新基因功能研究的策略与方法..
- 格式:ppt
- 大小:3.10 MB
- 文档页数:28
功能基因组学的基本研究思路与基本方法功能基因组学,听起来像是一个高大上的专业名词对吧?别急,今天就带你走进这个有点“深奥”却又超有趣的领域,让你明白这玩意到底是怎么回事。
你知道吗?其实功能基因组学不是什么高高在上的学术语言,它就是帮助我们弄清楚基因在生物体内到底是干什么的。
咱们人体里有成千上万的基因,它们每一个都像是一个小小的工人,埋头在不同的岗位上忙碌着。
那这些工人到底在干嘛?它们有没有默契合作?这一切,就是功能基因组学要解开的谜团。
哎,你想想,咱们日常生活中,有些人特别擅长做饭,有些人擅长修电脑,大家在自己的“岗位”上发挥特长。
基因也是一样,它们各有分工。
功能基因组学就是要告诉我们,这些“基因小工人”在细胞里面扮演什么角色,如何配合,甚至是他们的工作出错会有什么后果。
想像一下,如果厨房里负责切菜的人突然拿错了刀,结果把土豆切成了蒜瓣,哈哈,后果可想而知!功能基因组学的研究,不就是要找出那些“出错”的基因吗?就是这么一回事。
说到研究方法嘛,那可真是五花八门。
咱们简单聊几种,毕竟一提到方法,很多人都头大。
不过你放心,我不会让你感觉像是读了一本《基因学大辞典》。
最常见的一种方法叫基因表达分析。
这个听起来有点复杂对吧?简单说,它就是看看哪些基因在某个时间点特别活跃。
就好比一个办公室,大家有时忙得团团转,有时又像是开了个假期。
所以,基因表达分析就相当于在记录每个基因“上班”的情况,看看他们究竟啥时候最忙,忙些什么,或者是根本没动静。
另外一种常用方法叫基因敲除,顾名思义,就是把某个基因“敲掉”,看看它不在时会发生什么。
就像在一个车间里,工人突然消失,大家还会正常运作吗?这个方法能帮我们了解某些基因是不是特别重要,或者是说,没有了它,大家还能正常工作。
就像是你家猫咪,突然变得特别粘人,原来是家里有了新鲜的空气净化器,它的基因变化影响了它的行为。
听起来是不是很有意思?不过也不是所有敲除都那么简单,毕竟有些基因真的是“全能工人”,一不小心就会把整个系统搞崩溃。
基因功能研究一般先用生物信息学分析对基因的结构和功能做预测,然后就要对我们的推测进行验证,如何验证一个基因的功能,目前最常用的基因功能研究策略为功能获得与功能失活。
1、功能获得策略是指将基因直接导入某一细胞或个体中,通过该基因在机体内的表达,观察细胞生物学行为或个体表型遗传性状的变化,从而鉴定基因的功能。
常用的功能获得的具体方法有基因过表达技术以及CRISPR-SAM技术等。
2、基因的过表达技术:基因过表达技术是指将目的基因构建到组成型启动子或组织特异性启动子的下游,通过载体转入某一特定细胞中,实现基因的表达量增加的目的,可以使用的载体类型有慢病毒载体,腺病毒载体,腺相关病毒载体等多种类型。
当基因表达产物超过正常水平时,观察该细胞的生物学行为变化,从而了解该基因的功能。
基因过表达技术可用于在体外研究目的基因在DNA、RNA和蛋白质水平上的变化以及对细胞增殖、细胞凋亡等生物学过程的影响。
可使用产品:过表达慢病毒、cDNA克隆(可用作ORF克隆)CRISPR-SAM技术:CRISPR-SAM系统由三部分组成:第一个部分是dCas9与VP64融合蛋白;第二个部分是含2个MS2 RNA adapter的sgRNA;第三个是MS2-P65-HSF1激活辅助蛋白。
CRISPR-SAM系统借助dCas9-sgRNA的识别能力,通过MS2与MS2 adapter的结合作用,将P65/HSF1/VP64等转录激活因子拉拢到目的基因的启动子区域,成为一种强效的选择性基因活化剂,从而达到增强基因表达的作用。
可使用产品:全基因Cas9 SAM-慢病毒文库2、功能获得两种方法的比较:基因的过表达技术与CRISPR-SAM技术都能达到基因表达的上调,但是由于基因的过表达技术使用的载体容量的限制,导致基因的过表达技术只能用于研究一定长度内的基因。
而CRISPR-SAM技术是通过增强目的基因启动子的转录而实现基因的过表达,可以不受基因大小的限制。
第九章基因功能研究常用方法基因功能研究是生物学研究中的重要部分,通过研究基因的功能和表达方式,可以揭示基因在生物体发育、生长和疾病发生等方面的关键作用。
为了实现对基因功能的深入了解,科学家们发展了各种基因功能研究的方法。
以下将介绍一些常用的基因功能研究方法。
1. 基因敲除(Knockout):这是一种研究基因功能的重要方法。
通过CRISPR/Cas9等技术将目标基因的部分或全部序列剔除,使其无法表达,观察敲除后的生物体表现出的表型变化。
这种方法可用于验证基因的功能,发现其在生物体中的作用。
2. 基因突变(Mutation):通过诱发基因突变或筛选已有基因突变体,研究基因的功能和表达方式。
其中,随机突变(例如化学物质诱变)和目标突变方法(例如诱导突变)是常用的策略。
研究基因突变体可以揭示基因对于生物体正常发育和功能的影响。
3. 基因过表达(Gene Overexpression):通过将目标基因插入表达载体并导入生物体,使基因在生物体中过度表达。
观察过度表达基因后生物体的表型变化,可以了解基因过度表达对生物体的影响。
此外,过度表达基因还可用于验证一些基因在特定条件下的功能和路径。
4. 基因沉默(Gene Silencing):通过RNA干扰(RNAi)或转座子的反义RNA,使目标基因的转录或翻译过程受到阻碍。
基因沉默可用来研究基因造成的表型变化以及调控基因的功能。
5. 基因共表达(Gene Co-expression):通过分析大规模基因表达数据,探索基因间的共表达关系。
通过比较共表达基因的功能和通路,可以发现基因的相互关联及其在生物体中的功能。
6. 基因互作(Gene Interaction):通过分析基因间的物理相互作用和遗传相互作用关系,了解基因在调控和相互影响方面的作用。
这种方法对于揭示基因网络调控和疾病发生机制很有帮助。
7. 基因转移(Gene Transfer):将外源基因导入目标细胞或生物体,以研究基因功能和转录调控。
研究植物基因功能的策略和方法研究植物基因功能主要有两种策略:正向遗传学(forward genetics)和反向遗传学(reverse genetics)策略。
正向遗传学即通过生物个体或细胞基因组的自发突变或人工诱变,寻找相关表型或性状改变,然后通过图位克隆并结合一些基因差异表达筛选技术(如差减杂交、差异显示PCR、差异显示分析等)从这些特定性状变化的个体或细胞中找到对应的突变基因,并揭示其功能,例如遗传病基因的克隆。
反向遗传学的原理正好相反,人们首先是改变某个特定的基因或蛋白质,然后再去寻找与之有关的表型变化,例如基因剔除技术或转基因研究。
简单地说,正向遗传学是从表型变化研究基因变化,而反向遗传学则是从基因变化研究表型变化。
研究植物体内基因功能的方法主要有以下几种:(1)基因功能丧失或减少,即筛选目的基因功能部分丧失或全部丧失的突变体,比较其与野生型的表型差异来确定该基因功能;(2)基因功能增加或获得,即筛选目的基因高水平表达的植株,比较其与相应对照植株(野生型植株,功能丧失突变体或模式植物植株)差异,观察其表型性状变化来鉴定基因功能;(3)基因异位表达(Ectopic expression),通过定向调控靶基因的时空表达模式来研究基因功能;(4)微阵列(Microarray)是一种在全基因组水平对基因表达进行高通量检测的技术;(5)酵母双杂交技术(Yeast two-hybrid system)用于分析基因产物即蛋白质之间的互作。
1 基因功能丧失或减少以前,通常通过筛选自然突变体来获得基因功能部分或全部丧失的突变体,但概率较低;现在一般通过各种人工方法来获得合适突变体。
人工产生基因功能丧失的方法有插入突变、反义抑制(antisense suppression)、共抑制(cosuppression)、双链RNA干扰(double-stranded RNA interference, dsRNAi)。
基因功能分析的基本策略一、利用转基因模型研究基因的功能1转基因动物:是指用人工方法将外源基因导入或整合到基因组内,并能稳定传代的一类动物。
2基本原理:将目的基因(或基因组片段)用显微注射等方法注入实验动物的受精卵或着床前的胚胎细胞中,使目的基因整合到基因组中,然后将此受精卵或着床前的胚胎细胞再植入受体动物园的输卵管(或子宫)中,使其发育成携带有外源基因的转基因动物。
导入基因的方法有显微注射法、胚胎干细胞法、逆转录病毒感染法、精子载体法。
二、利用基因敲除模型研究基因的功能1基因打靶:是指通过DNA定点同源重组,改变基因组中的某一特定基因,从而在生物活体内研究此基因的功能。
若定向敲除某个基因,称为基因敲除,若定向将一段基因序列替代另一段基因序列,称为基因敲入。
2同源重组:是指发生在同源序列间的重组,它通过链的断裂和再连接,在两个DNA分子同源序列之间进行单链或双链片段的交换。
又称基本重组。
3基因敲除:是目前在体内研究基因功能的最佳方法,是指通过DNA同源重组定向的将外源基因插入宿主细胞染色体DNA,从而使特定基因在细胞内或生物或体内失活的过程。
4基因打靶的必备条件:胚胎干细胞(ES)、打靶载体5打靶载体的筛选标志:neo(新霉素)阳性筛选标志;HSV-tk阴性筛选标志。
6基因敲除的基本程序:①打靶载体的构建②打靶载体导入ES细胞③基因敲除ES细胞注射入胚泡④胚泡植入假孕小鼠的子宫中⑤嵌合体的杂交育种7构建打靶载体的基本过程①获得目的基因的同源片段,将此DNA片段克隆到一般的质粒载体中;②从重组质粒中切除目的基因的大部分同源DNA序列,只留部分序列在线性质粒载体的两端;③将neo基因克隆到带有目的基因同源顺序的线性质粒中,使之位于残留目的基因同源顺序的中间;④在目的基因同源顺序的外侧线性化重组质粒载体,将HSV-tk基因克隆到此线性载体中。
三、通过抑制或沉默基因表达对基因的功能进行分析研究1利用反义RNA抑制基因表达水平2利用RNAi技术在细胞中沉默特定基因已研究其功能1。
基因组学研究的新技术与新方法随着科技的不断发展,基因组学研究也在快速进步着。
从最初的Sanger测序到现在的高通量测序技术,基因组学研究不断涌现新的技术与方法。
本文将介绍一些基因组学研究的新技术与方法,并探讨其在基因组学研究中的应用。
一、单细胞测序技术单细胞测序技术是指通过对单个生物细胞进行基因组、转录组或表观基因组的测序,获得该细胞的完整信息。
相比于传统的混合细胞测序,单细胞测序技术具有更高的分辨率和灵敏度。
单细胞测序技术主要分为两种,一种是单细胞全基因组测序技术(single-cell whole genome sequencing,scWGS),另一种是单细胞转录组测序技术(single-cell transcriptome sequencing,scRNA-seq)。
在scWGS技术中,通过将单个细胞的基因组DNA进行扩增、建库和测序分析,可以获得单个细胞完整的基因组信息。
而在scRNA-seq技术中,则是将单个细胞的mRNA转录本进行扩增、建库和测序分析,获得单个细胞转录组的信息。
单细胞测序技术在各个领域都有着广泛的应用,如在肿瘤学中可以研究不同癌细胞的异质性,从而更好地了解癌症的发生机制和治疗策略;在演化生物学中可以深入研究物种的起源和演化;在发育生物学和神经科学中则可以探究单个细胞发育及神经元分类等问题。
二、DNA甲基化测序技术DNA甲基化是指DNA分子上甲基在胞嘧啶环上发生加成反应,从而形成5-甲基胞嘧啶。
这种化学修饰是细胞表观基因组调控的一种重要方式。
DNA甲基化测序技术是指对DNA分子进行甲基化信息的测序,以描绘基因组DNA上甲基化分布情况。
这类测序技术主要包括甲基化敏感限制性内切酶测序(methyl-sensitive restriction endonuclease sequencing, MRE-seq)、嵌入式甲基化测序(bisulfite sequencing, BS-seq)和甲基化免疫沉淀测序(methylated DNA immunoprecipitation sequencing, MeDIP-seq)等。
功能基因组学研究方法及其进展功能基因组学〔Functional genomics〕是利用结构基因组所提供的信息和产物,开展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。
它的研究内容是人类基因组DNA序列变异性研究、基因组表达调控的研究、陌生生物体的研究和生物信息学的研究等。
目前,一些新技术包括生物芯片、基因敲除(knock out)、转基因〔knock in〕、RNA干扰〔RNAi〕以及蛋白质组学研究中的各种技术,在功能基因组学研究中发挥越来越重要的作用。
建立、应用、开展并完善这些新的技术非常必要,近几年这些技术有了新的开展,本文就近几年来功能基因组学方法的一些进展作简单介绍。
1 染色质免疫共沉淀技术〔ChIP〕及与芯片方法的结合1.1染色质免疫共沉淀技术染色质免疫沉淀技术〔ChIP〕是一种在体内研究DNA与蛋白质相互作用的方法。
ChIP不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。
近年来,这种技术得到不断的开展和完善。
ChIP与基因芯片相结合建立的ChIP -chip方法已广泛用于特定反式因子靶基因的高通量筛选;ChIP与体内足迹法相结合,用于寻找反式因子的体内结合位点;RNA-CHIP用于研究RNA在基因表达调控中的作用。
它与DNA芯片和分子克隆技术相结合,可用于高通量的筛选蛋白质分析的未知DNA靶点和研究反式作用因子在整个基因组上的分布情况。
染色质免疫共沉淀-芯片(Chromatin Immunoprecipitation -chip简称ChIP-chip ),它的根本原理是在生理状态下把细胞内的蛋白质和DNA交联在一起,超声波将其打碎为一定长度范围内的染色质小片段,然后通过所要研究的目的蛋白质特异性抗体沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息[1-2]。