非参数检验卡方检验讲解
- 格式:ppt
- 大小:387.00 KB
- 文档页数:23
SPSS非参数检验之一卡方检验一、卡方检验的概念和原理卡方检验是一种常用的非参数检验方法,用于检验两个或多个分类变量之间的关联性。
它利用实际观察频数与理论频数之间的差异,来判断两个变量是否独立。
卡方检验的原理基于卡方分布,在理论上,如果两个变量是独立的,那么它们的观测频数应该等于理论频数。
卡方检验通过计算卡方值来度量观察频数与理论频数之间的差异程度,进而判断两个变量是否独立。
卡方值的计算公式为:卡方值=Σ((观察频数-理论频数)²/理论频数)其中,观察频数为实际观察到的频数,理论频数为理论上计算得到的频数。
二、卡方检验的步骤卡方检验的步骤包括以下几个方面:1.建立假设:首先需要建立原假设和备择假设。
原假设(H0)是两个变量之间独立,备择假设(H1)是两个变量之间存在关联。
2.计算理论频数:根据原假设和已知数据,计算出各组的理论频数。
3.计算卡方值:利用卡方值的计算公式,计算观察频数与理论频数之间的差异。
4.计算自由度:自由度的计算公式为自由度=(行数-1)*(列数-1)。
5.查表或计算P值:根据卡方值和自由度,在卡方分布表中查找对应的临界值,或者利用计算机软件计算P值。
6.判断结果:判断P值与显著性水平的关系,如果P值小于显著性水平,则拒绝原假设,认为两个变量存在关联;如果P值大于显著性水平,则接受原假设,认为两个变量是独立的。
三、卡方检验在SPSS中的应用在SPSS软件中,进行卡方检验的操作相对简单。
下面以一个具体的案例来说明:假设我们有一份数据,包括了男性和女性在健康习惯(吸烟和不吸烟)方面的调查结果。
我们想要检验性别与吸烟习惯之间是否存在关联。
1.打开SPSS软件,导入数据。
2.选择"分析"菜单,点击"拟合度优度检验"。
3.在弹出的对话框中,将两个变量(性别和吸烟习惯)拖入"因子"栏目中。
4.点击"统计"按钮,勾选"卡方拟合度"。
非参数卡方检验1.理论非参数检验是在总体分布未知或知道甚少的情况下,不依赖于总体布形态,在总体分布情况不明时,用来检验不同样本是否来自同一总体的统计方法进。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。
非参数检验优势:检验条件宽松,适应性强。
针对,非正态、方差不等的已及分布形态未知的数据均适用。
检验方法灵活,用途广泛。
运用符号检验、符号秩检验解决不能直接进行四则运算的定类和定序数据。
非参数检验的计算相对简单,易于理解。
但非参数检验方法对总体分布假定不多,缺乏针对性,且使用的是等级或符号秩,而不是实际数值,容易失去较多信息。
非参数卡方检验:用于检验样本数据的分布是否与某种特定分布情况相同。
非参数卡方检验通过三步检验:1.卡方统计量:X2=B 其中K 是样本分类的个数,0表示实际观测的频数,B 表示理论分布下的频数。
2.拟合优度检验:A.对总体分布建立假设。
B.抽样并编制频率分布表。
C.以原假设为真,导出期望频率。
D.计算统计量。
E.确定自由度,并查x2表,得到临界值。
F.比较x2值与临界值,做出判断。
3.独立性检验A.对总体分布建立假设。
B.抽样并编制r*c 列联表。
C.计算理论频数。
D.计算检验统计量。
E.确定自由度,并查x2表,得到临界值。
F.比较x2值与临界值,做出判断。
2.非参数卡方检验操作步骤第一步:将需检验的数据导入spss中并进行赋值后,点击分析非参数检验、旧对话框、卡方。
图2操作步骤第一步第二步:进入图中对话框后点击,首先将需检验的数据放入检验变量列表中,后在期望值选项中所以类别相等或者值(值:需要手动输入具体的分布情况)。
如果特殊情况需要调整检验置信区间,点击精确,进入图中下方对话框后点击蒙特卡洛法框里收到填入。
点击继续、确定。
图3操作步骤第二步第三步:如果需要看描述统计结果和四分位数值可以点击选项、勾选描述、四分位数。
点击继续、确实。
图4操作步骤第二步3.非参数卡方检验结果然后非参数卡方检验的描述统计、卡方检验频率表、检验统计结果就出来了。
SPSS 中非参数检验之一:总体分布的卡方(Chi-square )检验在得到一批样本数据后,在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。
这可以通过绘制样本数据直方图的方法来进行粗略的判断。
略的判断。
如果需要进行比较准确的判断,如果需要进行比较准确的判断,如果需要进行比较准确的判断,则需要使用非参数检验的方法。
则需要使用非参数检验的方法。
则需要使用非参数检验的方法。
其中其中总体分布的卡方检验(也记为χ2检验)就是一种比较好的方法。
检验)就是一种比较好的方法。
一、定义总体分布的卡方检验适用于配合度检验,是根据样本数据的实际频数推断总体分布与期望分布或理论分布是否有显著差异。
它的零假设H0:样本来自的总体分布形态和期望分布或某一理论分布没有显著差异。
总体分布的卡方检验的原理是:如果从一个随机变量尤中随机抽取若干个观察样本,这些观察样本落在X 的k 个互不相交的子集中的观察频数服从一个多项分布,这个多项分布当k 趋于无穷时,就近似服从X 的总体分布。
的总体分布。
因此,假设样本来自的总体服从某个期望分布或理论分布集的实际观察频数同时获得样本数据各子集的实际观察频数,并依据下面的公式计算统计量Q ()21ki i i iO E Q E =-=å其中,Oi 表示观察频数;Ei 表示期望频数或理论频数。
可见Q 值越大,表示观察频数和理论频数越不接近;Q 值越小,说明观察频数和理论频数越接近。
SPSS 将自动计算Q 统计量,由于Q 统计量服从K-1个自由度的X 平方分布,因此SPSS 将根据X 平方分布表给出Q 统计量所对应的相伴概率值。
统计量所对应的相伴概率值。
如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为样本来自的总体分布形态与期望分布或理论分布存在显著差异;如果相伴概率值大于显著性水平,则不能拒绝零假设HO ,认为样本来自的总体分布形态与期望分布或理论分布不存在显著差异。
r语言3组非参数检验非参数检验在统计学中是一种重要的方法,用于比较两组或多组数据是否具有显著性差异。
在R语言中,我们可以使用多种非参数检验方法来处理三组数据。
下面我们将介绍三种常用的非参数检验方法:卡方检验、配对卡方检验和Fisher确切概率法。
一、卡方检验卡方检验是一种用于比较两个或多个样本率或构成比是否显著的统计方法。
在R语言中,我们可以使用`chisq.test()`函数来进行卡方检验。
对于三组数据,我们可以将每两组的数据进行比较。
首先,我们需要将三组数据分别存储在三个向量中,例如:`group1`、`group2`和`group3`。
然后,我们可以使用以下代码进行卡方检验:```r#导入R语言自带的数据集data(mtcars)#将三组数据分别存储在向量中group1<-mtcars$mpggroup2<-mtcars$hpgroup3<-mtcars$drat#进行卡方检验chisq.test(cbind(group1,group2,group3))```上述代码将输出每组数据之间的卡方统计量和对应的p值。
如果p值小于预设的显著性水平(通常为0.05),则我们可以拒绝原假设,认为两组数据之间存在显著差异。
二、配对卡方检验配对卡方检验是一种用于比较两个配对样本是否具有相似性的统计方法。
在R语言中,我们可以使用`paired.test()`函数来进行配对卡方检验。
对于三组数据,我们可以将每两组的数据进行配对比较。
首先,我们需要将每两组的数据配对存储在一个矩阵或数据框中,例如:`df`。
然后,我们可以使用以下代码进行配对卡方检验:```r#创建示例数据框df<-data.frame(group1=c(1,2,3,4),group2=c(5,6,7,8),group3=c(9,10,11,12))#进行配对卡方检验paired.test(df)```上述代码将输出每组数据的配对样本之间的卡方统计量和对应的p值。