管理运筹学课后习题答案
- 格式:doc
- 大小:1.96 MB
- 文档页数:40
管理运筹学第三版课后答案【篇一:管理运筹学(第三版)课后习题答案】ss=txt>1、解:ax= 150 x= 7012目标函数最优值 103000b 1,3 使用完2,4 没用完 0,330,0,15c 50,0,200,0含义: 1 车间每增加 1 工时,总利润增加 50 元3 车间每增加 1 工时,总利润增加 200 元 2、4 车间每增加 1 工时,总利润不增加。
d 3 车间,因为增加的利润最大e 在 400 到正无穷的范围内变化,最优产品的组合不变f 不变因为在 [0,500]的范围内g 所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条j 不发生变化允许增加的百分比与允许减少的百分比之和没有超出100% k 发生变化 2、解:a 4000 10000 62000b 约束条件 1:总投资额增加 1 个单位,风险系数则降低 0.057约束条件 2:年回报额增加 1 个单位,风险系数升高 2.167 c 约束条件 1 的松弛变量是 0,约束条件 2 的剩余变量是 0约束条件 3 为大于等于,故其剩余变量为 700000 d 当 c不变时,c在 3.75 到正无穷的范围内变化,最优解不变21当 c不变时, c在负无穷到 6.4 的范围内变化,最优解不变12e 约束条件 1 的右边值在 [780000,1500000]变化,对偶价格仍为0.057(其他同理)f 不能,理由见百分之一百法则二 3 、解:a 18000 3000 102000 153000b 总投资额的松弛变量为 0基金 b 的投资额的剩余变量为 0c 总投资额每增加 1 个单位,回报额增加 0.1基金 b 的投资额每增加 1 个单位,回报额下降 0.06 d c不变时, c 在负无穷到 10 的范围内变化,其最优解不变12c不变时, c在 2 到正无穷的范围内变化,其最优解不变21e 约束条件 1 的右边值在 300000 到正无穷的范围内变化,对偶价格仍为 0.1约束条件 2 的右边值在 0 到 1200000 的范围内变化,对偶价格仍为-0.06 + = 100% 故对偶价格不变900000 900000 f4、解:a x=1x= 1.52x= 03x= 1 最优目标函数 18.548.5b 约束条件 2 和 3 对偶价格为 2 和 3.5c 选择约束条件 3,最优目标函数值 22d 在负无穷到 5.5 的范围内变化,其最优解不变,但此时最优目标函数值变化e 在 0 到正无穷的范围内变化,其最优解不变,但此时最优目标函数值变化 5、解:a 约束条件 2 的右边值增加 1 个单位,目标函数值将增加 3.622b 才有可能大于零或生产2c 根据百分之一百法则判定,最优解不变15 65d + 100 % 根据百分之一百法则二,我们不能判定? 30 ? 9.189因为111.25 15其对偶价格是否有变化第 4 章线性规划在工商管理中的应用1、解:为了用最少的原材料得到 10 台锅炉,需要混合使用 14 种下料方4286398505479691180剩余758设按 14 种方案下料的原材料的根数分别为 x1,x2,x3,x4,x5,x6,x7,x8,x9, x10,x11,x12,x13,x14,则可列出下面的数学模型: min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14 s.t. 2x1+x2+x3+x4 ≥ 80x2+3x5+2x6+2x7+x8+x9+x10≥ 350 x3+x6+2x8+x9+3x11+x12+x13≥ 420x4+x7+x9+2x10+x12+2x13+3x14 ≥ 10x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14≥ 0 用管理运筹学软件我们可以求得此问题的解为:x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0, x9=0,x10=0,x11=140,x12=0,x13=0,x14=3.333 最优值为 300。
《管理运筹学》第四版课后习题答案第2章线性规划的图解法1.解:(1)可行域为OABC。
(2)等值线为图中虚线部分。
(3)由图2-1可知,最优解为B点,最优解1x=127,2157x=;最优目标函数值697。
图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6xx=⎧⎨=⎩,函数值为3.6。
图2-2(2)无可行解。
(3)无界解。
(4)无可行解。
(5)无穷多解。
(6)有唯一解3.解:(1)标准形式(2)标准形式(3)标准形式4.解: 标准形式松弛变量(0,0) 最优解为 ,x 2=3/2。
5.解:标准形式剩余变量(0, 0, 13) 最优解为 x 1=1,x2=5。
6.解:(1)最优解为 x 1=3,x 2=7。
(2(3 (4(5)最优解为 x 1=8,x 2(61,所以最优解不变。
7.解:设x ,y 分别为甲、乙两种柜的日产量,目标函数z=200x +240y , 线性约束条件:即作出可行域.解⎩⎨⎧=+=+162202y x y x 得)8,4(Q 272082404200=⨯+⨯=最大z答:该公司安排甲、乙两种柜的日产量分别为4台和8台,可获最大利润2720元.8.解:设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积zm2. +2y , 线性约束条件: ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0027315212y x y x y x y x 作出可行域,并做一组一组平行直线x +2y=t .解⎩⎨⎧=+=+12273y x y x 得)2/15,2/9(E.但E 不是可行域内的整点,在可行域的整点中,点)8,4(使z 取得最小值。
答:应截第一种钢板4张,第二种钢板8张,能得所需三种规格的钢板,且使所用钢板的面积最小.9.解:设用甲种规格原料x 张,乙种规格原料y 张,所用原料的总面积是zm 2,目标函数z=3x +2y ⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+003222y x y x y x 作出可行域.作一组平等直线3x +2y=t . 解⎩⎨⎧=+=+3222y x y x 得)3/1,3/4(CC 不是整点,C 不是最优解.在可行域内的整点中,点B(1,1)使z 取得最小值. z 最小=3×1+2×1=5,答:用甲种规格的原料1张,乙种原料的原料1张,可使所用原料的总面积最小为5m 2.10.解:设租用大卡车x 辆,农用车y 辆,最低运费为z 元.目标函数为z=960x +360y .线性约束条件是⎪⎩⎪⎨⎧≥+≤≤≤≤1005.28200100y x y x 作出可行域,并作直线960x +360y=0. 即8x +3y=0,向上平移由⎩⎨⎧=+=1005.2810y x x 得最佳点为()10,8作直线960x +360y=0. 即8x +3y=0,向上平移至过点B(10,8)时,z=960x +360y 取到最小值.z 最小=960×10+360×8=12480答:大卡车租10辆,农用车租8辆时运费最低,最低运费为12480元.11.解:设圆桌和衣柜的生产件数分别为x 、y ,所获利润为z ,则z=6x +10y .⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+005628.008.07209.018.0y x y x y x 即⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+001400728002y x y x y x 作出可行域.平移6x +10y=0 ,如图⎩⎨⎧=+=+1400728002y x y x 得⎩⎨⎧==100350y x 即C(350,100).当直线6x +10y=0即3x +5y=0平移到经过点C(350,100)时,z=6x +10y 最大12.解:模型12max 500400z x x =+ 1211121223003540224401.2 1.5300,0x x x x x x x x ++≤≤≤≤≥(1)1150x =,270x =,即目标函数最优值是103 000。
精选⎨= 0.6《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。
(2)等值线为图中虚线部分。
(3)由图2-1可知,最优解为B 点,最优解 x =12, x = 15 1727图2-1;最优目标函数值 69。
72.解:(1)如图2-2所示,由图解法可知有唯一解 ⎧x 1 = 0.2,函数值为3.6。
⎩x 2图2-2(2)无可行解。
(3)无界解。
(4)无可行解。
⎨ (5)无穷多解。
⎧x = (6)有唯一解 ⎪ 1⎪ 203 ,函数值为 92 。
8 3 x = ⎪⎩ 2 33.解: (1)标准形式max f = 3x 1 + 2x 2 + 0s 1 + 0s 2 + 0s 39x 1 + 2x 2 + s 1 = 303x 1 + 2x 2 + s 2 = 13 2x 1 + 2x 2 + s 3 = 9x 1, x 2 , s 1, s 2 , s 3 ≥ 0(2)标准形式min f = 4x 1 + 6x 2 + 0s 1 + 0s 23x 1 - x 2 - s 1 = 6 x 1 + 2x 2 + s 2 = 10 7x 1 - 6x 2 = 4x 1, x 2 , s 1, s 2 ≥ 0(3)标准形式min f = x 1' - 2x 2' + 2x 2'' + 0s 1 + 0s 2-3x 1 + 5x 2' - 5x 2'' + s 1 = 70 2x 1' - 5x 2' + 5x 2'' = 50 3x 1' + 2x 2' - 2x 2'' - s 2 = 30 x 1', x 2' , x 2'' , s 1, s 2 ≥4.解: 标准形式max z = 10x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4x 2 + s 1 = 9 5x 1 + 2x 2 + s 2 = 8 x 1, x 2 , s 1, s 2 ≥ 0≤松弛变量(0,0)最优解为 x 1 =1,x 2=3/2。
管理运筹学课后习题答案管理运筹学课后习题答案一、线性规划线性规划是管理运筹学中的一种重要方法,它通过建立数学模型,寻找最优解来解决实际问题。
下面我们来讨论一些常见的线性规划习题。
1. 一家工厂生产两种产品A和B,每单位产品A需要3小时的加工时间和2小时的装配时间,每单位产品B需要2小时的加工时间和4小时的装配时间。
工厂每天有8小时的加工时间和10小时的装配时间。
已知产品A的利润为300元,产品B的利润为400元。
如何安排生产,使得利润最大化?解答:设生产产品A的数量为x,生产产品B的数量为y。
根据题目中的条件,可以得到以下线性规划模型:目标函数:max 300x + 400y约束条件:3x + 2y ≤ 82x + 4y ≤ 10x, y ≥ 0通过求解上述线性规划模型,可以得到最优解,即生产4个产品A和1个产品B时,利润最大化,为2000元。
2. 一家超市有两种品牌的洗衣液,品牌A和品牌B。
品牌A每瓶售价20元,每瓶利润为5元;品牌B每瓶售价25元,每瓶利润为7元。
超市每天销售洗衣液的总利润不能超过100元,并且每天至少要销售10瓶洗衣液。
如何安排销售,使得利润最大化?解答:设销售品牌A的瓶数为x,销售品牌B的瓶数为y。
根据题目中的条件,可以得到以下线性规划模型:目标函数:max 5x + 7y约束条件:20x + 25y ≤ 100x + y ≥ 10x, y ≥ 0通过求解上述线性规划模型,可以得到最优解,即销售5瓶品牌A和5瓶品牌B时,利润最大化,为60元。
二、排队论排队论是管理运筹学中研究排队系统的一种方法,它通过数学模型和概率统计来分析和优化排队系统。
下面我们来讨论一些常见的排队论习题。
1. 一家银行有两个窗口,每个窗口的服务时间服从指数分布,平均服务时间分别为3分钟和4分钟。
顾客到达的间隔时间也服从指数分布,平均间隔时间为2分钟。
如果顾客到达时,两个窗口都有空闲,顾客会随机选择一个窗口进行服务。
第2章 线性规划的图解法1.解:x`A 1 (1) 可行域为OABC(2) 等值线为图中虚线部分(3) 由图可知,最优解为B 点, 最优解:1x =712,7152=x 。
最优目标函数值:7692.解: x 2 10 1(1) 由图解法可得有唯一解 6.02.021==x x ,函数值为3.6。
(2) 无可行解 (3) 无界解 (4) 无可行解 (5)无穷多解(6) 有唯一解 3832021==x x ,函数值为392。
3.解:(1). 标准形式:3212100023m ax s s s x x f ++++=,,,,9221323302932121321221121≥=++=++=++s s s x x s x x s x x s x x(2). 标准形式:21210064m in s s x x f +++=,,,46710263212121221121≥=-=++=--s s x x x x s x x s x x(3). 标准形式:21''2'2'10022m in s s x x x f +++-=,,,,30223505527055321''2'2'12''2'2'1''2'2'11''2'21≥=--+=+-=+-+-s s x x x s x x x x x x s x x x4.解:标准形式:212100510m ax s s x x z +++=,,,8259432121221121≥=++=++s s x x s x x s x x松弛变量(0,0) 最优解为 1x =1,x 2=3/2.标准形式:32121000811m in s s s x x f ++++=,,,,369418332021032121321221121≥=-+=-+=-+s s s x x s x x s x x s x x剩余变量(0.0.13) 最优解为 x 1=1,x 2=5.6.解:(1) 最优解为 x 1=3,x 2=7. (2) 311<<c (3) 622<<c (4)4621==x x(5) 最优解为 x 1=8,x 2=0. (6) 不变化。
《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划线性规划的三要素是什么答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型松弛变量和剩余变量的管理含义是什么答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
.解:标准化.列出单纯形表412b02[8]2 /80868 /641241/41/81/8]/8(1/4/(1/813/265/4/43/4(13/2/(1/4 0-1/23/21/222806-221-12-502故最优解为,即,此时最优值为.6.表1—15中给出了求极大化问题的单纯形表,问表中为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以代替基变量;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
.《管理运筹学》第四版课后习题解析(上)第 2 章线性规划的图解法1.解:(1)可行域为 OABC。
(2)等值线为图中虚线部分。
()由图2-1可知,最优解为 B 点,最优解x=12,69。
315;最优目标函数值7x1277图 2-12.解:x10.2( 1)如图 2-2 所示,由图解法可知有唯一解,函数值为 3.6 。
x20.6图2-2(2)无可行解。
(3)无界解。
(4)无可行解。
word 资料.( 5)无穷多解。
x2092( 6)有唯一解3,函数值为。
183x2 33.解:( 1)标准形式maxf 3 12x2010s20s3 x s9 x12x2s1303x12x2s2132 x12x2s39x1,x2, s1,s2,s3≥0( 2)标准形式min f4x16x20 s10s23x1x2s16x1 2 x2s2107 x16x24x1, x2, s1, s2≥0( 3)标准形式min f x12x22x20 s10s23x15x25x2s1702 x15x25x2503x1 2 x2 2 x2s230x1, x2, x2, s1 , s2≥ 04.解:标准形式max z10 x15x20 s10s2word 资料.3x14x2s195 x12x2s28x1, x2, s1, s2≥0word 资料.松弛变量( 0,0)最优解为 x 1 =1,x 2=3/2 。
5.解: 标准形式min f11x 18 x 20 s 10s 20s 310x 1 2x 2 s 1 20 3x 1 3x 2 s 2 18 4 x 19x 2s 336x 1, x 2 , s 1 , s 2 , s 3 ≥ 0剩余变量( 0, 0, 13 )最优解为 x 1=1,x 2=5。
6.解:( 1)最优解为 x 1=3,x 2=7。
( 2) 1 c 1 3 。
( 3) 2 c 26 。
( 4)x 16。
x 24。
( 5)最优解为 x 1=8,x 2=0。
《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么就是线性规划?线性规划的三要素就是什么?答:线性规划(Linear Programming,LP)就是运筹学中最成熟的一个分支,并且就是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,就是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量就是决策问题待定的量值,取值一般为非负;约束条件就是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数就是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域就是空集。
当无界解与没有可行解时,可能就是建模时有错。
3.什么就是线性规划的标准型?松弛变量与剩余变量的管理含义就是什么? 答:线性规划的标准型就是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不就是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
⎨= 0.6《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。
(2)等值线为图中虚线部分。
(3)由图2-1可知,最优解为B 点,最优解 x=12, x15 1727图2-1;最优目标函数值 69。
72.解:(1)如图2-2所示,由图解法可知有唯一解 x 10.2,函数值为3.6。
x 2图2-2(2)无可行解。
(3)无界解。
(4)无可行解。
⎨ (5)无穷多解。
x(6)有唯一解 120 3,函数值为 92 。
8 3x2 33.解:(1)标准形式max f3x 12x 20s 10s 20s 39x 1 2x 2 s 1 30 3x 1 2x 2 s 2 13 2x 12x 2s 39x 1, x 2 , s 1, s 2 , s 3 ≥ 0(2)标准形式min f4x 16x 20s 10s 23x 1x 2 s 16 x 12x 2s 210 7x 16x 2 4x 1,x 2, s 1, s 2 ≥ 0(3)标准形式min fx 12x 22x 20s 1 0s 23x 15x25x 2s 170 2x15x 25x 250 3x 12x 22x 2s 230x 1, x 2, x 2, s 1, s 2 ≥ 04.解: 标准形式max z10x 15x 20s 10s 23x 1 4x 2s915x1 2x 2 s2 8 x, x2 , s1, s2 ≥01≤松弛变量(0,0)最优解为 x 1 =1,x 2=3/2。
5.解: 标准形式min f11x 18x 20s 10s 20s 310x 1 2x 2 s 1 20 3x 1 3x 2 s 2 18 4x 19x 2s 336x 1, x 2 , s 1, s 2 , s 3 ≥ 0剩余变量(0, 0, 13)最优解为 x 1=1,x 2=5。
6.解:(1)最优解为 x 1=3,x 2=7。
范文范例 指导参考学习资料整理《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1 •解:(1) 可行域为OABC (2) 等值线为图中虚线部分。
(3) 由图2-1可知,最优解为B 点,最优解Lx = 12_,最优目标函数值_69157x1727(1) 如图2-2所示,由图解法可知有唯一解x 2 = 0.62•解: (2) 无可行解。
(3) 无界解。
(4) 无可行解。
0.2,函数值为3.6范文范例指导参考(5)无穷多解3•解: (1)标准形式max f3x i2x 20S i0S 20S 39x i 2x 2 S i 303x i 2x 2 S 2 i32x i2x 2S 39x i , X 2 , S i , S 2 , S 3 > 0(2) 标准形式(3) 标准形式4•解: 标准形式max z10 x i5X 20S i0S 2x(6)有唯一解20|,函数值为3 924x 16x 20s 10 S 23x iX 2S i6 X i2X 2S2i0 7x i6x 24X i , X 2 ,S i , S 2》02x 2 0s i O S 23x i5X 2 5X 2S i 702x i5x 25x 2503x i 2x 22x 2S 2 30s 1, s 2 > 0min fmin fx i 2x 2 X i , X 2X 2范文范例指导参考3X i4X2S195x i2X2S2X i,X2 ,S1, S2> 0学习资料整理松弛变量(0, 0) 最优解为x i =1, x 2=3/2。
5•解: 标准形式min f 11x i 8x 2O s iO S 2O S 310x i 2X 2 S i 20 3x i 3X 2 S 2 18 4x 19x 2S 3 36X i ,S1 , S2 ,S 3 > 0剩余变量(0, 0, 13 ) 最优解为x i =1,X 2=5。
《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1 •解:1 )可行域为OABC2)等值线为图中虚线部分2•解:『X =0 21)女图2-2所示,由图解法可知有唯一解X1 _ . ,函数值为3.6凶=°.6图2-22) 无可行解。
3) 无界解。
4) 无可行解。
3)由图2-1可知,最优解为B 点,最优解辿=12,丿 最优目标函数值 _152 _ 76975)无穷多解3•解:1)标准形式max f =3x i 2x 2 0s i - 0s 2 - 0s 39xi 2x 2 si =303x 1 亠2X 2 亠s =132x i 亠2x 2 亠S 3 =9x i , x 2 ,S 1, S 2, S 3》02) 标准形式min f =4x 1 亠6x 2 亠0$ 亠0s 23x i - X 2 - Si — 6x 1 2x 2 S 2 =i07x i -6x 2 =4x i , x , S i , S 2 A 03) 标准形式min f =xi —2X 2 亠2X 2 亠0s 1 亠0S 2-3x i 5x 2 -5x 2 S i =702x i -5x 2 5X 2: =503x i 2x 2 —2x 2 -S 2 =30x i , xl X 2: Si, S 2 A 0 4•解:标准形式max z =10x i ' 5x 2 ' 0s i 0S 23x 1 4x 2 Si =95xi 2x 2 S 2 =8x i , x , S i , S 2 A 06)有唯一解■: X 2=20 3,函数值为 83 92 3松弛变量0,0) 最优解为x i =1, X 2=3/2。
5•解:标准形式min f =11x i 8x 2 - 0s i - 0s 2 - 0S 310X 1 2X 2 -s 1 =203X I 亠 3X2 -S 2 =184X1 9X2 —S3 =36X 1, X 2 , S 1, S 2 , S3》0剩余变量0, 0, 13)最优解为X 1=1 , X 2=5。
可编辑修改精选全文完整版第二章2.5 表2-3为用单纯形法计算时某一步的表格。
已知该线性规划的目标函数为12max 53z x x =+,约束形式为≤,34,x x 为松弛变量,表中解代入目标函数后得10z =。
(1)求a ~g 的值;(2)表中给出的解是否为最优解。
解:a=2,b=0,c=0,d=1,e=4/5,f=0,g=5;表中给出的解为最优解。
2.6 表2-4中给出某求最大化线性规划问题的初始单纯形表及迭代后的表,45,x x 为松弛变量,求表中a ~l 的值及各变量下标m ~t 的值。
解:a=-3,b=2,c=4,d=-2,e=2,f=3,g=1,h=0,i=5,j=-5,k=3/2,l=0;变量的下标为m—4,n—5,s—1,t—62.10 下述线性规划问题:要求根据以上信息确定三种资源各自的影子价格。
2.11 某单位加工制作100套工架,每套工架需用长为2.9m 、2.1m 和1.5m 的圆钢各一根。
已知原材料长7.4m 。
问如何下料使得所用的原材料最省?解:简单分析可知,在每一根原材料上各截取一根2.9m,2.lm 和1.5m 的圆钢做成一套工架,每根原材料剩下料头0.9m ,要完成100套工架,就需要用100根原材料,共剩余90m 料头。
若采用套截方案,则可以节省原材料,下面给出了几种可能的套截方案,如表2-5所示。
实际中,为了保证完成这100套工架,使所用原材料最省,可以混合使用各种下料方案。
设按方案A,B,C,D,E 下料的原材料数分别为x 1,x 2,x 3,x 4,x 5,根据表2-5可以得到下面的线性规划模型123451243451235min 00.10.20.30.8210022100..3231000,1,2,3,4,5i z x x x x x x x x x x x s t x x x x x i =++++++=⎧⎪++=⎪⎨+++=⎪⎪≥=⎩用大M 法求解此模型的过程如表2-6所示,最优解为:x *=(0,40,30,20,0)T ,最优值为z*=16。