航天器热控制分系统设计共78页
- 格式:ppt
- 大小:8.03 MB
- 文档页数:78
航天系统热控制方法
航天系统热控制方法主要包括主动式热控制和被动式热控制。
被动式热控制主要通过改变航天器外部材料的光学和热学性能,如发射前进行外部涂层处理,使用隔热材料或改变热控涂层等,以实现热平衡和温度控制。
主动式热控制则更为复杂,它通过各种装置和系统来调节航天器内部的温度。
具体方法包括:
1.辐射式热控制:改变航天器内部设备的热辐射率,从而改变散热能力以保
持设备温度范围。
例如,使用热控百叶窗和热控旋转盘。
2.对流式热控制:在具有气体或流体循环调节的航天器内部,改变流体的对
流换热系数以实现温度调节。
这通常涉及液体循环和气体循环两种系统。
3.传导式主动热控制:通过改变航天器内部设备的热传导系数来自动调节设
备温度。
例如接触导热开关和可变热导的热管。
电加热器也是航天器常用的主动热控制器件。
4.过渡段热控制:这是航天器在发射前、发射中、再入地球大气层或进入其
他行星大气层时所采取的热控制技术。
在发射前,可以利用地面低温系统对航天器进行温度调节;在发射中,可以采取措施减少高温外壳传给内部仪器设备的热量;再入段则需要降低气动加热量,加强航天器的对外辐射散热和增加壳体的热容和潜热。
以上航天系统热控制方法可以有效地帮助航天器在不同环境中保持稳定的温度,从而确保航天器的正常运行和任务的成功执行。
航天器中的热控制机构设计与优化导语:航天器的热控制是航天工程中至关重要的一环。
本文将从航天器热控制的概念出发,探讨热控制机构设计的关键因素以及优化方法。
一、航天器热控制的概念航天器在进入外太空后,将面临极端的热环境,既有来自太阳的辐射热,又存在来自宇宙背景辐射的冷却。
热控制的目标是保证航天器各个部分的温度在可接受范围内,以确保航天器的正常运行。
热控制一般包括热防护、热辐射、热传导和热对流等方面。
二、航天器热控制机构设计的关键因素1. 材料选择航天器热控制机构中使用的材料应具有良好的导热性能、耐高温性能和低密度等特点。
合适的材料选择可以有效降低成本,提高热控制的性能。
2. 热控制系统设计热控制系统是航天器热控制的核心,包括热隔离结构、热源和热控制组件等。
合理的热控制系统设计可以提供良好的热控制效果,确保航天器的正常运行。
3. 热边界条件热边界条件是指航天器与外界环境的热交换条件。
航天器在不同的轨道和任务中,面临的热边界条件会有所不同。
合理的热控制机构设计需要考虑各种热边界条件下的热控制效果。
4. 热分析模拟热分析模拟可以通过数值计算的方法,对航天器的热控制效果进行预测和评估。
热分析模拟可以提供设计优化的依据,降低实验验证的成本和风险。
三、航天器热控制机构设计的优化方法1. 多物理场耦合优化航天器热控制涉及多个物理场的耦合问题,如热传导、热辐射和热对流等。
通过建立多物理场的耦合模型,可以对热控制机构进行综合优化,提高热控制效果。
2. 结构参数优化航天器热控制机构中的结构参数对热控制效果有重要影响。
通过设计参数优化算法,可以寻找最优的结构参数组合,提高热控制的性能。
3. 材料优化航天器热控制机构中使用的材料对热控制效果有直接影响。
通过材料优化的方法,可以找到最合适的材料组合,提高热控制性能。
4. 热控制系统优化热控制系统是航天器热控制的核心,通过优化热控制系统的设计,可以提高热控制效果,降低热控制的成本。
航天热控1. 简介航天热控(Spacecraft Thermal Control),是指在航天器运行过程中,对其内部温度进行控制以保证正常运行的一项重要工作。
航天器在太空中面临极端的温度环境,既有高温的阳光辐射,又有极低的太空温度,热控系统的设计和优化对于航天器的科学探索和任务的成功具有重要意义。
2. 航天器热平衡问题在航天器的运行过程中,航天器本身会产生一定的热量,而周围的太空环境则会通过辐射和传导方式来吸收或释放热量。
航天器需要通过热控系统来平衡内外热的交换,确保航天器内部温度在可控的范围内。
航天器热平衡问题主要包括如下几个方面:2.1. 太阳辐射热耦合航天器在太空中暴露在阳光辐射下,会吸收到大量的太阳能,导致温度升高。
太阳辐射热耦合主要通过航天器表面的材料选择和涂层来进行控制。
2.2. 热传导和对流航天器内部一般有各种设备和舱段,它们之间通过传导方式来交换热量。
同时,在太空环境中还存在微弱的气体流动,也会通过对流的方式进行热交换。
热传导和对流方面的问题可以通过设计隔热层和隔热结构来解决。
2.3. 热辐射热辐射是太空中最主要的热交换方式,包括航天器表面的辐射和周围天体的辐射。
航天器的表面温度与辐射热量之间存在着复杂的关系,热辐射方面的问题可以通过航天器表面的涂覆材料和表面结构来进行优化。
3. 航天热控系统的设计航天热控系统的设计需要综合考虑多个因素,包括航天器的设计要求、任务需求、材料特性等。
一般而言,航天热控系统主要包括以下几个方面:3.1. 热控系统组成航天热控系统由热控设备、传感器、控制装置、散热器等组成。
热控设备用于调节航天器内部的温度,传感器用于监测航天器内外的温度,控制装置用于控制热控设备的工作状态,散热器用于散发航天器内部多余的热量。
3.2. 热控设备选择根据航天器的需求,热控设备的选择包括制冷设备和加热设备。
制冷设备用于降低航天器温度,加热设备用于提高航天器温度。
热控设备的选择需要综合考虑功耗、体积、重量等因素。
2002年10月第13卷第5期装备指挥技术学院学报Journal of t he Academy of Equipment Command &T echnolog y October 2002Vol.13 No 5收稿日期:2002 05 08基金项目:国家教委骨干教师资助项目(2000 1027 01056133) 作者简介:向四桂(1970-),男,讲师,硕士.微型航天器热控系统设计向四桂 沈怀荣(装备指挥技术学院试验工程系,北京101416)摘 要:20世纪80年代中期以来,小卫星技术发展十分迅速,并带动了卫星向小型化发展。
介绍了微型航天器温度环境分析方法,使用简单热分析模型和整星热分析模型分析了某微型航天器的温度情况,并介绍了其热控系统设计方案。
关 键 词:微型航天器;热控系统;辐射中图分类号:V 423.4文献标识码:A 文章编号:CN11 3987/G3(2002)05 0044 03人造卫星热控制技术是控制卫星内部及外部环境热交换过程,使其热平衡温度处于要求范围内的技术,它是航天技术的重要组成部分[1]。
由用于卫星热控制的各种材料、部件和设备组成的卫星热控系统,是卫星各系统中十分重要的系统之一;其系统性能的优劣,可靠性的高低直接影响到其他系统的工作状态及卫星的工作寿命。
以华盛顿大学研制的Daw gstar 小卫星[2]为例,它是华盛顿大学与犹他州大学、维吉尼亚工业学院联合研制的一种小卫星,用于验证小总线技术、小卫星编队飞行以及太空中分布式卫星的性能。
为保证成功飞行,Daw gstar 的所有部件无论是否工作,其温度都必须控制在一定的范围之内。
而当卫星每90分钟绕轨道飞行一周时,由于各种因素的影响,卫星将经历不同的热量梯度。
这就要求为其设计一个热控子系统,以保证各部件在任何情况下都能正常工作。
1 最简单的热量分析模型在对Daw gstar 的热量情况进行详细分析之前,首先要估算其经历的最高温度(卫星处于一个最小的背阴轨道)和最低温度(卫星处于一个最大的背阴轨道),可以通过如图1所示的模型进行估算。