当前位置:文档之家› 自旋电子学的研究与发展_鲁军政

自旋电子学的研究与发展_鲁军政

自旋电子学的研究与发展_鲁军政
自旋电子学的研究与发展_鲁军政

自旋电子学简介

自旋电子学简介 今天,我们一起去听了王博士关于《自旋电子学简介》的讲座,通过这次的讲座,我对自旋电子学有了更加深刻的认识。 在传统的微电子学中,一般是利用电子的荷电性由电场来控制电子的输运过程的,而对电子的自旋状态是不予考虑的.为了能够进一步提高信息处理速度和存储密度,就必须对电子的自旋加以利用,由此发展出一门新的学科———自旋电子学。 自旋电子学(Spintronics or spin electronics),亦称磁电子学(Magneto—electronics),是一门结合磁学与微电子学的交叉学科。它是利用电子的自旋属性进行工作的电子学。早在19世纪末,英国科学家汤姆逊发现电子之后,人们就知道电子有一个重要特性,就是每一个电子都携带一定的电量,即基本电荷(e=1.60219x10-19库仑)。到20世纪20年代中期,量子力学诞生又告诉人们,电子除携带电荷之外还有另一个重要属性,就是自旋。电子的自旋角动量有两个数值,即±h/2。其中正负号分别表示“自旋朝上”和“自旋朝下”,h是量子物理中经常要遇到的基本物理常数,称为普朗克常数。 通过对电子电荷和电子自旋性质的研究,最近在电子学和信息技术领域出现了明显的进展。这个进展的重要标志之一就是诞生了自旋电子学。在传统的电子学中,数据处理集成电路所用的是半导体中电子的电荷,但并不是说电子的自旋自由度以前从没有用过,例如传统的数据存储介质,如磁盘,用的就是磁性材料中电子的自旋。 事实上,半导体中有很多类型的自旋极化现象,如载流子的自旋,半导体材料中引入的磁性原子的自旋和组成晶体的原子的核自旋等等。从某种意义上说,已有的技术如以巨磁电阻(GMR)为基础的存储器和自旋阀都是自旋起作用的自旋电子学最基本的应用。但是,其中自旋的作用是被动的,它们的工作由局域磁场来控制。这里所指的自旋电子学则要走出被动自旋器件的范畴,成为基于自旋动力学的主动控制的应用。因为自旋动力学的主动控制预计可以导致新的量子力学器件,如自旋晶体管、自旋过滤器和调制器、新的存储器件、量子信息处理器和量子计算。从这个意义上说,自旋电子学是在电子材料,如半导体中,主动控制载流子自旋动力学和自旋输运的一个新兴领域。已经证明,通过注入、输运和控制这些自旋态,可以执行新的功能。这就是半导体自旋电子学新领域所包含的内容,它涉及自旋态在半导体中的利用。 对于目前的自旋电子学,令人感兴趣的两个重要的物理学原理是:自旋作为一个动力学变数,它有量子力学固有的量子特性,这些特性将导致新的自旋电子学量子器件而不是传统的以电子电荷为基础的电子学。另一个是与自旋态有关的长驰豫时间或相干时间。在磁性半导体中,自旋朝上的载流子浓度往往多于自旋朝下的载流子,这些载流子运动会产生所谓自旋极化电流。自旋极化电流的大小、存在的时间长短取决于许多因素,如材料的特性、界面、外场及温度等等。事实上,半导体中的载流子自旋可以通过局域磁场,或通器件的栅极改变外加电场,甚至通过偏振光地进行操作。这一事实,是开发自旋电子学应用的一个重要的物理基础。 半导体自旋电子学器件的目的之一是利电子自旋和核自旋很长的相干时间,并基于半导体器件来执行量子信息处理。用半导体实现量子计算机有很多优点,不仅仅因为它是固体材料,可适合于大规模集成,而且通过量子约束可以自由控制其维度,并允许用外场,如光、电或磁场改变其特性。本节将简介利用半导体中的自旋如何构造固体量子计算机的基本原理。 半导体自旋电子学(spintronics)作为半导体物理发展的新分支,目前主要在两个方面着重展开研究:半导体磁电子学和半导体量子自旋电子学。前者希望在最近的将来会有实际的结果,后者则已成为21世纪的重要研究论题。半导体自旋电子学作为信息处理

历史上最伟大的物理学家排名

历史上最伟大的物理学家排名 最伟大的物理学家Top10 PhysicsWeb曾经搞过历史上最伟大的物理学家的投票,结果如下表: 1:牛顿(经典力学、光学) 牛顿(Sir Isaac NewtonFRS, 1643年1月4日--1727年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里牛顿像(21张)物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。

2:爱因斯坦(相对论、量子力学奠基人) 爱因斯坦(Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后因二战爆发移居美国,1940年入美国国籍。 十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特

物理学发展史

物理学发展史 公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开 普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥 特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解 释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得 静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过 直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研 究发表于1802年。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质 说的重要依据。

自旋电子学与自旋电子器件简述

自旋电子学与自旋电子器件简述 陈闽江,邱彩玉,孙连峰 (国家纳米科学中心 器件研究室 北京 100190) 一、引言 2007年10月,瑞典皇家科学院宣布,将该年度诺贝尔物理学奖授予在 1988年分别独立发现纳米多层膜中巨磁电阻效应的法国Albert Fert 教授和德国Peter Grunberg 教授。其随后的应用不啻为革命性的,因为它使得计算机硬盘的容量从几十兆、几百兆,一跃而提高了几百倍,达到几十G 乃至上百G 。越来越多的人开始了解这个工作及其对我们生活的影响,并意识到这个工作方向的重要意义。 1988年在磁性多层膜中发现巨磁电阻效应(Giant Magnetoresistance ,GMR),1993年和1994年在钙钛矿锰氧化物中发现庞磁电阻效应(Colossal Magnetoresistance ,CMR),特别是1995年在铁磁性隧道结材料中发现了室温高隧穿磁电阻效应(Tunneling Magnetoresistance ,TMR)以及后续形成的稀磁半导体等研究热潮,这些具有里程碑意义的人工合成磁性材料的成功制备和深入研究,不仅迅速推动了近20年凝聚态物理新兴学科——自旋电子学(spintronics)的形成与快速发展,也极大地促进了与自旋极化电子输运相关的磁电阻材料和新型自旋电子学器件的研制和应用。中国科学院物理研究所朱涛研究员表示:“Albert Fert 和Peter Grunberg 种下了一粒种子,随着20世纪90年代应用的突破,这粒种子长成了一棵小苗——自旋电子学,这是一个成长很快、前景广阔的磁学分支。” 二、电子自旋与自旋电子学 要阐明自旋电子学,就不得不先简述一下电子自旋这一概念。电子自旋不是电子的机械自转,电子自旋及磁矩是电子本身的内禀属性,所以也被称为内禀角动量和内禀磁矩。它们的存在标志电子还有一个新的内禀自由度。所以电子状态的完全描述不但包括空间三个自由度的坐标(r ),还必须考虑其自旋状态。更确切地说,要考虑自旋在某给定方向(例如z 轴方向)的投影的两个可能取值的波幅,即波函数中还应该包含自旋投影这个变量(习惯上取为),Z S 从而记为。与连续变量r 不同,只能取两个离散值。 (,)Z r s ψZ S 2± 接下来,认识电的和磁的相互作用在强度上的差异和不同的特点,可以了解自旋电子学的潜力。电荷周围存在电场,通过静电力和其他电荷发生相互作用,这种相互作用是强的和长程的。在常见的半导体中,两个相距5的元电A 荷间的相互作用能可达0.2eV ,它正比于距离的倒数。1V 的电压可使载流子1r 改变1eV 的能量。然而距离为5的一对电子自旋之间的磁偶极耦合能却只有A

物理学发展史

我所认知的物理学发展史 经典物理学的发展古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。 研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的一门学科。实验手段和思维方法是物理学中不可或缺和极其重要的内容,后者如相对性原理、隔离体(包括系统)法、理想模型法、微扰法、量纲分析法等,在古典和现代物理学中都有重要应用。物理学一词,源自希腊文physikos,很长时期内,它和自然哲学(naturalphilosophy)同义,探究物质世界最基本的变化规律。随着生产的发展。社会的进步和文化知识的扩展、深化,物理学以纯思辨的哲学演变到以实验为基础的科学。研究内容从较简单的机械运动扩及到较复杂的光、热、电磁等的变化,从宏观的现象剖析深入到微观的本质探讨,从低速的较稳定的物体运动进展到高速的迅变的粒子运动。新的研究领域不断开辟,而发展成熟的分支又往往分离出去,成为工程技术或应用物理学的一个分支,因此物理学的研究领域并非是一成不变的,研究方法不论是逻辑推理、数学分析和实验手段,也因不断精密化而有所创新,也难以用一个固定模式来概括。在19世纪发行的《不列颠百科全书》中,早已陆续地把力学、光学、热学理论和电学、磁学,列为专条,而物理学这一条却要到1971~1973年发行的第十四版上才首次出现。为了全面、系统地理解物理学整体,与其从定义来推敲,不如循历史源流,从物理学的发生和发展的过程来探索。 伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。 20世纪的物理学到19世纪末期,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙-莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。 化工二班 许尚志 12071240073

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

自旋电子学研究与进展_詹文山

评述 自旋电子学研究与进展 3 詹 文 山 (中国科学院物理研究所 磁学国家重点实验室 北京 100080) 摘 要 自旋电子学是最近几年在凝聚态物理中发展起来的新学科分支,它研究在固体中自旋自由度的有效控制和操纵,在金属和半导体中自旋极化、自旋动力学、自旋极化的输运和自旋电子检测.由于它在信息存储方面的重大应用前景,受到学术界和工业界的高度重视.文章扼要地介绍了自旋电子学发展的历程和发展中的最重要的发现.最近几年,最奇特的发现和最重要的应用莫过于巨磁电阻,薄膜领域纳米技术的迅速发展使巨磁电阻的应用变成可能.作为磁记录头它已使硬磁盘的记录密度提高到170Gbit/in 2.动态随机存储器MRAM 的研究已实现16Mbit 的存储密度. 关键词 自旋电子学,巨磁电阻,磁隧道结,自旋阀 Recent progress i n spi n tron i cs ZHAN W en 2Shan (S tate Key L aboratory forM agnetis m ,Institute of Physics,Chinese acade m y of Sciences,B eijing 100080,China ) Abstract Sp intr onics is a new branch of condensed matter physics devoted t o studies on the manipulation of the s p in degree of freedo m in solids .It involves sp in polarization,s p in dynam ics,s p in trans port,and the detec 2tion of s p in polarized electr ons in metals and sem iconduct ors .Sp intr onics has attracted great attention fr om scien 2tists and manufacturers because of its potential app licati on in infor mati on st orage .A brief review of the develop 2ment of s p intr onics and its most i mportant discoveries will be given .The most exciting event in recent years may be the discovery of the giant magnetoresistance effect in metallic multilayer fil m s and the successful app lication of this effect to infor mation storage .Based on this effect,the magnetic recording density has been increased to 170Gbit /in 2 .A magnet oresistive random access memory of 16Mbit st orage density has als o been developed .These re 2sults clearly demonstrate the i m portance of sp intr onics for infor mati on technology .Keywords Sp intr onics,giant magnet oresistance,magnetic tunnel junctions,s p in valve 3 国家重点基础研究发展计划(批准号:2001CB610600),国家自 然科学基金(批准号:59731010)资助项目 2006-04-04收到初稿,2006-06-02修回  Email:wszhan@aphy .i phy .ac .cn 1 自旋电子学研究的历史回顾 电子具有电荷和自旋两种属性是人所共知的. 电子在电场中运动由于带有电荷而形成电流.导体在磁场中做切割磁力线的运动时,导体中产生电流.反过来,在磁场中的通电导体将产生垂直磁场的运动.从而发明电动机和发电机,成就了一个世纪的文明.在半导体中由于导带中的电子和价带中失去电子形成空穴的输运特性,构成P N 结,1947年发明半 导体晶体管,开创半导体电子学,打开了当代通信和数据处理技术发展的大门,奠定了现代信息社会的基础.所有这些都是基于电子具有电荷的属性.电子在完整晶体的周期性势场中运动是不受阻碍的,因而称为透明的.但是由热引起晶格振动或晶体中的各种缺陷,对电子散射而形成了阻碍.电子不受到散射的平均路程称为平均自由程.在低温下,金属的电

“物理学”简介、含义、起源、历史与发展【精选】

物理学 物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。 经典力学 经典力学研究宏观物体低速机械运动的现象和规律,宏观是相对于原子等微观粒子而言的。人们在日常生活中直接接触到的物体常常包含巨量的原子,因此是宏观物体。低速是相对于光速而言的。最快的喷气客机的速度一般也不到光速的一百万分之一,在物理学中仍算是低速。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。 自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪J.开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动的初步的现象性理论,并把用实验验证理论结果的方法引入了物理学。I.牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律:包括三条牛顿运动定律和万有引力定律,为经典力学奠定了基础。根据对天王星运行轨道的详细天文观察,并根据牛顿的理论,预言了海王星的存在;以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。 经典力学中的基本物理量是质点的空间坐标和动量。一个力学系统在某一时刻的状态由它的每一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。在经典力学中,力学系

自旋检测

分子束外延技术(MBE) 10cm-3 自旋检测 光学检测和电学检测是自旋检测的两种方法。光学检测方法应用较早且比较成熟。Fiederling[1]和Ohno[2]分别于1999年和2000年在实验上对自旋极化的光学检测进行了研究。Fiederling利用自旋极化的发光二极管对自旋极化的光学检测进行了研究,Ohno则是利用EL谱测量光的偏振度,进而确定电子的自旋极化率。光学方法可以避免其他电学效应的影响。电学检测是利用半导体/铁磁界面的自旋相关输运性质。欧姆接触作为集电极在实验上已经实现,为了有效的探测电子的自旋总数,要求从半导体到铁磁体的接触是球形或隧道的[3]。非平衡自旋总数的化学势的电势测量也是自旋探测技术的一种[4]。 目前,自旋极化电子的高效注入、自旋霍尔效应和自旋流的产生与探测成为自旋电子学中热门的研究专题。最近实验得出,自旋极化电子从铁磁金属注入到半导体能够获得较高的极化率。如今,自旋霍尔效应为自旋流的产生与探测提供了新的途径与方法,因其逆自旋霍尔效应能够将自旋流转化为电流,从而使得难以测量的自旋流可以直接用电学方法测量[5]。利用自旋霍尔效应在半导体中产生自旋流的方法也可以实现自旋电子的注入自旋电子从铁磁物质注入金属也可获得较高的极化率[6]。在半导体量子结构中,还有自旋产生与注入的其他方式,圆偏振光所激发的自旋转移;铁磁材料向半导体的自旋极化注入;自旋filter效应所导致的自旋极化等等。 [1] FIEDERLING R,REUSCHER G,OSSAU W,et al.Injection and detection of a spin-polarized current in a light-emitting diode[J].Nature,1999,402:787 [2]OHNO Y,YOUNG D K,BESCHOTEN B,et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure[J].Nature,2000,402:790 [3] Rashba E I.Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem.Phys Rev B,2000,62:R16267 [4] Hammar P R,Johnson M.Potentiometric measurements of the spin-split subbands in a two-dimensional electron gas.Phys Rev B,2000,61:7207 [5]鲁楠,刘之景.自旋电子学研究的最新进展. 2010年微纳电子技术第47卷第1期11 [6] HANBICKI A T,KIOSEOGLOU G,HOLUB M A,et a1.Electrical spin injection

物理学发展简史

物理学发展简史 专业:物流工程111 学生:吴建平 学号:2011216031 老师:代群

摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展

引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 一古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致来,这一时期,力学、数学、天文学、化学得到了迅速发展。 二近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。 公元15世纪,哥白尼经过多年关于天文学的研究,创立了科学的日心说,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。开普勒的理论为牛顿经典力学的建立提供了重要基础。从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。 近代物理学之父伽利略,用自制的望远镜观测天文现象,使日心说的观念深入人心。他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。他提出惯性原理,驳斥了亚里士多德外力是维持物体运动的说法,为惯性定律的科学逐渐从哲学中分裂出建立奠定了基础。伽利略的发现以及他所用的科学推理方法是人类思想史上

物理学发展史

物理学发展史 物理学是伴随着人类的生存、生产活动发展起来的一门学科,它研究物质及其行为和运动的科学,也早形成的自然科学之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理学》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。 16世纪以前,封建制度和欧洲宗教神学的统治,使得人们对物理学知识的积累只是零碎的。物理学未能形成一门独立的学科。进入16世纪,随着思想的解放和生产力水平的提高,物理学的发展有了新的手段:实验。而数学的迅速进步,使物理学发展成为一门独立的学科。以下,我将具体介绍力学,热学,电磁学,光学,量子力学的发展。 1、力学发展史 力学是最原始的物理学分支之一,而最原始的力学则是静力学。静力学源于人类文明初期生产劳动中所使用的简单机械,如杠杆、滑轮、斜面等。古希腊人从大量的经验中了解到一些与静力学相关的基本概念和原理,如杠杆原理和阿基米德定律。但直至十六世纪后,资本主义的工业进步才真正开始为西方世界的自然科学研究创造物质条件,尤其于地理大发现时代航海业兴起,人类钻研观测天文学所花费的心力前所未有,其中以丹麦天文学家第谷·布拉赫和德国天文学家、数学家约翰内斯·开普勒为代表。对宇宙中天体的观测也成为了人类进一步研究力学运动的绝佳领域。1609和1619年,开普勒总结了老师第谷毕生的观测数据,先后发现了开普勒运动三大定律。 在十七世纪的欧洲,自然哲学家逐渐展开了一场针对中世纪经院哲学的进攻,他们持有的观点是,从力学和天文学研究抽象出的数学模型将适用于描述整个宇宙中的运动。被誉为“现代自然科学之父”的意大利(或按当时地理为托斯卡纳大公国)物理学家、数学家、天文学家伽利略·伽利莱就是这场转变中的领军人物。伽利略所处的时代正值思想活跃的文艺复兴之后,在此之前列奥纳多·达芬奇所进行的物理实验、尼古拉斯·哥白尼的日心说以及弗朗西斯·培根提出的注重实验经验的科学方法论都是促使伽利略深入研究自然科学的重要因素,哥白尼的日心说更是直接推动了伽利略试图用数学对宇宙中天体的运动进行描述。伽利略意识到这种数学性描述的哲学价值,他注意到哥白尼对太阳、地球、月球和其他行星的运动所作的研究工作,并认为这些在当时看来相当激进的分析将有可能被用来证明经院哲学家们对自然界的描述与实际情形不符。伽利略进行了一系列力学实验阐述了他关于运动的一系列观点,包括借助斜面实验和自由落体实验批驳了亚里士多德认为落体速度和重量成正比的观点,还总结出了自由落体的距离与时间平方成正比的关系,以及著名的斜面理想实验来思考运动的问题。他在1632年出版的著作《关于托勒密和哥白尼两大世界体系的对话》中提到:“只要斜面延伸下去,球将无限地继续运动,而且不断加速,因为此乃运动着的重物的本质。”,这种思想被认为是惯性定律的前身。但真正的惯性概念则是由笛卡尔于1644年所完成,他明确地指出了“除非物体受到外因作用,否则将永远保持静止或运动状态”,而“所有的运动本质都是直线的”。伽利略在天文学上最著名的贡献是于1609年改良了折射式望远镜,并借此发现了木星的四颗卫星、太阳黑子以及金星类似于月球的相。伽利略对自然科学的杰出贡献体现在他对力学实验的兴趣以及他用数学语言描述物体运动的方法,这为后世建立了一个基于实验研究的自然哲学传统。这个传统与培根的实验归纳的方法论一起,深刻影响了一批后世的自然科学家,包括意大利的埃万杰利斯塔·托里拆利、法国的马林·梅森和布莱兹·帕斯卡、荷兰的克里斯蒂安·惠更斯、英格兰的罗伯特·胡克和罗伯特·波义耳。 1687年,英格兰物理学家、数学家、天文学家、自然哲学家艾萨克·牛顿出版了《自然哲

经典物理学发展史

经典物理学发展史 古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。 伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。 法国在大革命的前后,人才辈出,以P.S.M.拉普拉斯为首的法国科学家(史称拉普拉斯学派)将牛顿的力学理论发扬光大,把偏微分方程运用于天体力学,求出了太阳系内三体和多体问题的近似解,初步探讨并解决了太阳系的起源和稳定性问题,使天体力学达到相当完善的境界。在牛顿和拉普拉斯的太阳系内,主宰天体运动的已经不是造物主,而是万有引力,难怪拿破仑在听完拉普拉斯的太阳系介绍后就问:你把上帝放在什么地位?无神论者拉普拉斯则直率地回答:我不需要这个假设。 拉普拉斯学派还将力学规律广泛用于刚体、流体和固体,加上W.R.哈密顿、G.G.斯托克斯等的共同努力,完善了分析力学,把经典力学推进到更高阶段。该学派还将各种物理现象如热、光、电、磁甚至化学作用都归于粒子间的吸引和排斥,例如用光子受物质的排斥解释反射,光微粒受物质的吸引解释折射和衍射,用光子具有不同的外形以解释偏振,以及用热质粒子相互排斥来解释热膨胀、蒸发等等,都一度取得成功,从而使机械的唯物世界观统治了数十年。正当这学派声势煊赫、如日中天时,受到英国物理学家T.杨和这个学派的后院法兰西科学院及科学界的挑战,J.B.V.傅里叶从热传导方面,T.杨、D.F.J.阿拉戈、A.-J.菲涅耳从光学方面,特别是光的波动说和粒子说(见光的二象性)的论争在物理史上是一个重大的事件。为了驳倒微粒说,年轻的土木工程师菲涅耳在阿拉戈的支持下,制成了多种后以他的姓命名的干涉和衍射设备,并将光波的干涉性引入惠更斯的波阵面在介质中传播的理论,形成惠更斯-菲涅耳原理,还大胆地提出光是横波的假设,并用以研究各种光的偏振及偏振光的干涉,他创造了“菲涅耳波带”法,完满地说明了球面波的衍射,并假设光是以太的机械横波解决了光在不同介质界面上反射、折射的强度和偏振问题,从而完成了经典的波动光学理论。菲涅耳还提出地球自转使表面上的部分以太漂移的假设并给出曳引系数。也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐测定光速在水中确比空气中为小,从而确定了波动说的胜利,史称这个实验为光的判决性实验。此后,光的波动说及以太论统治了19世纪的后半世

(完整版)物理学发展简史

欢迎共阅 一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学,以 微观的角度研究物理,量子力学与相对论为近代物理的两大基石。 理

1 2 3 4 1 )和化 (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容纳 上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为集 成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁并 放射同频率之光子,藉以将光加以增强。

(二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用: (1)工业上:测量、切割、精密加工…… (2)医学上:切割手术(肿瘤、近视)…… (3)军事上:定位、导引…… (4)生活、娱乐上:激光视盘、光纤通讯…… 3、光纤: (一)光纤:将高纯度石英熔融抽丝制成极细之圆柱体,柔软可挠曲,含内层(纤芯)及外层(包 层)两层。 (二)原理:纤芯之折射率大于包层,光讯号以特定角度射入纤芯之一端后,因连续之全反射而 传递至另一端。 (三)特性: (核 2。 (1)向量:兼具大小及方向性者,如:速度、力…… (2)纯量:仅具大小无方向性者,如:体积、时间、功…… (二)依定义方式而分: (1)基本量:由基本概念定义而出之物理量,共有时间、长度、质量、电流、温度、发光强 度(光度)、物质的量(物量)七种。 (2)导出量:由基本量所定义出之物理量,如:体积、面积、速度等。 (3)物理学(力学)上最常用的三个基本量:时间、长度、质量。 二、测量: 1、定义:将待测物理量与一标准量做比较的过程。

自旋电子学(汇编)

自旋电子学 一、什么是自旋电子学? 自旋电子学是电子学的一个新兴领域,其英文名称为Spintronics,它是由Spin和Electronics两词合并创造出来的新名词。顾名思义,它是利用电子的自旋属性进行工作的电子学。早在19世纪末,英国科学家汤姆逊发现电子之后,人们就知道电子有一个重要特性,就是每一个电子都携带一定的电量,即基本电荷(e=1.60219x10-19库仑)。到20世纪20年代中期,量子力学诞生又告诉人们,电子除携带电荷之外还有另一个重要属性,就是自旋。电子的自旋角动量有两个数值,即±h/2。其中正负号分别表示“自旋朝上”和“自旋朝下”,h 是量子物理中经常要遇到的基本物理常数,称为普朗克常数。 通过对电子电荷和电子自旋性质的研究,最近在电子学和信息技术领域出现了明显的进展。这个进展的重要标志之一就是诞生了自旋电子学。在传统的电子学中,数据处理集成电路所用的是半导体中电子的电荷,但并不是说电子的自旋自由度以前从没有用过,例如传统的数据存储介质,如磁盘,用的就是磁性材料中电子的自旋。 事实上,半导体中有很多类型的自旋极化现象,如载流子的自旋,半导体材料中引入的磁性原子的自旋和组成晶体的原子的核自旋等等。从某种意义上说,已有的技术如以巨磁电阻(GMR)为基础的存储器和自旋阀都是自旋起作用的自旋电子学最基本的应用。但是,其中自旋的作用是被动的,它们的工作由局域磁场来控制。这里所指的自旋电子学则要走出被动自旋器件的范畴,成为基于自旋动力学的主动控制的应用。因为自旋动力学的主动控制预计可以导致新的量子力学器件,如自旋晶体管、自旋过滤器和调制器、新的存储器件、量子信息处理器和量子计算。从这个意义上说,自旋电子学是在电子材料,如半导体中,主动控制载流子自旋动力学和自旋输运的一个新兴领域。已经证明,通过注入、输运和控制这些自旋态,可以执行新的功能。这就是半导体自旋电子学新领域所包含的内容,它涉及自旋态在半导体中的利用。 二、自旋电子学的物理学原理和挑战 对于目前的自旋电子学,令人感兴趣的两个重要的物理学原理是:自旋作为一个动力学变数,它有量子力学固有的量子特性,这些特性将导致新的自旋电子学量子器件而不是传统的以电子电荷为基础的电子学。另一个是与自旋态有关的长驰豫时间或相干时间。在磁性半导体中,自旋朝上的载流子浓度往往多于自旋朝下的载流子,这些载流子运动会产生所谓自旋极化电流。自旋极化电流的大小、存在的时间长短取决于许多因素,如材料的特性、界面、外场及温度等等。事实上,半导体中的载流子自旋可以通过局域磁场,或通器件的栅极改变外加电场,甚至通过偏振光地进行操作。这一事实,是开发自旋电子学应用的一个重要的物理基础。 尽管对自旋电子学的基本原理和概念的研究非常令人感兴趣,但在人们能够制造出自旋电子学应用器件之前,还有许多障碍需要克服。例如,自旋电子学的一个基本要求是在电子材料中产生和保持大的自旋极化电流到很长的时间。要实现这一点尚需继续努力才能完成。事实上,把足够大的自旋极化电流引入半导体材料也是一个问题。以此类似,对于量子计算,人们要求精密的控制自旋纠缠及利用局域磁场操纵单一自旋。对此,虽然已经提出许多设计方案,但至今尚没有特别好的想法。很清楚的是,对于一个崭新的领域,总是机会与挑战并存。在自旋电子学的应用变成现实之前,确实有大量的基本物理问题需要研究。有关自旋电子学的物理学基础和应用问题的研究现状,有兴趣的读者可以参看最近刚刚发表的一篇极好的评述文章:Zutic′, Fabian, and Das Sarma: Spintronics: Fundamen- tals and applications,Rev. Mod. Phys., 76, 323-410,April 2004。

相关主题
文本预览
相关文档 最新文档