数学人教版七年级下册几何最值问题的求解方法
- 格式:doc
- 大小:35.00 KB
- 文档页数:4
几何最值问题大一统追本溯源化繁为简目有千万而纲为一,枝叶繁多而本为一。
纲举则目张,执本而末从。
如果只在细枝末节上下功夫,费了力气却讨不了好。
学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。
关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。
一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形。
AD一定,所以D是定点,C是直线的最短路径,求得当CD⊥AC时最短为是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。
几何最值问题解题技巧
几何最值问题是一个常见的数学问题,它涉及到在给定的几何形状中找到一个或多个点的最大或最小值。
解决这类问题需要一定的技巧和策略。
以下是一些解决几何最值问题的技巧:
1. 转化问题:将最值问题转化为几何问题,例如求点到直线的最短距离,可以转化为求点到直线的垂足。
2. 建立数学模型:根据问题的具体情况,建立适当的数学模型,例如利用勾股定理、三角函数等。
3. 寻找对称性:在几何图形中寻找对称性,例如利用轴对称、中心对称等性质,可以简化问题。
4. 利用基本不等式:利用基本不等式(如AM-GM不等式)可以求出某些量的最大或最小值。
5. 转化为一元函数:将问题转化为求一元函数的最大或最小值,然后利用导数等工具求解。
6. 构造辅助线:在几何图形中构造辅助线,可以改变问题的结构,从而更容易找到最值。
7. 尝试特殊情况:在某些情况下,尝试特殊情况(例如旋转、对称等)可以找到最值。
8. 逐步逼近:如果无法直接找到最值,可以尝试逐步逼近的方法,例如二分法等。
以上技巧并不是孤立的,有时候需要综合运用多种技巧来解决一个问题。
在解决几何最值问题时,需要灵活运用各种方法,不断尝试和调整,才能找到最合适的解决方案。
初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。
以下将介绍9种常用的解法,帮助您更好地理解和学习。
一、轴对称法轴对称法是一种常用的解决最值问题的方法。
通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。
二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。
例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。
三、两点之间线段最短两点之间线段最短是几何学中的基本原理。
在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。
四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
利用这个关系,可以解决一些与三角形相关的最值问题。
五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。
通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。
六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。
利用这个不等式,可以解决一些与数列相关的最值问题。
七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。
例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。
八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。
例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。
九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。
利用几何变换的方法,可以解决一些与图形变换相关的最值问题。
例如,在矩形中,要使矩形的面积最大。
初中数学中求最值的几种常见方法仪陇县实验学校 李洪泉在生活实践中,人们经常面对求最值的问题:如在一定方案中,往往会讨论什么情况下花费最低、消耗最少、产值最高、获利最大等;在解数学题时也常常求某个变量的最大值或最小值。
同时,探求最值也是中考或一些高中学校自主招生考试中的一个热点内容,是初高中知识衔接的重要内容。
这类问题涉及变量多,综合性强,技巧性强,要求学生要有较强的数学转化思想和创新意识。
下面从不同的角度讨论如何求一些问题的最值。
一 、根据绝对值的几何意义求最值 实数的绝对值具有非负性,0a ≥,即a 的最小值为0,但根据绝对值的代数意义求一些复杂问题的最值就要采用分类讨论法,比较麻烦。
若根据绝对值的几何意义求最值就能够把一些复杂的问题简单化。
例1:已知13M x x =-++,则M 的最小值是 。
【思路点拨】用分类讨论法求出13x x -++的最小值是4,此时31x -≤≤。
如果我们从绝对值的几何意义来看此题,就是在数轴上求一点,使它到点1和点3-的距离之和为最短。
显然,若3x <-,距离之和为[1(3)]2(3)4x --+-->;若31x -≤≤,距离之和为1(3)4--=;若1x >,距离之和为[1(3)]2(1)4x --+->。
所以, 当31x -≤≤时,距离之和最短,最小值为4。
故M 的最小值为4。
二、利用配方法求最值完全平方式具有非负性,即2()0a b +≥。
一个代数式若能配方成2()m a b k ++的形式,则这个代数式的最小值就为k 。
例2:设,a b 为实数,求222a ab b a b ++--的最小值。
【思路点拨】一是将原式直接配方成与,a b 的完全平方式有关的式子可以求出最小值。
二是引入参数设222a ab b a b t ++--=,将等式整理成关于a 的二次方程,运用配方法利用判别式求最值。
解:(方法一) 配方得:当10,10,2b a b -+=-=即0,1a b ==时,上式中不等号的等式成立,故所求的最小值222222222(1)21331()242413()(1)1124a ab b a b a b a b b b a b b b a b ++--=+-+--=++---=++--≥-为1-。
几何中的最值问题的解决策略
在几何中,最值问题通常是要找到一个几何对象的最大值或最小值。
以下是几何中解决最值问题的一些常用策略:
1. 利用性质或定理:利用已知的几何性质或定理来推导出最值问题的解。
例如,利用三角形的角度和性质来证明某个角度或边长的最大值或最小值。
2. 利用几何画图法:通过绘制几何图形,并观察图形的性质来解决最值问题。
例如,通过绘制直角三角形来找到两条边长之和固定时,两条边长的乘积的最大值。
3. 利用代数方法:将几何问题转化为代数问题,并通过求导、求解方程等代数方法来求解最值问题。
例如,通过代数方法来证明一个函数的极值点是函数的最大值或最小值。
4. 利用不等式:通过建立合适的不等式关系来限制几何对象的取值范围,并通过求解不等式来解决最值问题。
例如,通过利用三角不等式来推导出三角函数的最值问题。
5. 利用等式的极值性质:利用等式的极值性质来解决最值问题。
例如,通过证明函数的取值范围,并找到函数在取值范围边界处的最大值或最小值。
综上所述,解决几何中的最值问题需要运用几何性质和定理,绘制几何图形观察性质,以及运用代数方法、不等式关系和极
值性质等。
同时,解决最值问题还需要对几何对象的性质有深刻的理解和运用。
初中几何最值问题解题技巧初中几何最值问题是一个比较常见的问题,通常涉及到线段、角度、面积等几何元素的最小值或最大值的求解。
下面将详细讲解一些常见的解题技巧:1.利用轴对称性转化:对于一些具有轴对称性的几何图形,可以利用轴对称性将问题转化为更简单的问题。
例如,对于一个关于直线对称的图形,可以找到对称轴,然后将问题转化为求解对称轴上的点到原图形的最短距离或最大距离。
2.利用三角形不等式:三角形不等式是解决几何最值问题的重要工具。
例如,对于一个三角形,任意两边之和大于第三边,任意两边之差小于第三边。
利用这些不等式,可以推导出一些关于几何元素的最值关系。
3.利用特殊位置和极端位置:在解决几何最值问题时,可以考虑特殊位置或极端位置的情况。
例如,对于一个矩形,当它的一条对角线与矩形的一条边垂直时,该对角线的长度达到最小值。
对于一个三角形,当它的一条边与另一条边的延长线垂直时,该三角形的面积达到最小值。
4.利用几何定理:几何定理是解决几何最值问题的有力工具。
例如,对于一个三角形,当它的一条边与另一条边的中线重合时,该三角形的周长达到最小值。
对于一个四边形,当它的一条对角线与另一条对角线的中线重合时,该四边形的面积达到最小值。
5.利用数形结合:数形结合是解决几何最值问题的常用方法。
通过将几何问题转化为代数问题,可以更容易地找到问题的解。
例如,对于一个圆上的点到圆心的距离的最大值和最小值,可以通过将问题转化为求解圆的半径的平方的最大值和最小值来解决。
以上是一些常见的初中几何最值问题的解题技巧,希望能够帮助你更好地解决这类问题。
几何最值问题大一统追本溯源化繁为简目有千万而纲为一,枝叶繁多而本为一。
纲举则目张,执本而末从。
如果只在细枝末节上下功夫,费了力气却讨不了好。
学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。
关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。
一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形。
AD一定,所以D是定点,C是直线的最短路径,求得当CD⊥AC时最短为是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。
利用几何知识求最值的几种方法最值问题在中学数学教材中占有相当重要的地位,而与“不等式”“函数值域”都有着密切联系。
中学中我们学习了不少关于求最值的方法。
本文利用我们学过的知识把复数,几何等知识融合在一起给出了求最值的几种巧妙方法,诣在归纳总结,给以后学习最值问题提供参考。
1.用比较半径法求最值。
此方法主要是从代换的角度出发,巧妙应用圆的半径来探索求最值。
这类题目的特点是所求函数和限制条件一般由一个是二次曲线形式的。
利用坐标变换把二次曲线变成圆,再把目标函数变为直线,因在同一个坐标系内直线过圆,所以圆上的点到直线的距离小于等于半径。
根据公式.求得最值。
例1.已知求函数的最值。
分析:此题限制条件是一个二次曲线—椭圆。
目标函数为一直线,若令:则恰能得到一个圆的方程,而目标函数12X-5Y是一过圆心的直线,这些恰好符合我们给出的条件,所以我们不妨用此方法去解.解:令圆: 。
如图:显然圆上任一点P(X,Y)到直线:12X-5Y=0的距离即例2.已知x+3y-10=0,求函数的最小值。
解:设则直线方程:如图:圆:从而本题变为求圆半径的最小值。
当直线与圆相切时圆的半径取得最小值。
即:故.1.切线法求最值。
①利用“直线关系法”求最值。
这类题目的特点是点在平面上的二次曲线域(包括边界)上运动,求目标函数的最值。
此解法关键是把约束条件恒等变形,化成二次曲线上或形内的适合条件,再令(为非零实数),转化成求的最值,则可求出的最值。
这种思路主要应用了斜率不变的直线系来解决问题。
例1. 若点的坐标适合求。
分析:由题我们可以看出所适合的条件是在这个圆形区域内,所求函数恰好为一直线,故我们可以用此方法去解.解:变形为,适合条件的点为圆周上和圆内的点。
设目标函数,这是斜率为的平行直线系,如图:此题转化为求斜率为的直线与圆相切的方程。
又因为我们有代入则得即:,解之得所以的最大值是5,最小值是。
②斜率法求最值。
这类题的特点是所求目标函数一般为分式,如根据的关系我们把它写成是二次曲线上点,从而这个式子可以看做是点(a,b)到曲线上任一点的斜率的最值,在根据二次曲线的切线求得最值.此法能形象地说明该式最值的几何意义。
几何最值问题的求解方法歙县上丰中心学校程秀霞第一课时.直接运用定理求最值第二课时.结合图形变换求最值第一课时直接运用定理求最值教学目标:1.会直接应用定理求最值2.本类试题均立足教材,解决途径都是运用转化思想------化折为直教学重难点:1.会利用定理求最值2.活运用定理化折为直解决问题教学过程:常用定理:1)两点之间线段最短2)三角形的两边之和大于第三边(由(1)得出)3)直线外一点到直线的所有连线中垂线段最短1.应用“两点之间线段最短”(七上)书例:如图A、B、C、D,表示四个村庄你能给出一种使水井到各村庄距离之和最小的方案吗?若能,请标出,并说理。
AC D中考链接:如图,已知边长为a的正三角形ABC(第一象限),两顶点A、B分别在x、y轴的正半轴上滑动,点C在第一象限,连接OC,求OC长的最大值。
x解析:教材模型是在两定点之间求最小值对无法或较难量化的两点间距离则可利用几何图形的性质转化为“折线和”,再利用三角形三边关系或两点之间线段最短得出最值.解: 作线段AB 的垂直平分线,垂足为D,连接OD 、CD则OD+CD ≥OC∴当OD+CD=OC 时,OC 最大2.应用“垂线段最短”(七下)书例:如图,直线l表示一段河道,点A 表示集镇,比例尺1:2000000。
现要从河l向A 引水,问沿怎样的路线挖水渠,才能使水渠的长度最短?中考链接:如图,⊿ABC 中,有一点P 在AC 上移动,若AB=AC=5,BC=6,则AP+BP+CP 的最小值为何?A.8B.8.8C.9.8D.10解析: 教材模型是已知一定点和一定直线,求最小值此类试题,只要透过本质,剔除一些不变的线段(和)转化为一定点到一定直线的距离教学小结本节课复习了几何最值问题直接利用定理求解的方法,谈谈你的收获。
使学生形成知识网络,加深对点到直线的距离和点与点之间的距离的区别理解。
几何最值问题的求解方法
歙县上丰中心学校程秀霞第一课时.直接运用定理求最值
第二课时.结合图形变换求最值
第一课时直接运用定理求最值
教学目标:
1.会直接应用定理求最值
2.本类试题均立足教材,解决途径都是运用转化思想------化折为直教学重难点:
1.会利用定理求最值
2.活运用定理化折为直解决问题
教学过程:
常用定理:1)两点之间线段最短
2)三角形的两边之和大于第三边(由(1)得出)
3)直线外一点到直线的所有连线中垂线段最短
1.应用“两点之间线段最短”(七上)
书例:
如图A、B、C、D,表示四个村庄
你能给出一种使水井到各村庄距离之和最
小的方案吗?若能,请标出,并说理。
A
C D
中考链接:
如图,已知边长为a的正三角形ABC(第一象限),两顶点A、B分别在x、y轴的正半轴上滑动,点C在第一象限,连接OC,求OC长的最大值。
x
解析:教材模型是在两定点之间求最小值
对无法或较难量化的两点间距离则可利用几何图形的性质转化为“折线和”,再利用三角形三边关系或两点之间线段最短得出最值.
解: 作线段AB 的垂直平分线,垂足为D,连接OD 、CD
则OD+CD ≥OC
∴当OD+CD=OC 时,OC 最大
2.应用“垂线段最短”(七下)
书例:
如图,直线l表示一段河道,点A 表示集镇,比例尺1:2000000。
现要从河l向A 引水,问沿怎样的路线挖水渠,才能使水渠的长度最短?
中考链接:
如图,⊿ABC 中,有一点P 在AC 上移动,若AB=AC=5,BC=6,则AP+BP+CP 的最小值为何?
A.8
B.8.8
C.9.8
D.10
解析: 教材模型是已知一定点和一定直线,求最小值
此类试题,只要透过本质,剔除一些不变的线段(和)转化为一定点到一定直线的距离
教学小结
本节课复习了几何最值问题直接利用定理求解的方法,谈谈你的收获。
使学生形成知识网络,加深对点到直线的距离和点与点之间的距离的区别理解。