我国特高压直流输电发展规划与研究成果
- 格式:pdf
- 大小:85.65 KB
- 文档页数:4
特高压输变电技术的现状分析和发展趋势摘要:在社会经济不断发展的背景下,人们对电力能源的需求不断提升。
电力能源传输往往受传输距离的影响,出现很大的损耗,在节能减排成为社会普遍共识的情况下,电力传输过程中的能源损耗问题愈加突出,该问题在很大程度上影响了电力能源的长距离输送和能源资源的配置。
随着特高压输变电技术的不断成熟,长距离输电过程中的能源损耗问题可以被解决。
基于以上认识,文章从特高压输变电技术的应用意义出发,探究了特高压输变电技术的研究现状及发展,希望能够为特高压输变电技术的应用提供一定的思路。
关键词:特高压;输变电;电力传输1.特高压输变电技术的应用意义应用特高压输变电技术建立特高压网络,能够进一步提升电网的安全性、可靠性与经济性;应用特高压输变电技术可以彻底解决电网跨区弱连接导致的电力网络安全问题,为我国东部地区的生产建设提供强有力的电力网络支撑;应用特高压输变电技术可解决高负载区域电网短路电流超限问题,并减少走廊回路数量、节省土地资源。
计算和实际应用证明,±800kV的直流输电线路比±600kV的直流输电线路回数明显减少,可节约输电通道面积300km2。
在传输100000kW的电能,传输距离为800km时,使用500kV交流线路需8~10回,而使用特高压输电网络仅需2回,可缩短传输通道宽度0.3km,节省传输通道面积240km2,具有较明显的经济优势。
应用特高压输变电技术和特高压电网有助于构建跨区域的大规模网络,实现错峰、调峰、水火互惠、减少电网损耗;应用特高压输变电技术也能减少煤炭运输压力,推进煤炭的集约利用。
目前,我国能源分布存在一定的结构性矛盾,中西部地区的能源资源较丰富,东部沿海地区的能源消耗大,存在能源紧张问题。
应用特高压输变电技术有助于西电东输,可以使西部地区充分发挥自身的资源优势,同时降低中部和东部地区的能源压力,推动地区经济和社会的协调发展。
1.我国特高压输变电技术的研究现状我国开展特高压输变电技术的科研工作已有30余年。
特高压输变电技术的现状分析和发展研究随着电力工业的不断发展,传统的输变电技术已经不能满足现代社会对于电能传输的要求。
为了实现更高效、更可靠、更安全、更环保的电网运行,特高压输变电技术越来越受到重视。
本文将对特高压输变电技术的现状进行分析,并探讨其未来发展的前景。
特高压输变电技术是指输电电压等级达到UHV(Ultra High Voltage)的输电技术。
目前,国际上专业学者普遍认为,UHV的起始电压应为800千伏或更高。
特高压输变电主要包括输电线路技术和变电站技术。
输电线路技术输电线路是电力传输的重要组成部分。
特高压输电线路技术主要包括两种:交流输电和直流输电。
目前,直流输电技术已经成为特高压输电的主要技术路线。
直流输电线路具有输电距离远、输电能力强、输电损耗小等优点。
同时,直流输电线路也具有较高的技术难度,需要克服电气、机械、材料、环保等方面的问题。
变电站技术变电站是实现电能传输、分配、控制的重要设施。
在特高压输电中,变电站技术也面临很多挑战。
特高压变电站需要满足更高的电压等级、更大的容量、更高的可靠性和更严格的环保要求。
同时,特高压变电站还需要运用先进的数字化、自动化、通信等技术,对变电站进行监控及实时调度。
特高压输变电技术的发展可谓是世界范围内的热点。
在我国,特高压输变电技术也是电网建设的现代化方向之一。
首先,特高压输变电技术将进一步改善电网运行质量。
通过特高压输电技术,可以大幅度降低输电损耗,提高电网运行效率,减少电网故障率和停电次数。
其次,特高压输变电技术将促进电源的优化布局。
特高压输电技术可以实现电源与负荷之间任意距离的长距离传输,可以更好地满足新能源、新型负荷等方面的需求。
通过特高压输变电技术,可以实现多区域跨越、多能源协同等新型运行模式。
最后,特高压输变电技术也将对环保带来重要的意义。
随着特高压输变电技术的发展,传统的电力线路建设将逐渐退役,电网排放将逐步降低,使得能源利用更加环保和可持续。
浅谈对我国特高压交直流输电技术分析与研究摘要:从世界范围看,特高压输电技术将长期发展。
根据中国电网的发展趋势,特高压电网将由1000kV级交流输电系统和±800kV级直流系统组成。
根据特高压交流和直流2种输电方式不同的技术经济特性,比较分析了两者的适用场合,并对特高压输电线路的防雷保护、可靠性、稳定性、电磁环境、绝缘子选型和交直流配合等技术问题,分别展开比较。
关键词:特高压交流;特高压直流;防雷;可靠性;稳定性;电磁环境;绝缘子;交直流配合一、特高压输电特高压是世界上最先进的输电技术。
交流输电电压一般分为高压、超高压和特高压。
国际上,高压(HV)通常指35-220kV电压。
超高压(EHV)通常指330kV及以上、1000kV以下的电压。
特高压(UHV)定义为1000kV及以上电压。
而对于直流输电而言,高压直流(HVDC)通常指的是±600kV及以下的直流输电电压,±800kV(±750kV)以上的电压称为特高压直流(UHVDC)。
二、我国特高压直流输电技术1、特高压直流输电现状:20 世纪 80 年代前苏联曾动工建设哈萨克斯坦—中俄罗斯的长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW;巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常; 1988到1994 年为了开发亚马逊河的水力资源,巴西电力研究中心和 ABB 组织了包括±800kV 特高压直流输电的研发工作,后因工程停止而终止了研究工作。
2、特高压直流输电技术的特点及适用范围:特高压直流输电工程由于输送容量大,电压等级进入特高压范畴,换流站和线路工程在电磁环境影响、绝缘配合、外绝缘特性、无功补偿配置、换流阀组、直流场接线以及总平面布置等方面均有其自身特点,技术难度大,也是可行性研究阶段的主要技术内容,需要结合工程的自然地理环境和两端电网情况进行深入的研究和论证,初步确定其主要技术原则和方案。
收稿日期:2008203216作者简介钱炳芸(6),女,安徽霍丘人,淮北职业技术学院机电工程系讲师、工程师,合肥工业大学工程硕士。
研究方向机电及自动化。
我国特高压输电技术的发展和研究钱炳芸(淮北职业技术学院机电工程系,安徽淮北 235000)摘要:结合我国电网发展趋势,分析特高压输电技术经济优势及我国已具备的条件和基础,提出实施特高压输电需研究的重点技术问题。
关键词:特高压;电网;输电中图分类号:TM723 文献标识码:A 文章编号:167128275(2008)0320015202 特高压(ult ra high volta ge )电网是指交流1000kV 、直流正负800kV 及以上电压等级的输电网络。
拿它和我国现有主要以500kV 交流和正负500kV 直流系统为主要的电网相比较,前者如同高速公路,后者如同普通快速路,两者在流量、流速、经济性等方面均不可同日而语。
1 发展特高压输电的积极意义1.1 有利于节约资源我国土地资源十分紧张,人均耕地面积不足1.3亩,仅为世界平均水平的30%。
因此,在电网建设中,应该把土地的有效使用作为重要因素,尽可能地节约土地资源。
按照我国环保标准规定邻近民房的地面电场强度不大于4kV/m 的要求,500kV 线路走廊宽度为40-48m ,1000kV 线路走廊宽度为81-97m 。
由此可见,一回1000kV 电压输电线路的走廊宽度约为五回500kV 线路走廊宽度的40%,可节省60%的土地资源。
因此,特高压输电节省了走廊的土地占用,减少了土地的征用,减少了植被破坏和水土流失,是一项体现环保和节约资源的工程。
1.2 有利于超远距离大容量外送发展特高压,既是为了适应我国经济和电力工业的快速发展,也和我国的能源基地分布与区域经济结构不均衡有直接关系。
根据国家电网公司发布的特高压发展规划,到2020年前后,特高压电网形成以华北、华中、华东为核心,联结我国各大区域电网、大煤电基地、大水电基地和主要负荷中心的强大的电网结构。
高压直流输电技术现状及发展前景一、本文概述随着全球能源需求的持续增长和电网互联的深化发展,高压直流输电技术(HVDC)已成为现代电力系统的重要组成部分。
本文旨在全面概述高压直流输电技术的现状,包括其基本原理、关键设备、应用领域以及面临的挑战,并展望其未来的发展前景。
我们将深入探讨HVDC 技术的最新进展,包括新型拓扑结构、控制策略、设备制造技术等方面的创新,并分析这些创新如何推动HVDC技术在全球范围内的广泛应用。
我们还将讨论HVDC技术在可再生能源接入、电网互联、城市电网建设等领域的应用潜力,以及面临的挑战和解决方案。
通过本文的阐述,我们期望为读者提供一个全面而深入的了解高压直流输电技术的现状和发展前景的视角,为相关领域的研究和实践提供参考和借鉴。
二、高压直流输电技术现状高压直流输电(HVDC)技术自20世纪50年代诞生以来,经过几十年的发展,已经成为现代电力系统的重要组成部分。
当前,HVDC技术正处在一个快速发展的阶段,其在全球范围内的应用越来越广泛,技术性能也日益成熟和先进。
在技术上,现代高压直流输电系统已经实现了高度的自动化和智能化。
通过采用先进的控制系统和保护装置,HVDC系统能够实现快速响应和精确控制,确保电力系统的稳定运行。
同时,随着电力电子技术的飞速发展,HVDC系统的换流技术也在不断升级,从最初的汞弧阀换流器发展到现在的晶闸管换流器,再到未来的可关断晶闸管换流器,这些技术的进步极大地提高了HVDC系统的效率和可靠性。
在应用上,高压直流输电技术已经广泛应用于长距离大功率输电、跨海输电、异步联网等多个领域。
特别是在可再生能源的开发和利用中,HVDC技术发挥着不可替代的作用。
例如,在风能、太阳能等可再生能源丰富的地区,通过建设HVDC系统将电能输送到需求侧,可以有效地解决可再生能源的接入和消纳问题,推动可再生能源的大规模开发和利用。
然而,尽管高压直流输电技术取得了显著的进步和广泛的应用,但仍面临着一些挑战和问题。
我国特高压直流输电发展规划与研究成果随着我国经济发展迅速增长,国民经济的稳步提升,人民基本生活的用电需求也在随着人民物质生活生活的需求稳步增长。
我国人员众多,幅员辽阔,由于这一特点导致我国現在输电方式特殊,输电距离远,用电规模宏大,也使得输电容量变得十分巨大。
这样大规模的输电势必会造成线路上电力损耗,如何解决这一问题就要依靠特高压直流电技术,需求决定供给,正因如此,该项技术在我国的前景十分广阔。
标签:特高压直流输电技术规划发展研究一、特高压直流电技术的应用我国是一个传统能源应用占据主导的国家,现在煤和水利发电仍占主要地位。
然而,南北方的能源储蓄量也有着明显的差异,例如煤炭资源大部分分布在北方,而水电资源却有一大部分分布在南方。
根据中国的实际情况来看,能源需求量最大的地区实际上是经济发达的地区,根据分布和需求,以及能源和需求相隔的距离十分遥远,我们的能源运输就要降低损耗,提高效率。
解铃还须系铃人,我国电力问题解决还是需要电力企业的研究和解决。
如何规划电网和电网的建设成了主要问题。
因为能源和需求相距的距离非常遥远,我国所需要的输电方式应该是低损耗,高效率,并且安全的。
1.1技术问题科学技术的发展也在推动着电网建设和电力传输的更新换代,国际上的关注度也使得特高压直流电传输技术在学术界和研究界取得了广泛的重视。
包括中国在内的各个国家的科学家和专业人士都开始投身于更加大幅的直流电传输技术。
各个国家的研究机构和电力公司也都联合投身于输电设备的研发和维护,国内的研发脚步也不甘落后。
1.2绝缘众所周知只要提到电就离不开绝缘,高压电也不例外,甚至要求更高。
输送量的提高也对绝缘的条件提出了更高标准和严格的要求。
高压电出现的问题往往是联动的,小小问题会带来不可估量和难以预计的损失和麻烦,所以绝缘梯的选择和技术成为特高压直流输电最重要的问题。
各地区气候和降水的不同所以绝缘体的选择和考虑就有了更多的要求,最基本的还是对特高压直流电的保护是最重要的。
特高点直流输电技术摘要:针对我国电网的现状和发展趋势,指出发展特高压交流输电是缓解我国电力供应紧张状况的有效途径,也是改善电网结构、促进全国联网的需要。
本文对特高压直流输电技术进行了综述,并对比了其优缺点。
另外本文对目前我国特高压输电领域存在争议的一些问题进行了论述[1],包括:过电压和绝缘问题、电磁环境问题、控制保护问题等,并提出了可行性建议,即可在借鉴前苏联、日本、美国等国的研究成果的基础上,结合本国具体工程,进一步加强技术科研和相关设备的研制。
最后本文提出了我国他高压直流输电技术未来的发展规划以及发展前景。
关键字:特高压直流输电;电力系统;经济;技术;过电压和绝缘;电磁环境;控制保护一、背景和现状特高压输电是在超高压输电的基础上发展起来的,其目的仍是继续提高输电能力,实现大功率的中、远距离输电,以及实现远距离的电力系统互联,建成联合电力系统。
根据21世纪上半叶我国国民经济发展要求[2],预计到2020年全国装机容量将达到1100~1200GW。
但是我国能源和负荷地理分布极不均衡,这就决定了我国要解决21世纪上半叶的电力供应问题,实现长距离大容量的“西电东送和北电南送”,从而实现全国联网,充分发挥电网的水火互补调剂及区域负荷错峰作用。
全国联网网架中各段输送容量约5~20GW,输送距离约为600~2000km。
目前,500kV电网无论在传输长度、传输容量和限制短路电流方面都不能胜任上述要求,发展特高压输电已经势在必行。
我国从20 世纪80 年代开始[3],建成了±100 kV 的舟山直流工程,到目前已经陆续建成了8 条直流输电线路,线路总长度和输电容量均居世界首位。
根据我国能源分布的特点以及输电负荷的发展需求和500 kV 输电网架暴露出的问题(网损大,线路走廊紧张等) ,通过对特高压直流输电(UHVDC) 的研究论证,国家发改委已经将直流±800 kV 作为特高压直流线路的运行电压等级。
探讨特高压直流输电技术现状及在我国的应用前景发布时间:2022-10-30T00:59:29.986Z 来源:《科技新时代》2022年第12期作者:康伟[导读] 新时期,伴随着电力工业的快速发展,工业生产以及社会发展对于电能的需求不断提高康伟国网山西省电力公司超高压变电分公司山西太原 030000摘要:新时期,伴随着电力工业的快速发展,工业生产以及社会发展对于电能的需求不断提高,输电容量更大,输电距离更长,想要满足这样的要求,必须完善电力传输相关技术,做好基础设施建设,对国家电网整体规划进行优化。
在我国,10-220kV电压等级的线路属于高压线路,330-750kV的线路为超高压线路,直流800kV及以上,交流1000kV及以上的线路为特高压线路,电压等级越高,对于电力技术的要求也就相对越高。
关键词:特高压;直流输电;发展现状;应用前景1引言通常将10-220kV电压等级的线路叫做高压线路,把330-750kV的输电线路叫做超高压,国际上习惯把交流1000kV及以上和直流±800kV 及以上的叫做特高压输电技术。
工业电网的等级越高,电力技术应用要求越高。
国内输电网的质量高低取决于国内电网的总体规模、电网的覆盖区域、输电距离的长短与输电技术水平的高低。
由此相应的特高压直流输电技术也应运而生,更大的输出电量,为国家的发展做出了不可磨灭的贡献[1]。
2特高压直流输电系统概述特高压直流输电技术指±800kV及以上电压等级的直流输电相关技术,具有电压高、输电距离远、输电容量大的特点,能够用于电力系统的非同步联网。
在我国,特高压电网建设一般是将1000kV交流特高压输电线路作为主体,构建特高压电网骨干网架,以此来完成不同区域电网的同步互联,而±800kV特高压直流输电则主要用于远距离、无电压支撑和中间落点的输电工程,配合双极两端中性点接线的方式,保证线路运行的稳定性[2]。
特高压直流输电技术具备结构较为显著的特点:一是系统设计简单,基本上可以沿用500kV或者600kV的直流输电系统设计方法,只需要处理好外部绝缘以及套管的设计,就能够保证设计的有效性;二是电力输送容量大,距离长,不过输电能力会受到导线本身最高允许温度的限制,例如,±600kV直流线路的最大传输功率约为4GW,±800kV直流线路的最大传输功率为6GW;三是只要交流系统短路比在3以上,就能够实现特高压线路与电网的可靠连接,而当前我国与直流连接的交流系统短路比均在5以上;四是可靠性强,对比高压直流输电技术,特高压直流输电技术的优势相当明显,在输电系统整体中,线路中间不落点,可以借助点对点的连接方式,以更大的功率确保电能的远距离传输,将电能汇聚到相应的电力负荷中心。