251随机事件与概率11
- 格式:pdf
- 大小:3.85 MB
- 文档页数:21
第25章概率25.1.1事件1
“天有不测风云”
原意是指刮风、下雨、阴天、晴天这些天气状况很难预料.
它被引申为:世界上很多事情具有偶然性,人们不能事先判定这些事情是否会发生。
降水概率90%
要的数字概念,正是在研究这些规律中产生的。
人们用
发生的可能性的大小。
例如,天气预报说明天的降水概
就意味着明天有很大可能下雨(雪)。
现在概率的应用日益广泛。
本章中,我们将学习一些概率初步
知识,从而提高对偶然事件发生规律的认识。
学习目标:
1.了解必然事件、不可能事件、随机事件的特点。
2.会判断一个事件是什么事件。
思考:
下列哪些现象是必然发生的,哪些现象是不可能发生的?。
如果从结果能否预知的角度来看,可以分为两大类:另一类现象的结果是无法预知的,即在一定的条件下,出现那种
结果是无法预先确定的,这类现象称为随机现象.一类现象的结果总是确定的,即在一定的条件下,它所出现的结
果是可以预知的,这类现象称为确定性现象;
在自然界和实际生活中,我们会遇到各种各样的现象.
在一定条件下:
必然会发生的事件叫做必然事件;
必然不会发生的事件或者不可能发生的事件叫做不可能事件;可能会发生,也可能不发生的事件叫做不确定事件或随机事件.特征:事先不能预料即具有不确定性。
5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
(1)抽到的序号有几种可能的结果?(2)抽到的序号小于6吗?
(3)抽到的序号会是0吗?
(4)抽到的序号会是1吗?
(5)请你用自己的语言叙述随机事件的定义。
在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?这是我们下面要讨论的问题。
请看下面两个试验。
试验1:从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根,抽出的签上号码有5种可能,即1,2,3,4,5。
由于纸签形状、大小相同,又是随机抽取,所以每个号被抽到的可能性大小相等,都是全部可能结果总数的1/5。
试验2:掷一枚骰子,向上的一面的点数有6种可能,即1,2,3,4,5,6。
由于骰子形状规则、质地均匀,又是随机掷出,所以出现每种结果的可能性大小相等,都是全部可能结果总数的1/6。
上述数值1/5和1/6反映了试验中相应随机事件发生的可能性大小。
概率的定义:
一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A)。
归纳:
一般地,如果在一次试验中,有n种可能的结果,并且它们发
生的可能性都相等,事件A包含其中的m种结果,那么事件A发
生的概率
m
P(A)=
n
回忆刚才两个试验,它们有什么共同特点吗?
可以发现,以上试验有两个共同特点:
(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等。