⨯+⨯+⨯211121121211......513141213112121......531421311nnnnnn)(()()))2)(1(1)1(1(21211++-+=++nnnnnnn()()⎪⎪⎭⎫⎝⎛++-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛++-+++⎪⎭⎫⎝⎛⨯-⨯+⎪⎭⎫⎝⎛⨯-⨯=++++⨯⨯+⨯⨯+⨯⨯)2)(1(12121)2)(1(1)1(1......43132132121121211......543143213211nnnnnnnnn过程三、因为是二轮专题复习,学生经过一轮的复习,对于裂项的方法有一定的理解,在此基础上直接点出裂项的四种基本类型,并强调裂项的常用方法为通分的逆运算,分母有理化,对数的运算等。
本质是恒等变形,运用化归与转化思想、等式思想。
等差型:1a n a n+1=1d(1a n-1a n+1),其中a n≠0,d≠0. . (通分的逆运算)指数型:(a-1)a n(a n+b)(a n+1+b)=1a n+b-1a n+1+b. (通分的逆运算)无理型:1a+b=1a-b(a-b)(a>0,b>0). (分母有理化)对数型:log n a n +1a n=log n a n +1-log n a n (a n >0). (对数的运算法则)过程四、对照四种类型,分别用4道典型例题进行讲解与说明,并敲掉裂项时要配平,求和相消时要注意消去哪些项,剩下哪些项。
数列的单调性所谓数列,由前面的基础知识可知,实则就是函数图像上一个个孤立的点,而单调性作为函数最重要的性质之一,自然而然的单调性也是数列的一个基本性质之一.本节就数列的单调性问题进行相关总结.一、研究数列单调性的基本方法1、 作差法:例1、已知数列{a n }满足a n =n+12n ,证明:数列{a n }单调递减. 证明:∵a n =n+12n ∴a n+1=n+22n+1.则a n+1−a n =n+22n+1−n+12n =−n 2n+1<0恒成立故数列{a n }单调递减2、 作商法:例2、已知a n =(n +1)(1011)n (n ∈N ∗),证明:数列{a n }先递增后递减.证明:令a n a n−1≥1(n ≥2) 即(n+1)(1011)n n∙(1011)n−1≥1整理得:n+1n≥1110,得n ≤10 同理,令a n a n+1≥1 即(n+1)(1011)n (n+2)∙(1011)n+1≥1整理得:n+1n+2≥1011,得n ≥9∴{a n }从第1项到第9项递增,从第10项开始递减,得证.3、 函数法(导数法)例4、记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求数列{}n a 的通项公式;(2)求n S ,并求n S 的最小值.解:(1)略(29n a n =-)(2) 方法一:我们可以借助一个二次函数函数()28,0f x x x x =-≥,很明显这个函数在[)0,4上单调递减,在[)4,+∞上单调递增,那么可以得到最小值()()min 416f x f ==-,从而2=8n S n n -的最小值为416S =-.方法二:由于数列{}n a 的通项公式29n a n =-,可以借助函数()29,0f x x x =-≥.在90,2⎡⎫⎪⎢⎣⎭,()0f x <;在9,2⎡⎫+∞⎪⎢⎣⎭,()0f x ≥,所以数列{}n a 的前4项均为负数,故而n S 的最小值为416S =-.变式:(1)如果一个数列的前n 项和为2=9n S n n -,那么求n S 取得最小值时序号n 是多少?很显然,4n =或5n =.(取得最值时为n =4.5,但n 只能取整数)(2)在(1)的前提下,求n nS 取得最小值时序号n 是多少?可以借助函数()329,0f x x x x =-≥,求导()'23183(6),0f x x x x x x =-=-≥.()f x 在[)0,6单调递减,在[)6,+∞上单调递增,从而()()min 6108f x f ==-.故而n nS 取得最小值时序号n 是6.例5、已知单调递增数列{}n a 的通项公式()2,4,01,6,4n n a n a a a a n a n -⎧<⎪=>≠⎨--≥⎪⎩其中且求a 的取值范围.解:这一个题我们很容易想到这样题目:设()y f x =在R 上是的一个增函数,且()()2,4,01,6,4x a x f x a a a x a x -⎧<⎪=>≠⎨--≥⎪⎩其中且 求a 的取值范围.只需要()4216064a a a a a -⎧>⎪->⎨⎪≤-⋅-⎩,可以求得a 的范围是(]1,3.对于数列{}n a 就有一点问题,因为数列在直角坐标系所对应的点是不连续的限制条件应该为34160a a a a >⎧⎪->⎨⎪<⎩,即()3216064a a a a a -⎧>⎪->⎨⎪<-⋅-⎩,求得a 的范围是()1,4.变式:(1)设函数f (x )={(a −2)x ,x ≥2,(12)x −1,x <2,,a n =f(n),若数列{}n a 是递减数列,求实数a 的取值范围.由题意()()2012a f f -<⎧⎪⎨>⎪⎩即可,可得a 的取值范围7,4⎛⎫-∞ ⎪⎝⎭. (2)已知数列{}n a 中,()()*11,,021n a n N a R a a n =+∈∈≠+-.对任意的*n N ∈,都有6n a a ≤成立,求a 的取值范围.由题意,可借助函数()()112112212f x a a x x =+=+-+-- 在2,2a -⎛⎫-∞ ⎪⎝⎭,2,2a -⎛⎫+∞ ⎪⎝⎭单调递减 再结合数列的离散性特点,可得限制条件2562a -<<,得到a 的范围为()10,8--. 总结:我们在利用函数与数列共性来解题时,还要注意数列的特殊性(离散性),它的图像是一系列孤立的点,而不像我们研究过的初等函数一般都是连续的曲线,因此在解题中应该充分利用这一特殊性.在研究数列单调性时,只要这些点每个比它的前一个点高(即1n n a a +<),则图象呈上升趋势;反之,呈下降趋势.二、课后练习1、 已知c n =(n +1)1n+1,则数列c n 的最大值为:_______.2、已知f (x )={(3−a )x −3,x ≤7,a x−6,x >7,,数列a n =f(n)(n ∈N ∗),且a n 是递增数列,则a 的取值范围为:_________.1、解:令f (x )=ln x x则f’(x)=1−ln xx2当x≥3时,ln x>1,1−ln x<0,f’(x)<0在[3,+∞)内,f(x)单调递减所以当n≥2时,{ln c n}单调递减即c n是递减数列又∵c1<c2,所以c max=c2=√33.2、解:由题意得:{3−a>0f(8)>f(7),解得a∈(2,3)。
数列(第二轮复习)1.等差(比)数列的定义如果一个数列从第二项起,每一项与它的前一项的差(比)等于同一个常数,这个数列叫做等差(比)数列.2.通项公式等差 a n =a 1+(n-1)d ,等比a n =a 1q n -13.等差(比)中项如果在a 、b 中间插入一个数A ,使a 、A 、b 成等差(比)数列,则A 叫a 、b 的等差(比)中项.A =(a+b)/2或A =±ab4.重要性质:m+n=p+q ⇔ a m ·a n =a p ·a q (等比数列)a m +a n =a p +a q (等差数列) (m 、n 、p 、q ∈N*) 特别地 m+n=2p ⇔ a m +a n =2a p (等差数列) a m ·a n =a p 2 (等比数列)5.等差数列前n 项和等比数列前n 项和6.如果某个数列前n 项和为Sn ,则7.差数列前n 项和的最值(1)若a1>0,d <0,则S n 有最大值,n 可由 ⎩⎨⎧≥≥+0a 0a 1n n (2)若a1<0,d >0,则S n 有最小值,n 可由 ⎩⎨⎧≤≤+0a 0a 1n n 8.求数列的前n 项和S n ,重点应掌握以下几种方法:(1).倒序相加法:如果一个数列{a n },与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.(2).错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.(3).分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组转化法.(4).裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,()()⎩⎨⎧≥-==-2111n S S n S a n n n ()()d n n na n a a S n n 21211-+=+=()()()⎪⎩⎪⎨⎧≠--==111111q qq a q na S n n在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.9. 三个模型:(1)复利公式按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x(2).单利公式利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+xr) (3).产值模型原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p) x10.例、习题:1.若关于x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四个根组成首项为1/4的等差数列,则a+b的值为( )A. 3/8B. 11/24C. 13/24D. 31/722.在等差数列{a n}中,a2+a4=p,a3+a5=q.则其前6项的和S6为( )(A) 5 (p+q)/4 (B) 3(p+q)/2 (C) p+q (D) 2(p+q)3.下列命题中正确的是( )A.数列{a n}的前n项和是S n=n2+2n-1,则{a n}为等差数列B.数列{a n}的前n项和是S n=3n-c,则c=1是{a n}为等比数列的充要条件C.数列既是等差数列,又是等比数列D.等比数列{a n}是递增数列,则公比q大于14.等差数列{a n}中,a1>0,且3a8=5a13,则S n中最大的是( )(A)S10(B)S11(C)S20(D)S215.等差数列{a n}中,S n为数列前n项和,且S n/S m=n2/m2 (n≠m),则a n / a m值为( )(A)m/n (B)(2m-1)/n (C)2n/(2n-1) (D)(2n-1)/(2m-1)6.已知{a n}的前n项和S n=n2-4n+1,则|a1|+|a2|+…|a10|=( )(A)67 (B)65 (C)61 (D)567.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为()(A)12 (B)10 (C)8 (D)68.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(111…11)2 (16个1)位转换成十进制形式是( )(A) 217-2 (B) 216-2 (C) 216-1 (D)215-19.{a n}为等比数列,{b n}为等差数列,且b1=0,C n=a n+b n,若数列{C n}是1,1,5,…则{C n}的前10项和为___________.10.如果b是a,c的等差中项,y是x与z的等比中项,且x,y,z都是正数,则(b-c)log m x+(c-a)log m y+(a-b)log m z=_______.11.数列{a n}的前n项和S n=n2+1,则a n=_________________.12.四个正数成等差数列,若顺次加上2,4,8,15后成等比数列,求原数列的四个数.13.已知等比数列{a n }的公比为q ,前n 项的和为S n ,且S 3,S 9,S 6成等差数列.(1)求q 3的值;(2)求证a 2,a 8,a 5成等差数列.14.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,求公差d.15.数列{a n }是由正数组成的等比数列,S n 为前n 项的和,是否存在正常数c ,使得 对任意的n ∈N +成立?并证明你的结论.16.一个首项为正数的等差数列中,前3项和等于前11项和,问此数列前多少项的和最大?17.已知等比数列{a n }的首项a1>0,公比q >0.设数列{b n }的通项b n =a n+1+a n+2(n ∈N*),数列{a n }与{b n }的前n 项和分别记为A n 与B n ,试比较A n 与B n 的大小.()()()c S c S c S n n n -=-+-++12lg 2lg lg18.设等差数列{a n }的前n 项和为S n ,且S 10=100,S 100=10,试求S 110.19.已知数列{a n }和{b n }满足(n ∈N +),试证明:{a n }成等差数列的充分条件是{b n }成等差数列.20.已知数列{a n }中的a 1=1/2,前n 项和为S n .若S n =n 2a n ,求S n 与a n 的表达式.21.在数列{a n }中,a n >0, 2Sn = a n +1(n ∈N) ①求S n 和a n 的表达式;②求证: n a n a a b n n +++⋅++⋅+⋅= 21212121111321<+++nS S S S。
高考数学第二轮专题复习数列教案二、高考要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差〔比〕数列的概念,掌握等差〔比〕数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题.3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明〞这一思想方法.三、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四那么运算法那么、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势〔1〕数列是特殊的函数,而不等式那么是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点〔2〕数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。
〔3〕加强了数列与极限的综合考查题3.熟练掌握、灵活运用等差、等比数列的性质。
等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即〔a3+a5〕2=25.4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中表达,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。
数学核心素养引领下的教学设计———以“高三二轮复习求数列通项公式”为例摘要:高二二轮复习的专题教学设计不是单纯的知识点传授与解题方法的训练,而是教师基于学科核心素养,思考如何基于专题的教学目标与内容而展开的教学活动,目标是追求高效的教学,本文通过高三二轮复习利用作差法求数列通项公式这一节的教学设计,达到提升学生逻辑思维能力,发展学生的数学核心素养。
关键词:二轮复习教学设计;数学学科核心素养;高三数学;二轮复习一、问题提出高三二轮复习是整个高三的冲刺阶段,在这个阶段,老师在培养学生数学核心素养的同时也要提高学生的应试能力,最终达到提高学生高考成绩的目的。
而专题复习是二轮复习的一种常用模式,是基于学生在一轮复习中形成的知识框架,对其中高考的重点、难点内容再次学习来巩固和创新学生的数学思想,让学生在转化化归解决数学问题的过程中,落实数学核心素养。
那么在二轮复习中,如何利用专题的教学设计,发展和培养学生的数学核心素养呢?下面本文将以高三二轮复习利用作差法求数列通项公式这一节的教学设计为例,对高三二轮有效性复习进行探究。
1.高三二轮复习“求数列通项公式”专题教学设计1.考情分析由数列前n项和Sn与an的关系式求通项公式是高考常考热点之一,从2011-2022高考卷中占比最大。
1.学情分析经过一轮复习,学生基本方法已经掌握,易错点主要是计算和验算是否合理。
1.专题教学目标1.知识目标1.能够看出前n项和变形式子中化简求an2.能在Sn与an的一次函数或二次函数中化简求an(二)能力目标利用作差法消去Sn或an,培养学生合情推理,探索数学规律的数学思维能力,发展学生逻辑推理的数学核心素养。
(三)情感目标1、通过作差法解题方法2、培养学生归纳类比的能力。
1.教学重难点如何利用公式消去Sn,化简求an,并注意n=1时的检验;如何消去an,求Sn,再求an的方法。
1.教学过程公式: .1.数列的前项和,则 ______________2.数列的前项和______________3.已知等比数列的前项和,则 ______________例题1:(2017•新课标Ⅲ,文17)设数列满足.求的通项公式;变式:变式.已知数列{n a n}的前n例题2.(2013新课标Ⅰ,理14)若数列{ }的前n项和为,则数列的通项公式是a n=________.变式1:若数列的前n项和为,则数列的通项公式是=.变式2:(2022届高三广州调研考17)已知数列的前n 项和为 ,证明:数列是等比数列。
专题10 数列求和及其应用高考对本节内容的考查仍将以常用方法求和为主,尤其是错位相减法及裂项求和,题型延续解答题的形式.预测2018高考对数列求和仍是考查的重点.数列的应用以及数列与函数等的综合的命题趋势较强,复习时应予以关注.1.数列求和的方法技巧(1)公式法:直接应用等差、等比数列的求和公式求和.(2)错位相减法这种方法主要用于求数列{a n·b n}的前n项和,其中{a n}、{b n}分别是等差数列和等比数列.(3)倒序相加法这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.(5)分组转化求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并.2.数列的综合问题(1)等差数列与等比数列的综合.(2)数列与函数、方程、不等式、三角、解析几何等知识的综合.(3)增长率、分期付款、利润成本效益的增减等实际应用问题. 数列的实际应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.【误区警示】1.应用错位相减法求和时,注意项的对应.2.正确区分等差与等比数列模型,正确区分实际问题中的量是通项还是前n 项和.考点一.数列求和例1、25.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析(2)见解析(2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此,当3n ≥时, 21124n n n n n a a a a a --+++++=,①当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③2314n n n a a a ++++=- ()1n n a a -+,④将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为'd .在①中,取4n =,则235644a a a a a +++=,所以23'a a d =-, 在①中,取3n =,则124534a a a a a +++=,所以122'a a d =-, 所以数列{}n a 是等差数列.【变式探究】(2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *.(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.【举一反三】 若A n 和B n 分别表示数列{a n }和{b n }的前n 项的和,对任意正整数n ,a n =2(n +1),3A n -B n =4n .(1)求数列{b n }的通项公式;(2)记c n =2A n +B n ,求{c n }的前n 项和S n .解:(1)由于a n =2(n +1), ∴{a n }为等差数列,且a 1=4. ∴A n =n (a 1+a n )2=n (4+2n +2)2=n 2+3n ,∴B n =3A n -4n =3(n 2+3n )-4n =3n 2+5n ,当n =1时,b 1=B 1=8,当n ≥2时,b n =B n -B n -1=3n 2+5n -[3(n -1)2+5(n -1)]=6n +2.由于b 1=8适合上式, ∴b n =6n +2.(2)由(1)知c n =2A n +B n =24n 2+8n =14⎝ ⎛⎭⎪⎫1n -1n +2, ∴S n =14⎣⎢⎡⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫14-16+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2= 14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2. 【变式探究】(2016·山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2=-3n ·2n +2, ∴T n =3n ·2n +2.考点二、数列和函数、不等式的交汇例4、(2016·四川卷)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n3n -1.(2)证明:由(1)可知,a n =qn -1,∴双曲线x 2-y 2a 2n =1的离心率e n =1+a 2n =1+q2(n -1). 由e 2=1+q 2=53解得q =43.∵1+q2(k -1)>q2(k -1),∴1+q2(k -1)>qk -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n-1q -1,故e 1+e 2+…+e n >4n -3n3n -1.【变式探究】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n .1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328433n n n T +-=⨯+. 【解析】(I )设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由已知2312b b +=,得()2112b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以, 2n n b =. 由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =, 3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2n n b =.(II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=⨯,有()221314n n n a b n -=-⨯, 故()23245484314n n T n =⨯+⨯+⨯++-⨯,()()23414245484344314n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得()231324343434314n n n T n +-=⨯+⨯+⨯++⨯--⨯得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析(2)见解析(2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,①当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③3.【2017山东,理19】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T .【答案】(I)12.n n x -=(II )(21)21.2n n n T -⨯+=(II )过123,,,P P P ……1n P +向x 轴作垂线,垂足分别为123,,,Q Q Q ……1n Q +,由(I)得111222.n n n n n x x --+-=-= 记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n T b b b =+++……+n b=101325272-⨯+⨯+⨯+……+32(21)2(21)2n n n n ---⨯++⨯ ① 又0122325272n T =⨯+⨯+⨯+……+21(21)2(21)2n n n n ---⨯++⨯ ② ①-②得=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=1.【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设 ()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【答案】(Ⅰ)详见解析(Ⅱ)详见解析2.【2016高考新课标3理数】已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ.【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-. 3.【2016高考浙江理数】设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【答案】(I )证明见解析;(II )证明见解析. 【解析】(I )由112n n a a +-≤得1112n n a a +-≤,故111222n n nn na a ++-≤,n *∈N ,所以1<,因此()1122n n a a -≥-.(II )任取n *∈N ,由(I )知,对于任意m n >,112n -<, 故3224mn ⎛⎫=+⋅ ⎪⎝⎭.4.【2016年高考北京理数】(本小题13分)设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ; (3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a .【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.(Ⅲ)当1a a N ≤时,结论成立. 以下设1a a N >. 由(Ⅱ)知∅≠)(A G .设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(.记10=n . 则pn n n n a a a a <⋅⋅⋅<<<21.对p i ,,1,0⋅⋅⋅=,记{},ii i k n G k n k N a a *=∈<≤>N .如果∅≠i G ,取i i G m min =,则对任何iim n k i a a a m k <≤<≤,1.从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G . 从而对任意p n k N ≤≤,pn k a a ≤,特别地,pn N a a ≤.对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0.因此1)(111111+≤-+=--++++i i i i i n n n nn a a a a a .所以p a a a a a a i i pn pi n n N ≤-=-≤--∑=)(1111.因此)(A G 的元素个数p 不小于1N a a -.5.【2016年高考四川理数】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ .(Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且253e = ,证明:121433n nn n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q ;(Ⅱ)详见解析. (Ⅱ)由(Ⅰ)可知,1nn a q .所以双曲线2221n y x a 的离心率 22(1)11nn n e a q .由2513qq 解得43q . 因为2(1)2(1)1+k kq q 1)1*kk q kN (). 于是11211+1n n nq e e e qqq , 故1231433n n n e e e .6.【2016高考上海理数】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析. (3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.7.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 8.【2016高考山东理数】(本小题满分12分)已知数列{}na 的前n 项和S n =3n 2+8n ,{}nb 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}nb 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n .【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得 所以223+⋅=n n n T9.【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+kT t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S . (1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.【答案】(1)13n n a -=(2)详见解析(3)详见解析 (3)下面分三种情况证明. ①若D 是C 的子集,则2C C DC D D D D S S S S S S S +=+≥+=. ②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令UE CD =,UF DC =则E ≠∅,F ≠∅,E F =∅.于是C E C D S S S =+,D F C D S S S =+,进而由C D S S ≥,得E F S S ≥. 设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠. 由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤.又k l ≠,故1l k ≤-,从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤, 故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.10.【2016高考山东理数】(本小题满分12分)已知数列{}na 的前n 项和S n =3n 2+8n ,{}nb 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}nb 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n项和T n .【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得 所以223+⋅=n n n T【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为【答案】2011【2015高考天津,理18】(本小题满分13分)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且233445,,a a a a a a 成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列nb 的前n 项和.【答案】(I) 1222,2,.n n nn a n -⎧⎪=⎨⎪⎩为奇数,为偶数; (II) 1242n n n S -+=-.【解析】(Ⅰ) 由已知,有34234534a a a a a a a a ,即4253a a a a -=-,所以23(1)(1)a q a q -=-,又因为1q ≠,故322a a ==,由31a a q =,得2q =,当21(*)n k n N =-∈时,1122122n k n k a a ---===,当2(*)n k n N =∈时,2222nkn k a a ===,所以{}n a 的通项公式为1222,2,.n n nn a n -⎧⎪=⎨⎪⎩为奇数,为偶数【2015高考四川,理16】设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值.【答案】(1)2n n a =;(2)10.【解析】(1)由已知12n n S a a =-,有1122(1)n n n n n a S S a a n --=-=->, 即12(1)n n a a n -=>. 从而21312,4a a a a ==.又因为123,1,a a a +成等差数列,即1322(1)a a a +=+. 所以11142(21)a a a +=+,解得12a =.所以,数列{}n a 是首项为2,公比为2的等比数列. 故2n n a =. (2)由(1)得112n n a =.所以2311[1()]1111122112222212n n n nT -=++++==--. 由1|1|1000n T -<,得11|11|21000n --<,即21000n >. 因为9102512100010242=<<=, 所以10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知na >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11646n -+【2015江苏高考,20】(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得k n k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由.【答案】(1)详见解析(2)不存在(3)不存在(3)假设存在1a ,d 及正整数n ,k ,使得1n a ,2n k a +,23n k a +,34n ka +依次构成等比数列,则()()()221112n kn k n a a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a+,并令1d t a =(13t >-,0t ≠), 则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++,且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦, 且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦. 再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**).令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,则()()()()()()()()()()222213ln 13312ln 1231ln 111213t t t t t t g t t t t ⎡⎤++-+++++⎣⎦'=+++.令()()()()()()()22213ln 13312ln 1231ln 1t t t t t t t ϕ=++-+++++,则()()()()()()()613ln 13212ln 121ln 1t t t t t t t ϕ'=++-+++++⎡⎤⎣⎦. 【2015高考浙江,理20】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).【答案】(1)详见解析;(2)详见解析.【解析】(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,12n a ≤,由11(1)n n n a a a --=-得1211(1)(1)(1)0n n n a a a a a --=--⋅⋅⋅->,由102n a <≤得,211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤;(2)由题意得21n n n a a a +=-, ∴11n n S a a +=-①,由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n n a a +≤-≤, ∴11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②,由①②得 112(2)2(1)n S n n n ≤≤++. 【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233n n S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .【答案】(I )13,1,3,1,n n n a n -=⎧=⎨>⎩; (II )13631243n nn T +=+⨯. (Ⅱ)因为3log n n n a b a = ,所以113b =当1n > 时,()11133log 313n n nn b n ---==-⋅所以1113T b ==当1n > 时,所以()()01231132313n n T n --=+⨯+⨯++- 两式相减,得所以13631243n nn T +=+⨯ 经检验,1n = 时也适合, 综上可得:13631243n nn T +=+⨯ 【2015高考安徽,理18】设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明14n T n≥. 【答案】(Ⅰ)1n n x n =+;(Ⅱ)14n T n≥.1. 【2014高考湖南理第20题】已知数列{}n a 满足111,n n n a a a p +=-=,*n N ∈.(1)若{}n a 为递增数列,且123,2,3a a a 成等差数列,求P 的值; (2)若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.【答案】(1)13p = (2) 1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数或()114332n n n a --=+ (2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22221221222121n n n n n n n n a a a a a a a a +-++-+-<-⎧⇒-<-⎨<⎩,因为(2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以21210n n a a +-->且2220n n a a +-<()2220n n a a +⇒-->,两不等式相加可得()21212220n n n n a a a a +-+--->2212221n n n n a a a a -++⇒->-,又因为2212112n n n a a ---=22212112n n n a a +++>-=,所以2210n n a a -->,即2212112n n n a a ---=,同理可得2322212n n n n a a a a +++->-且2322212n n n n a a a a +++-<-,所以212212n n n a a +-=-, 则当2n m =()*m N ∈时,21324322123211111,,,,2222m m m a a a a a a a a ---=-=--=-=,这21m -个等式相加可得2113212422111111222222m m m a a --⎛⎫⎛⎫-=+++-+++⎪ ⎪⎝⎭⎝⎭212222111111111224224113321144m m m -----=-=+--22141332m m a -⇒=+. 当21n m =+时,2132432122321111,,,,2222m m ma a a a a a a a +-=-=--=-=-,这2m 个等式相加可得2111321242111111222222m m m a a +-⎛⎫⎛⎫-=+++-+++ ⎪ ⎪⎝⎭⎝⎭2122211111111224224113321144m m m---=-=--- 21241332m m a +=-,当0m =时,11a =符合,故212241332m m a --=- 综上1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数.【考点定位】等差数列、等比数列、数列单调性2. 【2014高考江西理第17题】已知首项都是1的两个数列(),满足.(1)令,求数列的通项公式; (2)若13n n b -=,求数列的前n 项和【答案】(1)2 1.n c n =-(2)(1)3 1.nn S n =-⋅+ 【考点定位】等差数列、错位相减求和3. 【2014高考全国1第17题】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数,(I )证明:2n n a a λ+-=;(II )是否存在λ,使得{}n a 为等差数列?并说明理由. 【答案】(I )详见解析;(II )存在,4λ=.【考点定位】递推公式、数列的通项公式、等差数列. 4. 【2014高考全国2第17题】已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.【答案】n a =312n -【解析】本题第(1)问,证明等比数列,可利用等比数列的定义来证明,之后利用等比数列,求出其通项公式;对第(2)问,可先由第(1)问求出1na ,然后转化为等比数列求和,放缩法证明不等式.试题解析:(1)证明:由131n n a a +=+得1113()22n n a a ++=+3,(2)由(1因为当1n ≥时,13123n n --≥⋅,所以+1na 1113n -≤+++=1+21a +1n a 32< 【考点定位】本小题考查等比数列的定义、数列通项公式的求解、数列中不等式的证明5. 【2014高考山东卷第19题】已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .【答案】(I )21n a n =-.(II )22,212,21n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数,(或1n 21(1)2+1n n T n -++-=)(II )11144(1)(1)(21)(21)n n n n n n nb a a n n --+=-=--+111(1)()2121n n n -=-+-+ 当n 为偶数时,1111111(1)()()()33523212121n T n n n n =+-+++--+---+1121n =-+221nn =+ 当n 为奇数时,1111111(1)()()()33523212121n T n n n n =+-++++-+---+1121n =++2221n n +=+ 所以22,212,21n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数,(或1n 21(1)2+1n n T n -++-=)【考点定位】等差数列的前n 项和、等比数列及其性质 。
数列教案优秀5篇高三数学数列教案篇一数列§3.1.1数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
重点:1数列的概念。
按一定次序排列的一列数叫做数列。
数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。
由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
2、数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。
从映射、函数的观点看,数列可以看成是定义域为正整数集N-(或宽的有限子集)的函数。
当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。
由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。
难点:根据数列前几项的特点,以现规律后写出数列的通项公式。
给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。
给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。
过程:一、从实例引入(P110)1. 堆放的钢管4,5,6,7,8,9,102. 正整数的倒数3、4. -1的正整数次幂:-1,1,-1,1,…5、无穷多个数排成一列数:1,1,1,1,…二、提出课题:数列1、数列的定义:按一定次序排列的一列数(数列的有序性)2、名称:项,序号,一般公式,表示法3、通项公式:与之间的函数关系式如数列1:数列2:数列4:4、分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。
5、实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集N-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
高三数学二轮专题复习教案――数列 一、本章知识结构:二、重点知识回顾1.数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.(4)n a 与n S 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥. 2.等差数列和等比数列的比较(1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列. (2)递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,.(3)通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.(4)性质等差数列的主要性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②若m n p q +=+,则()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=.③()()n m a a n m d m n *-=-∈N ,.④232k k k k k S S S S S --,,,…成等差数列.等比数列的主要性质:①单调性:当1001a q <⎧⎨<<⎩,或101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②若m n p q +=+,则()m n p q a a a a m n p q *=∈N ··,,,.特别地,若2m n p +=,则2m n pa a a =·.③(0)n m nm a q m n q a -*=∈≠N ,,.④232k k k k kS S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,若k 为偶数,不是等比数列.若k 为奇数,是公比为1-的等比数列. 三、考点剖析考点一:等差、等比数列的概念与性质 例1. (2008深圳模拟)已知数列.12}{2n n S n a n n -=项和的前(1)求数列}{n a 的通项公式; (2)求数列.|}{|n n T n a 项和的前解:(1)当111112,1211=-⨯===S a n 时;、 当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、(2)令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ΛΛ时;当||||||||||,67621n n a a a a a T n ++++++=>ΛΛ时na a a a a a ----+++=ΛΛ87621.7212)12()6612(222226+-=---⨯⨯=-=n n n n S S n综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n 点评:本题考查了数列的前n 项与数列的通项公式之间的关系,特别要注意n =1时情况,在解题时经常会忘记。
第二问要分情况讨论,体现了分类讨论的数学思想. 例2、(2008广东双合中学)已知等差数列}{n a 的前n 项和为nS ,且35a =,15225S =. 数列}{n b 是等比数列,32325,128b a a b b =+=(其中1,2,3,n =…).(I )求数列}{n a 和{}n b 的通项公式;(II )记,{}n n n n nc a b c n T =求数列前项和.解:(I )公差为d ,则⎩⎨⎧=⨯+=+,22571515,5211d a d a 12,2,11-=⎩⎨⎧==∴n a d a n 故(1,2,3,n =)….设等比数列}{n b 的公比为q , ⎪⎩⎪⎨⎧=⋅=,128,82333q b q b b 则 .2,83==∴q bn n n q b b 233=⋅=∴-(1,2,3,n =)….(II ),2)12(n n n c ⋅-=Θ2323252(21)2,n n T n ∴=+⋅+⋅++-⋅L.2)12(2)32(2523221432+⋅-+⋅-++⋅+⋅+=n n n n n T Λ作差:115432)12(22222++⋅--+++++=-n n n n T Λ3112(12)2(21)212n n n -+-=+--⋅-31122122(21)(21)222822n n n n n n n -++++=+---⋅=+--+162(23)n n +=---⋅ 1(23)26n n T n +∴=-⋅+(1,2,3,n =)….点评:本题考查了等差数列与等比数列的基本知识,第二问,求前n 项和的解法,要抓住它的结特征,一个等差数列与一个等比数列之积,乘以2后变成另外的一个式子,体现了数学的转化思想。
考点二:求数列的通项与求和例3.(2008江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为解:前n -1 行共有正整数1+2+…+(n -1)个,即22n n -个,因此第n 行第3 个数是全体正整数中第22n n-+3个,即为262n n -+.点评:本小题考查归纳推理和等差数列求和公式,难点在于求出数列的通项,解决此题需要一定的观察能力和逻辑推理能力。
例4.(2008深圳模拟)图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n 个图形包含()f n 个“福娃迎迎”,则(5)f = ;()(1)f n f n --=____解:第1个图个数:1 第2个图个数:1+3+1第3个图个数:1+3+5+3+1第4个图个数:1+3+5+7+5+3+1第5个图个数:1+3+5+7+9+7+5+3+1=41, 所以,f (5)=41f(2)-f(1)=4 ,f(3)-f(2)=8,f(4)-f(3)=12,f(5)-f(4)=16 ()(1)f n f n --=4(1)n -点评:由特殊到一般,考查逻辑归纳能力,分析问题和解决问题的能力,本题的第二问是一个递推关系式,有时候求数列的通项公式,可以转化递推公式来求解,体现了转化与化归的数学思想。
考点三:数列与不等式的联系12 34 5 67 8 9 1011 12 13 14 15………………例5.(2009届高三湖南益阳)已知等比数列{}n a 的首项为311=a ,公比q 满足10≠>q q 且。
又已知1a ,35a ,59a 成等差数列。
(1)求数列{}n a 的通项(2)令na nb 13log =,求证:对于任意n N *∈,都有122311111 (1)2n n b b b b b b +≤+++p(1)解:∵315259a a a ⋅=+ ∴24111109a q a a q =+ ∴4291010q q -+= ∵10≠>q q 且 ∴13q =∴113n nn a a q --==(2)证明:∵133log log 3na n nb n === , 11111(1)1n n b b n n n n +==-++∴12231111111111...1122311n n b b b b b b n n n ++++=-+-++-=-++L 122311111...12n n b b b b b b +∴≤+++p点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(2)问,采用裂项相消法法,求出数列之和,由n 的范围证出不等式。
例6、(2008辽宁理) 在数列||n a ,||n b 中,a1=2,b1=4,且1n n n a b a +,,成等差数列,11nn n b a b ++,,成等比数列(n ∈*N )(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测||n a ,||n b 的通项公式,并证明你的结论;(Ⅱ)证明:1122111512n n a b a b a b +++<+++….解:(Ⅰ)由条件得21112n n n n n n b a a a b b +++=+=,由此可得2233446912162025a b a b a b ======,,,,,.猜测2(1)(1)n n a n n b n =+=+,.用数学归纳法证明:①当n=1时,由上可得结论成立. ②假设当n=k 时,结论成立,即2(1)(1)k k a k k b k =+=+,,那么当n=k+1时,22221122(1)(1)(1)(2)(2)kk k k k ka ab a k k k k k b k b +++=-=+-+=++==+,.所以当n=k+1时,结论也成立. 由①②,可知2(1)(1)n n a n n b n =++,对一切正整数都成立.(Ⅱ)11115612a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n+=++>+.故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭…… 111111116223341n n ⎛⎫=+-+-++- ⎪+⎝⎭… 111111562216412n ⎛⎫=+-<+= ⎪+⎝⎭综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.例7. (2008安徽理)设数列{}n a 满足3*010,1,,n n a a ca c c N c +==+-∈其中为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈;(Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈;(Ⅲ)设103c <<,证明:222*1221,13n a a a n n N c ++>+-∈-L解: (1) 必要性 :120,1a a c==-∵∴ ,又2[0,1],011a c ∈≤-≤∵∴ ,即[0,1]c ∈充分性 :设 [0,1]c ∈,对*n N ∈用数学归纳法证明[0,1]n a ∈当1n =时,10[0,1]a =∈.假设[0,1](1)k a k ∈≥则31111k k a ca c c c +=+-≤+-=,且31110k k a ca c c +=+-≥-=≥1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立(2) 设103c <<,当1n =时,10a =,结论成立当2n ≥ 时,3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴103C <<∵,由(1)知1[0,1]n a -∈,所以21113n n a a --++≤ 且 110n a --≥ 113(1)n n a c a --≤-∴21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-=L ∴1*1(3)()n n a c n N -≥-∈∴(3) 设103c <<,当1n =时,2120213a c =>--,结论成立当2n ≥时,由(2)知11(3)0n n a c -≥->21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴222222112212[3(3)(3)]n n n a a a a a n c c c -+++=++>--+++L L L ∴2(1(3))2111313n c n n c c -=+->+--- 点评:本题是数列、充要条件、数学归纳法的知识交汇题,属于难题,复习时应引起注意,加强训练。