我国特高压直流输电发展规划与研究成果_袁清云
- 格式:pdf
- 大小:165.05 KB
- 文档页数:4
高压直流输电技术的研究与发展随着我国经济的飞速发展,能源需求不断增加。
而在我国能源结构中,煤炭、油气等化石能源仍然占据主导地位,但是这些能源的生产、储运、使用等环节中都存在着严重的环境污染和安全隐患。
因此,我国在加快扩大新能源开发和利用的同时,也在探索新的输电技术,其中高压直流输电技术便是一种被广泛关注和研究的技术。
高压直流输电(HVDC)技术可以将输电距离拉长到数千公里以上,同时也可以降低输变电设备的占地面积和减少输电线路的电磁波噪声。
因此,HVDC技术被认为是未来电力输配网的一个重要发展方向。
一、 HVDC技术的发展历程HVDC技术从产生到不断升级发展,经历了几个发展阶段:1. 第一阶段:单极输电1965年,美国电气工程师C. W. Kimbark设计建造了世界上第一座HVDC单极换流站,实现了单极输电。
这种技术是指只用一组电极,将输电电源与负载之间的电流引入地下或海底,通过地电容、输电线电容等方式交换电能的一种输电方式。
单极输电具有传输距离长、成本低等优点。
2. 第二阶段:双极输电1970年,瑞典于Lule River工程中建成世界上第一座HVDC双极换流站,标志着双极输电技术的问世。
双极输电是指在两个相距较远的地点建立两个换流站,分别用正、反向输电,可以实现大容量、长距离的电力传输。
3. 第三阶段:多极输电20世纪90年代,欧洲研究中心提出了HVDC多极输电技术。
该技术在换流站的两端采用3个或3个以上的换流电极,可以更好地控制电场、电磁场分布,有效地降低了电磁辐射、提高了输电效率。
二、 HVDC技术的特点和优势相较于传统的交流输电技术,HVDC技术有以下特点和优势:1. 传输距离更长:HVDC技术可以达到数千公里甚至更长的距离,而AC输电的传输距离一般仅为1000公里左右。
2. 有利于提高电力输送效率:HVDC技术中由于只有直流电流,不存在交流电流所带来的电流损耗和电压降,从而可以提高电力输送效率。
特高压输变电技术的现状分析和发展研究特高压输变电技术是指交流电压等级在800千伏以上的输变电技术,是电力系统中重要的组成部分。
随着我国经济的快速发展和城市化进程的加快,电力需求不断增长,特高压输变电技术的发展变得愈发重要。
本文将对特高压输变电技术的现状进行分析,并探讨其未来的发展趋势。
1. 技术发展历程特高压输变电技术的发展经历了多个阶段。
20世纪50年代,我国进行了220千伏、500千伏甚至765千伏的电网建设,开创了高压电网时代;80年代开始,我国开始在输变电领域逐渐引入特高压技术,率先在直流输电方面取得了一系列重大成就;21世纪以来,特高压交流输电技术也得到了长足的发展,并已经取得了一系列突破,为电力系统的可靠性、安全性和经济性提供了强有力的支撑。
2. 技术特点特高压输变电技术相对于传统输变电技术来说,具有输电距离远、输电功率大、电网经济可靠性高等优点。
特高压输变电技术能够实现长距离大容量输电,降低电网损耗,提高输电效率,从而满足远距离、大容量输电的需求,为经济社会发展提供了强大的支撑。
3. 技术应用特高压输变电技术已经在我国多个地方得到了广泛应用,例如西北干旱地区的风电资源富集、西南水电资源丰富、东北煤炭资源丰富等地方都需要特高压输电技术的支持。
特高压输变电技术在解决能源资源不均衡、电力需求增长快的地区起到了至关重要的作用。
二、特高压输变电技术的发展研究1. 技术难点特高压输变电技术在发展过程中面临着一些难点和挑战。
首先是技术设备的制造和研发,尤其是特高压输变电设备的设计、制造和检测技术,需要不断突破和创新;其次是特高压输变电线路的建设和运行技术,要克服长距离输电带来的输电损耗、电磁暂态和电气气象等复杂问题;再次是特高压输变电的经济性和可靠性,如何更好地实现节能减排、提高负载率、降低运行成本等,也是亟待解决的问题。
2. 技术前景随着我国电力需求的不断增长和能源结构的不断优化,特高压输变电技术有着广阔的发展前景。
收稿日期:2008203216作者简介钱炳芸(6),女,安徽霍丘人,淮北职业技术学院机电工程系讲师、工程师,合肥工业大学工程硕士。
研究方向机电及自动化。
我国特高压输电技术的发展和研究钱炳芸(淮北职业技术学院机电工程系,安徽淮北 235000)摘要:结合我国电网发展趋势,分析特高压输电技术经济优势及我国已具备的条件和基础,提出实施特高压输电需研究的重点技术问题。
关键词:特高压;电网;输电中图分类号:TM723 文献标识码:A 文章编号:167128275(2008)0320015202 特高压(ult ra high volta ge )电网是指交流1000kV 、直流正负800kV 及以上电压等级的输电网络。
拿它和我国现有主要以500kV 交流和正负500kV 直流系统为主要的电网相比较,前者如同高速公路,后者如同普通快速路,两者在流量、流速、经济性等方面均不可同日而语。
1 发展特高压输电的积极意义1.1 有利于节约资源我国土地资源十分紧张,人均耕地面积不足1.3亩,仅为世界平均水平的30%。
因此,在电网建设中,应该把土地的有效使用作为重要因素,尽可能地节约土地资源。
按照我国环保标准规定邻近民房的地面电场强度不大于4kV/m 的要求,500kV 线路走廊宽度为40-48m ,1000kV 线路走廊宽度为81-97m 。
由此可见,一回1000kV 电压输电线路的走廊宽度约为五回500kV 线路走廊宽度的40%,可节省60%的土地资源。
因此,特高压输电节省了走廊的土地占用,减少了土地的征用,减少了植被破坏和水土流失,是一项体现环保和节约资源的工程。
1.2 有利于超远距离大容量外送发展特高压,既是为了适应我国经济和电力工业的快速发展,也和我国的能源基地分布与区域经济结构不均衡有直接关系。
根据国家电网公司发布的特高压发展规划,到2020年前后,特高压电网形成以华北、华中、华东为核心,联结我国各大区域电网、大煤电基地、大水电基地和主要负荷中心的强大的电网结构。
±1100kV特高压直流输电的可行性及关键技术摘要:本文介绍了特高压直流输电的技术特点,并在现有±800kV特高压直流输电工程项目的基础上,结合近几年我国相关领域的技术研发成果,论述了发展±1100kV特高压直流输电工程的可行性,并针对发展±1100kV特高压直流输电工程提出了需要重点解决的技术问题和关键思路。
关键词:±1100kV 特高压直流输电换流站晶闸管电磁环境1、前言我国虽然地大物博,电力资源的分布却极不平衡,中部和东部发达地区的电力需求约占全国的69%,而水能和煤炭资源却不足全国的25%,电力供应紧张。
为了缓解这一形势,实现能源的优化配置,远距离、大容量的输电工程成为了必然的解决途径。
当前我国特高压直流输电工程的最高等级为±800kV,如云广特高压直流输电工程、向家坝至上海直流输电工程、锦屏至苏南直流输电工程等,为我国特高压直流输电的发展积累了工程实践经验。
随着输电距离和送电容量加大,考虑到设备的制造和运输难度、线路的损耗等,必须提高直流输电电压等级。
国家十二五特高压电网的重点工程——准东至重庆±1100kV特高压直流输电工程,是“疆电外送”的重要能源通道,全线总长度约2687千米,总投资370亿元,预计2014年投运,届时这一工程将打破世界输电工程电压等级、输送容量、输电距离三项纪录。
2、特高压直流输电的技术特点(1)特高压直流输电的输送容量更大、送电距离更远,且输电线路的走廊宽度为交流输电线路的一半;(2)直流输送的功率大小和方向可以实现快速控制和调节;(3)直流输电工程运行时,单极发生故障时,另一极还能够继续运行,并可以发挥过负荷能力,最大限度的减少输送功率的损失;(4)直流系统具有调制功能,可根据系统要求作出快速响应,提高电力系统暂态稳定水平;(5)采用直流输电线路使大电网之间互联,每个电网之间不会产生相互干扰和影响,并可在必要时迅速进行功率交换。
我国特高压直流输电发展规划与研究成果随着我国经济发展迅速增长,国民经济的稳步提升,人民基本生活的用电需求也在随着人民物质生活生活的需求稳步增长。
我国人员众多,幅员辽阔,由于这一特点导致我国現在输电方式特殊,输电距离远,用电规模宏大,也使得输电容量变得十分巨大。
这样大规模的输电势必会造成线路上电力损耗,如何解决这一问题就要依靠特高压直流电技术,需求决定供给,正因如此,该项技术在我国的前景十分广阔。
标签:特高压直流输电技术规划发展研究一、特高压直流电技术的应用我国是一个传统能源应用占据主导的国家,现在煤和水利发电仍占主要地位。
然而,南北方的能源储蓄量也有着明显的差异,例如煤炭资源大部分分布在北方,而水电资源却有一大部分分布在南方。
根据中国的实际情况来看,能源需求量最大的地区实际上是经济发达的地区,根据分布和需求,以及能源和需求相隔的距离十分遥远,我们的能源运输就要降低损耗,提高效率。
解铃还须系铃人,我国电力问题解决还是需要电力企业的研究和解决。
如何规划电网和电网的建设成了主要问题。
因为能源和需求相距的距离非常遥远,我国所需要的输电方式应该是低损耗,高效率,并且安全的。
1.1技术问题科学技术的发展也在推动着电网建设和电力传输的更新换代,国际上的关注度也使得特高压直流电传输技术在学术界和研究界取得了广泛的重视。
包括中国在内的各个国家的科学家和专业人士都开始投身于更加大幅的直流电传输技术。
各个国家的研究机构和电力公司也都联合投身于输电设备的研发和维护,国内的研发脚步也不甘落后。
1.2绝缘众所周知只要提到电就离不开绝缘,高压电也不例外,甚至要求更高。
输送量的提高也对绝缘的条件提出了更高标准和严格的要求。
高压电出现的问题往往是联动的,小小问题会带来不可估量和难以预计的损失和麻烦,所以绝缘梯的选择和技术成为特高压直流输电最重要的问题。
各地区气候和降水的不同所以绝缘体的选择和考虑就有了更多的要求,最基本的还是对特高压直流电的保护是最重要的。
特高压输电技术的研究与发展随着工业化进程的不断加快,能源需求也在不断增大。
而电力作为能源的重要载体,其在现代社会中的作用不可小觑。
为了满足日益增长的电力需求,电力行业需要不断地进行技术升级和创新。
其中,特高压输电技术就是一项非常重要的技术。
特高压输电技术是指在1000千伏及以上电压等级下进行的输电技术。
相对于传统的输电技术而言,特高压输电技术具有诸多优势。
首先,特高压输电技术能够大幅度提高输电效率,减少输电能耗。
其次,特高压输电技术可实现远距离输电,使得能源利用更加集中化。
此外,特高压输电技术还具有可以化解输电过程中产生的环境污染,促进经济发展等诸多优势。
在中国,特高压输电技术的开发和应用已有一定的历史。
早在上世纪60年代初期,中国就开始了特高压输电技术的研究和试验。
在随后的几十年里,我国不断积累经验,不断改进技术,终于在新世纪初期提出了“西电东送”计划。
这一计划旨在通过特高压输电技术,将中国西部富余的电力资源输送到东部地区,以缓解东部地区的电力短缺问题。
目前,我国特高压输电线路的总长度已经超过5万公里,其中包括了已经建成的和正在建设中的。
尽管特高压输电技术已经取得了不俗的进展,但其研究和发展仍然面临许多挑战。
其中最主要的问题之一就是技术成本的问题。
虽然随着技术升级,特高压输电技术的成本也在不断降低,但仍然存在不小的成本压力。
此外,特高压输电技术的建设需求严格的技术标准和安全控制,这也为其中长期的发展带来了不小的困难。
针对上述问题,我们需要不断进行技术研究和创新。
其中,最重要的一项就是提高特高压输电技术的应用效率。
特高压输电线路虽然带来了诸多优势,但也存在输电损失和电压降等问题。
因此,我们需要进一步提高特高压输电线路的电气性能,以减少输电损失。
同时,我们还需要加强针对特高压输电线路的安全研究。
特高压输电线路的建设需要面临极端气候、地形复杂等因素的影响,其安全性和稳定性也受到了严峻的考验。
因此,我们需要加强对特高压输电线路的研究,提升其安全性和可靠性。
特高点直流输电技术摘要:针对我国电网的现状和发展趋势,指出发展特高压交流输电是缓解我国电力供应紧张状况的有效途径,也是改善电网结构、促进全国联网的需要。
本文对特高压直流输电技术进行了综述,并对比了其优缺点。
另外本文对目前我国特高压输电领域存在争议的一些问题进行了论述[1],包括:过电压和绝缘问题、电磁环境问题、控制保护问题等,并提出了可行性建议,即可在借鉴前苏联、日本、美国等国的研究成果的基础上,结合本国具体工程,进一步加强技术科研和相关设备的研制。
最后本文提出了我国他高压直流输电技术未来的发展规划以及发展前景。
关键字:特高压直流输电;电力系统;经济;技术;过电压和绝缘;电磁环境;控制保护一、背景和现状特高压输电是在超高压输电的基础上发展起来的,其目的仍是继续提高输电能力,实现大功率的中、远距离输电,以及实现远距离的电力系统互联,建成联合电力系统。
根据21世纪上半叶我国国民经济发展要求[2],预计到2020年全国装机容量将达到1100~1200GW。
但是我国能源和负荷地理分布极不均衡,这就决定了我国要解决21世纪上半叶的电力供应问题,实现长距离大容量的“西电东送和北电南送”,从而实现全国联网,充分发挥电网的水火互补调剂及区域负荷错峰作用。
全国联网网架中各段输送容量约5~20GW,输送距离约为600~2000km。
目前,500kV电网无论在传输长度、传输容量和限制短路电流方面都不能胜任上述要求,发展特高压输电已经势在必行。
我国从20 世纪80 年代开始[3],建成了±100 kV 的舟山直流工程,到目前已经陆续建成了8 条直流输电线路,线路总长度和输电容量均居世界首位。
根据我国能源分布的特点以及输电负荷的发展需求和500 kV 输电网架暴露出的问题(网损大,线路走廊紧张等) ,通过对特高压直流输电(UHVDC) 的研究论证,国家发改委已经将直流±800 kV 作为特高压直流线路的运行电压等级。
高压直流输电发展与新技术研究与探索一、高压直流输电的发展现状高压直流输电技术是指直流电压大于100千伏的输电技术。
它具有输电距离远、输电损耗小、可实现环境友好和景观协调等优势,在全球范围内得到了广泛的应用和推广。
中国是世界上最大的高压直流输电技术应用国家之一,自1980年代开始,中国便投入大量资金和人力资源进行高压直流输电技术的研发和应用。
目前,我国已建成了世界上最大的±800千伏特高压直流输电工程——长江三峡—上海特高压直流输电工程,这一工程的建成,不仅为中国的电力行业注入了新的活力,也为全球高压直流输电技术的发展作出了重要的贡献。
在国外,北欧国家、美国、俄罗斯等也在积极推动高压直流输电技术的发展和应用,尤其是在海上风电场输电和国际能源互联互通等方面,高压直流输电技术正成为首选。
虽然高压直流输电技术具有诸多优势,但在应用过程中也存在不少问题和挑战。
主要表现在以下几个方面:1、技术成本高。
目前,高压直流输电的设备和技术成本仍然较高,使得输电工程的投资成本大大增加,这也是限制该技术推广应用的重要原因之一。
2、设备可靠性有待提高。
由于高压直流输电技术的设备涉及到众多高压器件和复杂系统,设备的可靠性对输电运行的影响极为重要。
目前,高压直流输电技术在设备可靠性方面仍需进一步提高。
3、环境影响需关注。
尽管高压直流输电技术在环境保护和景观协调方面具有优势,但其对环境的影响仍需引起重视。
特别是在输电线路的建设和运行过程中,应加强对环境的保护和治理,减少其对自然生态系统的影响。
三、新技术的研究和探索为了克服高压直流输电存在的问题,不断提高技术水平和推动其发展和应用,国内外科研机构和企业纷纷投入到新技术的研究和探索中。
主要包括以下几个方面:1、电力电子器件的研发。
电力电子器件是高压直流输电技术的核心组成部分,其性能直接影响着整个系统的运行稳定性和运行成本。
近年来,众多科研机构和企业都在积极开展电力电子器件的研发工作,包括功率半导体器件、智能高压开关设备等,以提高系统的稳定性和运行效率。
第32卷第17期电网技术 5的规划提供技术参考。
2)现有的数模混合仿真装置仿真规模有限,应用全数字实时仿真装置开发新的数模连接接口、扩大系统仿真规模是下一步的研究方向。
参考文献[1] 舒印彪.我国特高压输电的发展与实施[J].中国电力,2005,38(11):1-8.Shu Yinbiao.The development and implement of ultra high voltage transmission in our country[J].Electric Power,2005,38(11):1-8(in Chinese).[2] 吴敬儒,徐永禧.我国特高压交流输电发展前景[J].电网技术,2005,29(3):1-4.Wu Jingru,Xu Yongxi.EHV AC transmission’s development prospects in our country[J].Power System Technology,2005,29(3):1-4(in Chinese).[3] 袁清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,29(14):1-3.Yuan Qingyun.Present state and application prospect of ultra HVDC transmission in China[J].Power System Technology,2005,29(14):1-3(in Chinese).[4] 印永华.国家电网仿真研究中心可行性研究报告[R].北京:中国电力科学研究院,2007.[5] 曾昭华,蒋卫平.中国电力科学研究院仿真中心[J].国际电力,2001,5(2):43-46.Zeng Zhaohua,Jiang Weiping.Power system simulation laboratory of electric power research institute in China[J].International Electric Power,2001,5(2):43-46(in Chinese).[6] 刘云,印永华,曾南超,等.数模混合式高压直流输电仿真系统的建立[J].电力系统自动化,2006,30(18):38-44.Liu Yun,Yin Yonghua,Zeng Nanchao,et al.Model establishment of digital/analog HVDC simulation system[J].Automation of Electric Power Systems,2006,30(18):38-44(in Chinese).[7] 王明新.高压直流输电模拟装置的作用[J].电网技术,2001,25(12):64-66.Wang Mingxin.Action of HVDC transmission simulator[J].Power System Technology,2001,25(12):64-66(in Chinese).[8] 陶瑜.葛洲坝—上海直流工程第一期模拟试验建模报告[R].北京:中国电力科学研究院,1988.[9] 班连庚,王明新.三峡电力系统仿真试验的建模[R].北京:中国电力科学研究院,1999.[10] 蒋卫平,张晋华.三峡电力系统实时仿真模拟试验研究[J].中国电力,2001,34(1):31-35.Jiang Weiping,Zhang Jinhua.Stydy on real-time test for Three- Gorges power system[J].Electric Power,2001,34(1):31-35(in Chinese).[11] 张晋华,胡涛,刘云,等.金沙江一期及锦屏送出特高压直流工程科研设计之实时仿真研究[R].北京:中国电力科学研究院,2007.[12] 杨靖萍,徐政.基于同调机群识别的动态等值方法的工程应用[J].电网技术,2005,29(17):67-71.Yang Jingping,Xu Zheng.Application of dynamic equivalence based on identification of coherent generator group in engineering[J].Power System Technology,2005,29(17):67-71(in Chinese).[13] 王晶芳,余军,王智冬,等.±800 kV级直流送出工程接入系统仿真研究[R].北京:中国电力科学研究院,2005.[14] 王晶芳,余军,胡涛,等.2010年南方直流多落点PSCAD仿真研究报告[R].北京:中国电力科学研究院,2006.[15] 印永华,卜广全.电力系统动态等值程序技术和使用手册[R].北京:电力科学研究院出版社,1993.[16] 齐旭,苏宏田.大容量直流输电对系统安全稳定影响分析[R].北京:中国电力工程顾问集团公司,2005.收稿日期:2008-01-31。
高压直流输电技术的研究与发展概述:高压直流输电(HVDC)技术是一种将电力以直流形式通过高压线路传输的电力输电技术。
相比传统的交流输电技术,高压直流输电技术具有输送大容量电力、降低输电损耗、节约线路占地等优势。
近年来,随着能源需求的不断增长和环境保护要求的提高,高压直流输电技术在世界范围内得到了广泛应用和研究。
1. 技术原理及基本组成高压直流输电技术通过将交流电源转换为直流电源,然后通过高压直流输电线路将电能传输到目的地。
传输线路主要包括高压直流输电线路、换流站和送电/接收站。
(1)高压直流输电线路:高压直流输电线路采用导电芯线、绝缘层和外护套组成,确保电能的安全传输。
同时,具备高绝缘性能和机械强度,以适应各类复杂的电力传输环境。
(2)换流站:换流站是将交流电转换为直流电的装置。
它通常由变换器、变流阀、滤波器和控制系统组成。
变换器将交流电转换为直流电,而变流阀则控制直流电的流向和大小。
(3)送电/接收站:送电站将输电线路上的直流电能送入交流电系统,而接收站则将交流电转换为直流电并向用户供电。
2. 发展历程高压直流输电技术的研究与发展经历了长期的探索和实践。
1954年,瑞典首度实现了高压直流输电技术的商业化应用,从此开启了高压直流输电技术的新纪元。
20世纪80年代至90年代,随着计算机技术的进步,高压直流输电技术的控制能力和可靠性得到了显著提高。
21世纪初,高压直流输电技术在我国得到了广泛应用。
典型的例子是庞大的西北、西南等远距离输电工程的实施。
近年来,半导体技术的不断进步,为高压直流输电技术的发展提供了新的契机。
半导体技术的应用使得高压直流输电设备更加紧凑、高效,系统控制和保护也更加灵活可靠。
3. 技术优势和经济效益高压直流输电技术相较于传统的交流输电技术,具有多方面的技术优势和经济效益。
(1)大容量输电:高压直流输电可以以更高的电压和更小的电流进行电力传输,从而大幅度提高输电的容量。
这种特性使得高压直流输电技术成为长距离和大容量输电的首选技术。