mathematica对数运算
- 格式:docx
- 大小:14.60 KB
- 文档页数:2
Mathematica的内部常数Pi , 或π(从基本输入工具栏输入, 或“Esc”+“p”+“Esc”)圆周率πE (从基本输入工具栏输入, 或“Esc”+“ee”+“Esc”)自然对数的底数eI (从基本输入工具栏输入, 或“Esc”+“ii”+“Esc”)虚数单位iInfinity, 或∞(从基本输入工具栏输入 , 或“Esc”+“inf”+“Esc”)无穷大∞Degree 或°(从基本输入工具栏输入,或“Esc”+“deg”+“Esc”)度Mathematica的常用内部数学函数指数函数Exp[x]以e为底数对数函数Log[x]自然对数,即以e为底数的对数Log[a,x]以a为底数的x的对数开方函数Sqrt[x]表示x的算术平方根绝对值函数Abs[x]表示x的绝对值三角函数(自变量的单位为弧度)Sin[x]正弦函数Cos[x]余弦函数Tan[x]正切函数Cot[x]余切函数Sec[x]正割函数Csc[x]余割函数反三角函数ArcSin[x]反正弦函数ArcCos[x]反余弦函数ArcTan[x]反正切函数ArcCot[x]反余切函数ArcSec[x]反正割函数ArcCsc[x]反余割函数双曲函数Sinh[x]双曲正弦函数Cosh[x]双曲余弦函数Tanh[x]双曲正切函数Coth[x]双曲余切函数Sech[x]双曲正割函数Csch[x]双曲余割函数反双曲函数ArcSinh[x]反双曲正弦函数ArcCosh[x]反双曲余弦函数ArcTanh[x]反双曲正切函数ArcCoth[x]反双曲余切函数ArcSech[x]反双曲正割函数ArcCsch[x]反双曲余割函数求角度函数ArcTan[x,y]以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度数论函数GCD[a,b,c,...]最大公约数函数LCM[a,b,c,...]最小公倍数函数Mod[m,n]求余函数(表示m除以n的余数)Quotient[m,n]求商函数(表示m除以n的商)Divisors[n]求所有可以整除n的整数FactorInteger[n]因数分解,即把整数分解成质数的乘积Prime[n]求第n个质数PrimeQ[n]判断整数n是否为质数,若是,则结果为True,否则结果为FalseRandom[Integer,{m,n}]随机产生m到n之间的整数排列组合函数Factorial[n]或n!阶乘函数,表示n的阶乘复数函数Re[z]实部函数Im[z]虚部函数Arg(z)辐角函数Abs[z]求复数的模Conjugate[z]求复数的共轭复数Exp[z]复数指数函数求整函数与截尾函数Ceiling[x]表示大于或等于实数x的最小整数Floor[x]表示小于或等于实数x的最大整数Round[x]表示最接近x的整数IntegerPart[x]表示实数x的整数部分FractionalPart[x]表示实数x的小数部分分数与浮点数运算函数N[num]或num->a表达式/.{x->a, y->b,…}如何用mathematica进行复数运算a+b*I表示复数a+bIConjugate[z]求复数z的共轭复数Exp[z]复数的指数函数,表示e^zRe[z]求复数z的实部Im[z]求复数z的虚部Abs[z]求复数z的模Arg[z]求复数z的辐角,如何在mathematica中表示集合与数学中表示集合的方法相同,格式如下:{a, b, c,…}表示由a, b, c,…组成的集合(注意:必须用大括号)下列命令可以生成特殊的集合:Table[f,{n}]生成包含n个元素f的集合Table[f[n],{n,nmax}]n从1到nmax,间隔为1,生成集合{f[1], f[2], f[3],…, f[nmax]} Table[f[n],{n,nmin, nmax}]n从nmin到nmax,间隔为1,生成集合{f[nmin], f[nmin+1], f[nmin+2],…, f[nmax]}Table[f[n],{n,nmin, nmax, dn}]n从nmin到nmax,间隔为dn,生成集合{f[nmin],f[nmin+dn], f[nmin+2*dn],…, f[nmax]}Range[n]生成集合{1, 2, 3 ,…, n}Range[imin, imax]生成集合{imin,imin+1,imin+2,…,imax}Range[imin, imax, di]生成集合{imin,imin+di,imin+2*di,… } (最大不超过imax)如何用Mathematica求集合的交集、并集、差集和补集Union[A,B,C,…] 求集合A,B,C,…的并集A~Union~B~U nion~C~Union~… 求集合A,B,C,…的并集A∪B∪C∪… 求集合A,B,C,…的并集Intersection[A,B,C,…] 求集合A,B,C,…的交集A~ Intersection ~B~ Intersection ~C~ Intersection ~… 求集合A,B,C,…的交集A∩B∩C∩… 求集合A,B,C,…的交集Complement [A,B,C,…] 求差集A~ Complement ~B~ Complement ~C~ Complement ~… 求差集Complement [全集I,A] 求集合A关于全集I的补集全集I ~ Complement ~A 求集合A关于全集I的补集如何mathematica用排序Sort[v]将数组或向量v的元素从小到大排列(升序排列)Reverse[v]将数组或向量v的元素按照与原来相反的顺序重新排列(续排列)RotateLeft[v]将数组或向量v中的每一个元素向左移一个位置RotateRight[v]将数组或向量v中的每一个元素向右移一个位置RotateLeft[v,n]将数组或向量v中的每一个元素向左移n个位置RotateRight[v,n]将数组或向量v中的每一个元素向右移n个位置如何在Mathematica中解方程Solve[方程,变元]注:方程的等号必须用: = =如何在Mathematica中解方程组Solve[{方程组},{变元组}]注:方程的等号必须用: = =如何在Mathematica中解不等式先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[不等式,变元]<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[{不等式组},{变元组}] (我的研究成果)InequalitySolve[And[不等式组],{变元组}]InequalitySolve[不等式1&&不等式2&&…&&不等式n,{变元组}]<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve`然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme--><--mstheme-->InequalitySolve[{不等式组},{变元组}] (我的研究成果)InequalitySolve[And[不等式组],{变元组}]InequalitySolve[不等式1&&不等式2&&…&&不等式n,{变元组}]如何用mathematica表示分段函数lhs:=rhs/;condition当condition成立时,lhs才会被定义成rhsIf[test,then,else]如果test为True,则执行then,否则执行 elseIf[test,then,else,unknown]如果test为True,则执行then,为False时,则执行else,无法判断test是True或False时则执行unknownWhich[test1,value1,test2,value2,...]如果test1为True,则执行value1,test2为True,则执行value2,依次类推。
用Mathematica 研究自然对数的底数e作 者:陈 龙摘要:e 是一个奇妙有趣的无理数,它取自瑞士数学家欧拉的英文字头。
e 与π被认为是数学中最重要的两个超越数,e 、π及i (i 为虚数单位)三者间存在1-=i e π的关系。
本文利用Mathematica 软件研究了自然对数的底数e ,介绍了e 的一些相关知识、e 与自然对数的关系以及e 的值的计算方法等。
关键词:Mathematica ,e ,自然对数一、引言远在公元前,圆周率π就被定义为“周长与直径之比”。
自古以来,π的近似值一直取为 3.14或722()742851.3 =。
通过许多数学家的努力,π的近似值位数不断增加。
目前用电脑计算圆周率。
由于电脑速度等功能不断改进,今后π的近似值位数会越来越多。
另外一个奇妙有趣的无理数是e ,它取自瑞士数学家欧拉(Euler ,1707-1783)的英文字头。
欧拉首先发现此数并称之为自然数e 。
但是,这种所谓的自然数与常见正整数1,2,3,……截然不同。
确切地讲,e 应称为“自然对数a e log 的底数”。
e 与π被认为是数学中最重要的两个超越数(transcendental number ,若一数为()0=xf 之根,其中f 为某一至少一次的整系数多项式,则此数称为代数数(algebraic number ),否则称为超越数)。
e 、π及i (i 为虚数单位)三者间存在1-=ie π的关系。
本文主要介绍e 的一些知识以及用Mathematica软件来计算e 。
二、欧拉数e考虑数列{}n a ,n a =∑=ni i 0!1=!1!21!111n ++++ ,1≥n ,其中!n =()1231⋅⋅⋅⋅- n n ,1≥n ,1!0=,应用下述关于级数收敛的基本定理之一可证明出其极限存在。
定理1.设数列{}n a 为单调且有界,则当∞→n 时,a a n →(a 为一有限数)。
首先,对n a =∑=ni i 0!1,显然{}na 为单调递增数列。
Mathematica 入门一、引 言Mathematica 是美国Wolfram 公司开发的一个功能强大的数学软件系统,它主要包括:数值计 算、符号计算、图形功能和程序设计. 本指导书力图在不大的篇幅中给读者提供该系统的一个简 要的介绍. 指导书是按Mathematica 4.0版本编写的, 但是也适用于Mathematica 的任何其它图形 界面的版本.Mathematica 在数值计算、符号运算和图形表示等方面都是强有力的工具,并且其命令句法惊 人地一致, 这个特性使得Mathematica 很容易使用.不必担心你还不太熟悉计算机.本入门将带你 迅速了解Mathematica 的基本使用过程, 但在下面的介绍中,我们假定读者已经知道如何安装及启动Mathematica. 此外,始终要牢记的几点是:● Mathematica 是一个敏感的软件. 所有的Mathematica 函数都以大写字母开头; ● 圆括号( ),花括号{ },方括号[ ]都有特殊用途, 应特别注意; ● 句号“.”,分号“;”,逗号“,”感叹号“!”等都有特殊用途, 应特别注意; ● 用主键盘区的组合键Shfit+Enter 或数字键盘中的Enter 键执行命令.二、一般介绍1. 输入与输出例1 计算 1+1:在打开的命令窗口中输入1+2+3并按组合键Shfit+Enter 执行上述命令,则屏幕上将显示:In[1] : =1+2+3 Out[1] =6这里In[1] : = 表示第一个输入,Out[1]= 表示第一个输出,即计算结果.2. 数学常数Pi 表示圆周率π; E 表示无理数e; I 表示虚数单位i ; Degree 表示π/180; Infinity 表示无穷大.注:Pi,Degree,Infinity 的第一个字母必须大写,其后面的字母必须小写.3. 算术运算Mathematica 中用“+”、“-”、“*”、“/” 和“^”分别表示算术运算中的加、减、乘、除和 乘方.例2 计算 π⋅⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫⎝⎛⋅--213121494891100. 输入 100^(1/4)*(1/9)^(-1/2)+8^(-1/3)*(4/9)^(1/2)*Pi 则输出 3103π+这是准确值. 如果要求近似值,再输入N[%] 则输出 10.543这里%表示上一次输出的结果,命令N[%]表示对上一次的结果取近似值. 还用 %% 表示上 上次输出的结果,用 %6表示Out[6]的输出结果.注:关于乘号*,Mathematica 常用空格来代替. 例如,x y z 则表示x*y*z,而xyz 表示字符 串,Mathematica 将它理解为一个变量名. 常数与字符之间的乘号或空格可以省略.4. 代数运算例3 分解因式 232++x x 输入 Factor [x^2+3x+2] 输出 )x 2)(x 1(++ 例4 展开因式 )2)(1(x x ++输入 Expand [(1+x)(2+x)] 输出 2x x 32++例5 通分 3122+++x x 输入 Together [1/(x+3)+2/(x+2)]输出 )x 3)(x 2(x38+++例6 将表达式)3)(2(38x x x+++ 展开成部分分式输入 Apart [(8+3x)/((2+x)(3+x))]输出 3x 12x 2+++ 例7 化简表达式 )3)(1()2)(1(x x x x +++++ 输入 Simplify [(1+x)(2+x)+(1+x)(3+x)] 输出 2x 2x 75++三、函数1. 内部函数Mathematica 系统内部定义了许多函数,并且常用英文全名作为函数名,所有函数名的第一个 字母都必须大写,后面的字母必须小写. 当函数名是由两个单词组成时,每个单词的第一个字母都 必须大写,其余的字母必须小写. Mathematica 函数(命令)的基本格式为函数名[表达式,选项] 下面列举了一些常用函数:算术平方根x Sqrt[x] 指数函数x e Exp[x] 对数函数x a log Log[a,x]对数函数x ln Log[x]三角函数 Sin[x], Cos[x], Tan[x], Cot[x], Sec[x], Csc[x] 反三角函数ArcSin[x], ArcCos[x], ArcTan[x], ArcCot[x], AsrcSec[x], ArcCsc[x]双曲函数 Sinh[x], Cosh[x], Tanh[x], 反双曲函数 ArcSinh[x], ArcCosh[x], ArcTanh[x] 四舍五入函数 Round[x] (*取最接近x 的整数*) 取整函数 Floor[x] (*取不超过x 的最大整数*) 取模 Mod[m,n] (*求m/n 的模*)取绝对值函数 Abs[x] n 的阶乘 n! 符号函数 Sign[x] 取近似值 N[x,n] (*取x 的有n 位有效数字的近似值,当n 缺省时,n 的默认值 为6*)例8 求π的有6位和20位有效数字的近似值. 输入 N[Pi] 输出 3.14159输入 N[Pi, 20] 输出 3.1415926535897932285 注:第一个输入语句也常用另一种形式: 输入 Pi//N 输出 3.14159例9 计算函数值(1) 输入 Sin[Pi/3] 输出23 (2) 输入 ArcSin[.45] 输出 0.466765 (3) 输入 Round[-1.52] 输出 -2 例10 计算表达式)6.0arctan(226sin 2ln 1132+-+-e π 的值输入 1/(1+Log[2])*Sin[Pi/6]-Exp[-2]/(2+2^(2/3))*ArcTan[.6] 输出 0.2749212. 自定义函数在Mathematica 系统内,由字母开头的字母数字串都可用作变量名,但要注意其中不能包含空 格或标点符号.变量的赋值有两种方式. 立即赋值运算符是“=”,延迟赋值运算符是“: =”. 定义函数使用 的符号是延迟赋值运算符“: =”.例11 定义函数 12)(23++=x x x f ,并计算)2(f ,)4(f ,)6(f . 输入Clear[f,x]; (*清除对变量f 原先的赋值*) f[x_]:=x^3+2*x^2+1; (*定义函数的表达式*) f[2] (*求)2(f 的值*)f[x]/.{x->4} (*求)4(f 的值,另一种方法*)x=6; (*给变量x 立即赋值6*)f[x] (*求)6(f 的值,又一种方法*)输出17 97 289注:本例1、2、5行的结尾有“;”,它表示这些语句的输出结果不在屏幕上显示.四、解方程在Mathematica 系统内,方程中的等号用符号“==”表示. 最基本的求解方程的命令为 Solve[eqns, vars]它表示对系数按常规约定求出方程(组)的全部解,其中eqns 表示方程(组),vars 表示所求未知变量.例12 解方程0232=++x x 输入 Solve[x^2+3x+2==0, x] 输出 }}1x {},2x {{-→-→例13 解方程组 ⎩⎨⎧=+=+1dy cx by ax输入 Solve[{a x + b y == 0,c x + d y ==1}, {x,y}]输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→-→ad bc a y ,ad bc b x例14 解无理方程a x x =++-11输入 Solve[Sqrt[x-1]+ Sqrt[x+1] == a, x]输出 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→24a 4a 4x 很多方程是根本不能求出准确解的,此时应转而求其近似解. 求方程的近似解的方法有两种, 一种是在方程组的系数中使用小数,这样所求的解即为方程的近似解;另一种是利用下列专门用于 求方程(组)数值解的命令:NSolve[eqns, vars] (*求代数方程(组)的全部数值解*)FindRoot[eqns, {x, x0}, {y, y0} ,]后一个命令表示从点),,(00 y x 出发找方程(组)的一个近似解,这时常常需要利用图像法先大致确定所求根的范围,是大致在什么点的附近.例15 求方程013=-x 的近似解 输入 NSolve[x^3-1== 0, x]输出 {{→x -0.5-0.866025ii},{→x -0.5+0.866025ii},{→x 1.}} 输入 FindRoot[x^3-1==0,{x, .5}] 输出 {→x 1.}下面再介绍一个很有用的命令:Eliminate[eqns, elims] (*从一组等式中消去变量(组)elims*)例16从方程组 ⎪⎩⎪⎨⎧=+=-+-+=++11)1()1(1222222y x z y x z y x 消去未知数y 、z .输入Eliminate [{x^2+y^2+z^2 ==1,x^2+(y-1)^2 + (z-1)^2 ==1, x + y== 1},{y, z}] 输出 0x 3x 22==+-注:上面这个输入语句为多行语句,它可以像上面例子中那样在行尾处有逗号的地方将行与行 隔开, 来迫使Mathematica 从前一行继续到下一行在执行该语句. 有时候多行语句的意义不太明 确,通常发生在其中有一行本身就是可执行的语句的情形,此时可在该行尾放一个继续的记号“\”, 来迫使Mathematica 继续到下一行再执行该语句.五、保存与退出Mathematica 很容易保存Notebook 中显示的内容,打开位于窗口第一行的File 菜单,点击Save 后得到保存文件时的对话框,按要求操作后即可把所要的内容存为 *.nb 文件. 如果只想保存全部 输入的命令,而不想保存全部输出结果,则可以打开下拉式菜单Kernel,选中Delete All Output,然后 再执行保存命令. 而退出Mathematica 与退出Word 的操作是一样的.六、查询与帮助查询某个函数(命令)的基本功能,键入“?函数名”,想要了解更多一些,键入“??函数名”,例如, 输入?Plot 则输出Plot[f,{x,xmin,xmax}] generates a plot of f as a functionof x from xmin to xmax. Plot[{f1,f2,…},{x,xmin,xmax}] plots several functions fi 它告诉了我们关于绘图命令“Plot ”的基本使用方法.例17 在区间]1,1[-上作出抛物线2x y =的图形. 输入 Plot[x^2,{x,-1,1}] 则输出例18 . 输入 Plot[{Sin[x],Cos[x]},{x,0,2Pi}] 则输出??Plot则Mathematica 会输出关于这个命令的选项的详细说明,请读者试之.此外,Mathematica 的Help 菜单中提供了大量的帮助信息,其中Help 菜单中的第一项Help Browser(帮助游览器)是常用的查询工具,读者若想了解更多的使用信息,则应自己通过Help 菜单 去学习.空间图形的画法(基础实验)实验目的 掌握用Mathematica 绘制空间曲面和曲线的方法. 熟悉常用空间曲线和空间曲面 的图形特征,通过作图和观察, 提高空间想像能力. 深入理解二次曲面方程及其图形.基本命令1.空间直角坐标系中作三维图形的命令Plot3D命令Plot3D 主要用于绘制二元函数),(y x f z =的图形. 该命令的基本格式为Plot3D[f[x,y],{x,x1,x2},{y,y1,y2},选项]其中f[x,y]是y x ,的二元函数, x1,x2表示x 的作图范围, y1,y2表示y 的作图范围.例如,输入Plot3D[x^2+y^2,{x,-2,2},{y,-2,2}]则输出函数22y x z +=在区域22,22≤≤-≤≤-y x 上的图形(图2.1)与Plot 命令类似, Plot3D 有许多选项. 其中常用的如PlotPoints 和ViewPoint. PlotPoints 的用 法与以前相同. 由于其默认值为PlotPoints->15, 常常需要增加一些点以使曲面更加精致, 可能要 用更多的时间才能完成作图. 选项ViewPoint 用于选择图形的视点(视角), 其默认值为 ViewPoint->{1.3,-2.4,2.0},需要时可以改变视点.2.利用参数方程作空间曲面或曲线的命令ParametricPlot3D 用于作曲面时, 该命令的基本格式为ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,u1,u2},{v,v1,v2},选项]其中x[u,v],y[u,v],z[u,v]是曲面的参数方程表示式. u1,u2是作图时参数u 的范围, v1,v2是参数v 的 范围.例如,对前面的旋转抛物面, 输入ParametricPlot3D[{u*Cos[v],u*Sin[v],u^2},{u,0,3},{v,0,2 Pi}]同样得到曲面22y x z +=的图形(图2.2).由于自变量的取值范围不同, 图形也不同. 不过, 后者比较好的反映了旋转曲面的特点, 因 而是常用的方法.又如, 以原点为中心, 2为半径的球面. 它是多值函数, 不能用命令Plot3D 作图. 但是, 它的 参数方程为,20,0,cos 2,sin sin 2,cos sin 2πθπϕϕθϕθϕ≤≤≤≤===z y x因此,只要输入ParametricPlot3D[{2 Sin[u]*Cos[v],2 Sin[u]*Sin[v],2 Cos[u]},{u,0,Pi},{v,0,2 Pi}]便作出了方程为22222=++y x z 的球面(图2.3)..用于作空间曲线时,ParametricPlot3D 的基本格式为ParametricPlot3D[{x[t],y[t],z[t]},{t,t1,t2},选项]其中x[t],y[t],z[t]是曲线的参数方程表示式. t1,t2是作图时参数t 的范围.例如, 空间螺旋线的参数方程为).80(10/,sin ,cos π≤≤===t t z t y t x输入ParametricPlot3D[{Cos[t],Sin[t],t/10,RGBColor[1,0,0]},{t,0,8 Pi}]则输出了一条红色的螺旋线(图2.4).在这个例子中,请读者注意选项RGBColor[1,0,0]的位置.用于作空间曲线时, ParametricPlot3D 的选项PlotPoints 的默认值是30, 选项ViewPoint 的默 认值没有改变.3.作三维动画的命令MoviPlot3D:无论在平面或空间, 先作出一系列的图形, 再连续不断地放映, 便得到动画. 例如, 输入调用作图软件包命令<<Graphics\Animation.m.执行后再输入MoviePlot3D[Cos[t*x]*Sin[t*y],{x,-Pi,Pi},{y,-Pi,Pi},{t,1,2},Frames->12]则作出了12幅曲面图, 选中任一幅图形, 双击它便可形成动画.实验举例一般二元函数作图例2.1 (教材 例2.1) 作出平面y x z 326--=的图形,其中20,30≤≤≤≤y x . 输入Plot3D[6-2x-3y,{x,0,3},{y,0,2}]则输出所作平面的图形(图2.5).如果只要位于第一卦限的部分, 则输入Plot3D[6-2x-3y,{x,0,3},{y,0,2},PlotRange->{0,6}]观察图形.2.6).图2.6例2.2 (教材 例2.2) 作出函数2214y x z ++=的图形.输入k[x_,y_]:=4/(1+x^2+y^2)Plot3D[k[x,y],{x,-2,2},{y,-2,2},PlotPoints->30,PlotRange->{0,4},BoxRatios->{1,1,1}]则输出函数的图形2.7. 观察图形, 理解选项PlotRange->{0,4}和BoxRatios->{1,1,1}的含义. 选项 BoxRatios 的默认值是{1,1,0.4}.例2.3 (教材 例2.3) 作出函数22y x xye z ---=的图形. 输入命令Plot3D[-x*y*Exp[-x^2-y^2],{x,-3,3},{y,-3,3},PlotPoints->30,AspectRatio->Automatic];则输出所求图形(图 图2.8例2.4 (教材 例2.4) 作出函数)94cos(22y x z +=的图形. 输入Plot3D[Cos[4x^2+9y^2],{x,-1,1},{y,-1,1},Boxed->False,Axes->Automatic,PlotPoints->30,Shading->False]则输出网格形式的曲面图2.9, 这是选项Shading->False 起的作用, 同时注意选项Boxed->False 的作用.二次曲面例2.5 (教材 例2.5) 作出椭球面1194222=++z y x 的图形.这是多值函数, 用参数方程作图的命令ParametricPlot3D. 该曲面的参数方程为,cos ,sin sin 3,cos sin 2u z v u y v u x === (ππ20,0≤≤≤≤v u ).输入ParametricPlot3D[{2*Sin[u]*Cos[v],3*Sin[u]*Sin[v], Cos[u]},{u,0,Pi},{v,0,2 Pi},PlotPoints->30]则输出椭球面的图形, 可使图形更加光滑.图2.10例2.6 (教材 例2.6) 作出单叶双曲面1941222=-+z y x 的图形.曲面的参数方程为,tan 3,cos sec 2,sin sec u z v u y v u x === (.20,2/2/πππ≤≤<<-v u )输入ParametricPlot3D[{Sec[u]*Sin[v],2*Sec[u]*Cos[v], 3*Tan[u]},{u,-Pi/4,Pi/4},{v,0,2 Pi},PlotPoints->30]图2.11例2.7 作双叶双曲面13.14.15.1222222-=-+z y x 的图形.曲面的参数方程是,csc 3.1,sin cot 4.1,cos cot 5.1u z v u y v u x ===其中参数πππ<<-≤<v u ,20时对应双叶双曲面的一叶, 参数πππ<<-<≤-v u ,02时对应双叶双曲面的另一叶. 输入sh1=ParametricPlot3D[{1.5*Cot[u]*Cos[v],1.4*Cot[u]*Sin[v],1.3/Sin[u]},{u,Pi/1000,Pi/2},{v,-Pi,Pi}, DisplayFunction->Identity];(*DisplayFunction->Identity 是使图形暂时不输出的选项*) sh2=ParametricPlot3D[{1.5*Cot[u]*Cos[v],1.4* Cot[u]*Sin[v],1.3/Sin[u]},{u,-Pi/2,-Pi/1000}, {v,-Pi,Pi},DisplayFunction->Identity];Show[sh1,sh2,DisplayFunction->$DisplayFunction](*命令Show[sh1,sh2]是把图形sh1,sh2放置在一起, DisplayFunction->$DisplayFunction 是恢复显示图形的选项*) 输出为图2.12.例2.8 可以证明: 函数xy z =的图形是双曲抛物面. 在区域22,22≤≤-≤≤-y x 上作出它的图形.输入Plot3D[x*y,{x,-2,2},{y,-2,2},BoxRatios->{1,1,2}, PlotPoints->30]输出图形略. 也可以用ParametricPlot3命令作出这个图形, 输入ParametricPlot3[{r*Cos[t],r*Sin[t],r^2*Cos[t] *Sin[t]},{r,0,2},{t,0,2 Pi},PlotPoints->30]输出为图2.13例2.9 (教材 例2.7) 作出圆环v z u v y u v x sin 7,sin )cos 38(,cos )cos 38(=+=+=,(πππ22/,2/30≤≤≤≤v u )的图形.输入ParametricPlot3D[{(8+3*Cos[v])*Cos[u],(8+3*Cos[v])*Sin[u],7*Sin[v]},{u,0,3*Pi/2},{v,Pi/2,2*Pi}];图2.14例2.10 画出参数曲面]2,001.0[],4,0[)5/2/ln(tan cos sin sin sin cos ∈∈⎪⎩⎪⎨⎧++===v u u v v z vu y v u x π的图形.输入命令ParametricPlot3D[{Cos[u]*Sin[v],Sin[u]Sin[v],Cos[v]+Log[Tan[v/2]+u/5]}, {u,0,4*Pi},{v,0.001,2}];则输出所求图形(图2.15).曲面相交例2.11 (教材 例2.8) 作出球面22222=++z y x 和柱面1)1(22=+-y x 相交的图形. 输入g1=ParametricPlot3D[{2 Sin[u]*Cos[v],2 Sin[u]*Sin[v],2 Cos[u]},{u,0,Pi},{v,0,2 Pi},DisplayFunction->Identity];g2=ParametricPlot3D[{2Cos[u]^2,Sin[2u],v},{u,-Pi/2,Pi/2},{v,-3,3},DisplayFunction->Identity];Show[g1,g2,DisplayFunction->$DisplayFunction]则输出所求图形(图2.16)例2.12 作出锥面222z y x =+和柱面1)1(22=+-y x 相交的图形. 输入g3=ParametricPlot3D[{r*Cos[t],r*Sin[t],r}, {r,-3,3},{t,0,2 Pi},DisplayFunction->Identity];Show[g2,g3,DisplayFunction->$DisplayFunction]输出为图2.17.图2.17例2.13 画出以平面曲线x y cos =为准线, 母线平等Z 轴的柱面的图形. 写出这一曲面的参数方程为⎪⎩⎪⎨⎧=∈-∈==s z R s t t y t x ],,[,cos ππ 取参数s 的范围为[0, 8]. 输入命令ParametricPlot3D[{t,Cos[t],s},{t,-Pi,Pi},{s,0,8}]则输出所求图形(图2.18).例2.14 (教材 例2.9) 作出曲面x y x y x z =+--=2222,1及xOy 面所围成的立体图形. 输入g1=ParametricPlot3D[{r*Cos[t], r*Sin[t],r^2},{t,0,2*Pi},{r,0,1},PlotPoints->30]; g2=ParametricPlot3D[{Cos[t]*Sin[r],Sin[t]Sin[r],Cos[r]+1},{t,0,2*Pi},{r,0,Pi/2},PlotPoints->30];Show[g1,g2]则输出所求图形(图图2.19例2.15 (教材 例2.10) 作出螺旋线t z t y t x 2,sin 10,cos 10===(R t ∈)在xOz 面上的正投影曲线的图形.所给螺旋线在xOz面上的投影曲线的参数方程为10==.,cosx2ztt输入ParametricPlot[{2t,10Cos[t]},{t,-2Pi,2Pi}];则输出所求图形(图图2.20注:将表示曲线的方程组, 消去其中一个变量, 即得到曲线在相应于这一变量方向上的正投影曲线的方程, 不考虑曲线所在平面, 它就是投影柱面方程; 对于参数方程, 只要注意将方程中并不存在的那个变元看成第二参数而添加第三个方程即可.例2.16 (教材例2.11) 作出默比乌斯带(单侧曲面)的图形.输入Clear[r,x,y,z];r[t_,v_]:=2+0.5*v*Cos[t/2];x[t_,v_]:=r[t,v]*Cos[t]y[t_,v_]:=r[t,v]*Sin[t]z[t_,v_]:=0.5*v*Sin[t/2];ParametricPlot3D[{x[t,v],y[t,v],z[t,v]},{t,0,2 Pi},{v,-1,1},PlotPoints->{40,4},Ticks->False]则输出所求图形(图空间曲线例2.17 (教材 例2.12) 作出空间曲线)60(2,sin ,cos π≤≤===t t z t t y t t x 的图形. 输入ParametricPlot3D[{t*Cos[t],t*Sin[t],2*t,RGBColor[1.0,0,0.5]},{t,0,6 Pi}]则输出所求图形(图图2.22例2.18 绘制参数曲线 ⎪⎩⎪⎨⎧===2/cos 2sin t z t y t x 的图形.输入命令ParametricPlot3D[{Sin[t],2Cos[t],t.2},{t,0,12}];则输出所求图形(图2.23).例2.19 绘制参数曲线 ⎪⎪⎩⎪⎪⎨⎧=+==t z t y t x arctan 211cos 2的图形.输入命令ParametricPlot3D[{Cos[t]^2,1/(1+2*t),ArcTan[t]},{t,0,8}]; 则输出所求图形(图2.24).动画制作例2.20 平面正弦曲线的运动. 输入Table[Plot[Sin[x+t*Pi],{x,0,6 Pi}],{t,0,2,1/8}]则作出了16幅具有不同相位的正弦曲线(输出图形略). 双击屏幕上某一幅画, 则可形成动画. 下面是动画的最后一幅图(图2.25).例2.21 (教材 例2.13) 作模拟水波纹运动的动画. 输入调用软件包命令<<Graphics\Animation.m执行后再输入MoviePlot3D[Sin[Sqrt[x^2+y^2]+t*2*Pi],{x,-8 Pi,8 Pi},{y,-8 Pi,8 Pi},{t,1,0},PlotPoints->50,AspectRatio->0.5,ViewPoint->{0.911,-1.682,2.791},Frames->12]则输出12幅具有不同相位的水面图形, 双击屏幕上任意一幅图, 均可观察动画效果. 下图是第一幅图(图2.26).图2.26例2.22 (教材 例2.14) 用动画演示由曲线],0[,sin π∈=z z y 绕z 轴旋转产生旋转曲面的过程.该曲线绕z 轴旋转所得旋转曲面的方程为,sin 222z y x =+ 其参数方程为])2,0[],,0[(,,sin sin ,cos sin ππ∈∈===u z z z u z y u z x输入For[i=1,i<=30,i++,ParametricPlot3D[{Sin[z]*Cos[u],Sin[z]*Sin[u],z},{z,0,Pi},{u,0,2*Pi*i/30},AspectRatio->1,AxesLabel->{"X","Y","Z"}]];则输出连续变化的30幅图形. 双击屏幕上任意一幅图, 均可观察动画效果. 下面是生成旋转曲面的过程中的第23幅图(图2.27).图2.27例2.23 将一张薄膜贴在1,0,1,0====y y x x 的方框上, 薄膜振动的函数取为)cos()sin()sin()cos 1)(cos 1(16),,(224141222t n m y m x n m n n m t y x u m n ππππππ+⋅-+=∑∑==其中t 为参数, 作出图形随t 的变动而引起薄膜振动的动画.初始位置是).0,,(y x u 通过t 的不同值得到多幅画面, 然后将这些图形连续地一张张显示出来, 即可达到运动的动画效果. 输入命令<<Graphics 'Animation '; Clear[x,y,t,m,n];u[x_,y_,t_]:=Sum[16*(1+Cos[n*Pi])*(1-Cos[m*Pi])*Sin[n*Pi*x]*Sin[m*Pi*y]*Cos[Sqrt[m^2+n^2]*Pi*t] /(m^2*n^2*Pi*2),{m,1,4},{n,1,4}]Animate[Plot3D[u[x,y,t],{x,0,1},{y,0,1}, PlotRange->{-8,8}],{t,0,1.75,0.25}];图2.28附录Ⅰ 大学数学实验指导书项目三 多元函数微积分实验1 多元函数微分学(基础实验)实验目的 掌握利用Mathematica 计算多元函数偏导数和全微分的方法, 掌握计算二元 函数极值和条件极值的方法. 理解和掌握曲面的切平面的作法. 通过作图和观察, 理解二元 函数的性质、方向导数、梯度和等高线的概念.基本命令1.求偏导数的命令D命令D 既可以用于求一元函数的导数, 也可以用于求多元函数的偏导数. 例如: 求),,(z y x f 对x 的偏导数, 则输入D[f[x,y,z],x] 求),,(z y x f 对y 的偏导数, 则输入D[f[x,y,z],y]求),,(z y x f 对x 的二阶偏导数, 则输入D[f[x,y,z],{x,2}] 求),,(z y x f 对y x ,的混合偏导数, 则输入D[f[x,y,z],x,y] …………2.求全微分的命令Dt该命令只用于求二元函数),(y x f 的全微分时, 其基本格式为Dt[f[x,y]]其输出的表达式中含有Dt[x],Dt[y], 它们分别表示自变量的微分d x ,d y . 若函数),(y x f 的表 达式中还含有其它用字符表示的常数, 例如a, 则Dt[f[x,y]]的输出中还会有Dt[a], 若采用选 项Constants->{a}, 就可以得到正确结果, 即只要输入Dt[f[x,y],Constants->{a}]3.在Oxy 平面上作二元函数),(y x f 的等高线的命令ContourPlot 命令的基本格式为ContourPlot[f[x,y],{x,x1,x2},{y,y1,y2}]例如,输入ContourPlot[x^2-y^2,{x,-2,2},{y,-2,2}]则输出函数22y x z -=的等高线图(图1.1). 该命令的选项比较多(详细的内容参见光盘中的实验案例库). 如选项Contours->15表示作15条等高线, 选项Contours->{0}表示只作函数值为0的等高线.实验举例求多元函数的偏导数与全微分例1.1 (教材 例1.1) 设),(cos )sin(2xy xy z +=求.,,,222yx zx z y z x z ∂∂∂∂∂∂∂∂∂ 输入Clear[z];z=Sin[x*y]+Cos[x*y]^2; D[z,x] D[z,y] D[z,{x,2}] D[z,x,y]则输出所求结果.y Cos x y2y Cos x y Sin x yx Cos x y 2x Cos x y Sin x y2y 2Cos x y 2y 2Sin x y 2y 2Sin x y2Cos x y 2x y Cos x y 2x y Sin x y 2Cos x y Sin x y2x y Sin x y2例1.2 设,)1(y xy z +=求yzx z ∂∂∂∂,和全微分dz.输入Clear[z];z=(1+x*y)^y;D[z,x] D[z,y]则有输出⎪⎪⎭⎫ ⎝⎛++++++-]1[1)1()1(12xy Log xy xy xy xy y y y再输入Dt[z]则得到输出⎪⎪⎭⎫⎝⎛+++++]1[][1])[][()1(xy Log y Dt xy y xDt x yDt y xy y 例1.3 (教材 例1.2) 设,)(y xy a z +=其中a 是常数, 求dz. 输入Clear[z,a];z=(a+x*y)^y;wf=Dt[z,Constants->{a}]//Simplify则输出结果:(a+xy)-1+y (y 2Dt[x,Constants->{a}]+Dt[y,Constants->{a}](xy+(a+xy)Log[a+xy]))其中Dt[x,Constants->{a}]就是d x , Dt[y,Constants->{a}]就是d y . 可以用代换命令“/.”把它们 换掉. 输入wf/.{Dt[x,Constants->{a}]->dx,Dt[y,Constants->{a}]->dy}输出为(a+xy)-1+y (dxy 2+dy(xy+(a+xy)Log[a+xy]))例1.4 (教材 例1.3) 设v u e y v u e x u u cos ,sin -=+=,求.,,,yvx v y u x u ∂∂∂∂∂∂∂∂输入eq1=D[x==E^u+u*Sin[v],x,NonConstants->{u,v}](*第一个方程两边对x 求导数, 把u,v 看成x,y 的函数*) eq2=D[y==E^u-u*Cos[v],x,NonConstants->{u,v}](*第二个方程两边对x 求导数, 把u,v 看成x,y 的函数*) Solve[{eq1,eq2},{D[u,x,NonConstants->{u,v}],D[v,x,NonConstants->{u,v}]}]//Simplify(*解求导以后由eq1,eq2组成的方程组*)则输出}}][][1(][}],{tan ,,[,][][1][}],{tan ,,[{{v Sin E v Cos E u v Cos E v u ts NonCons x v D v Sin E v Cos E v Sin v u ts NonCons x u D u u u u u -+-->->-+->->-其中D[u,x,NonConstants->{u,v}]表示u 对x 的偏导数, 而D[v,x,NonCosnstants->{u,v}]表示v 对x 的偏导数. 类似地可求得u ,v 对y 的偏导数.微分学的几何应用例1.5 求出曲面222y x z +=在点(1,1)处的切平面、法线方程, 并画出图形.解(1) 画出曲面的图形. 曲面的参数方程为⎪⎩⎪⎨⎧=∈∈==2]2,0[],2,0[,cos 2/sin rz r u u r y u f x π 输入命令Clear[f];f[x_,y_]=2x^2+y^2;p1=Plot3D[f[x,y],{x,-2,2},{y,-2,2}];g1=ParametricPlot3D[{r*Sin[u]/Sqrt[2.],r*Cos[u],r^2}, {u,0,2*Pi},{r,0,2}] 则输出相应图形(图1.2).(2) 画出切平面的图形. 输入命令a=D[f[x,y],x]/.{x->1,y->1}; b=D[f[x,y],y]/.{x->1,y->1}; p[x_,y_]=f[1,1]+a(x-1)+b(y-1);g2=Plot3D[p[x,y],{x,-2,2},{y,-2,2}];则输出切平面方程为,012=-+y x 及相应图形(图1.3).(3) 画出法线的图形. 输入命令ly[x_]=1+b(x-1)/a;lz[x_]=f[1,1]-(x-1)/a;g3=ParametricPlot3D[{x,ly[x],lz[x]},{x,-2,2}]; Show[p1,g2,g3,AspectRatio->Automatic,ViewPoint->{-2.530,-1.025,2.000}];则输出相应图形(图1.4).例1.6 (教材 例1.4) 求曲面14),(22++=y x y x k 在点⎪⎭⎫⎝⎛2164,21,41处的切平面方程, 并把曲面和它的切平面作在同一图形里.输入Clear[k,z];k[x_,y_]=4/(x^2+y^2+1); (*定义函数k(x,y)*)kx=D[k[x,y],x]/.{x->1/4,y->1/2};(*求函数k(x,y)对x 的偏导数, 并代入在指定点的值*) ky=D[k[x,y],y]/.{x->1/4,y->1/2};(*求函数k(x,y)对y 的偏导数, 并代入在指定的值*) z=kx*(x-1/4)+ky*(y-1/2)+k[1/4,1/2]; (*定义在指定点的切平面函数*)再输入qm=Plot3D[k[x,y],{x,-2,2},{y,-2,2},PlotRange->{0,4}, BoxRatios->{1,1,1},PlotPoints->30, DisplayFunction->Identity]; qpm=Plot3D[z,{x,-2,2},{y,-2,2}, DisplayFunction->Identity];Show[qm,qpm,DisplayFunction->$DisplayFunction]则输出所求曲面与切平面的图形(图1.5).多元函数的极值例1.7 (教材 例1.5) 求x y x y x y x f 933),(2233-++-=的极值. 输入Clear[f];f[x_,y_]=x^3-y^3+3x^2+3y^2-9x; fx=D[f[x,y],x] fy=D[f[x,y],y]critpts=Solve[{fx==0,fy==0}]则分别输出所求偏导数和驻点:2236369y y x x -++-{{x->-3,y->0},{x->-3,y->2},{x->1,y->0},{x->1,y->2}}再输入求二阶偏导数和定义判别式的命令fxx=D[f[x,y],{x,2}]; fyy=D[f[x,y],{y,2}]; fxy=D[f[x,y],x,y]; disc=fxx*fyy-fxy^2输出为判别式函数2xy yy xx f f f -的形式:(6+6x)(6-6y)再输入data={x,y,fxx,disc,f[x,y]}/.critpts;TableForm[data,TableHeadings->{None,{ "x ", "y ", "fxx ", "disc ", "f "}}]最后我们得到了四个驻点处的判别式与xx f 的值并以表格形式列出.X y fxx disc f -3 0 -12 -72 27 -3 2 -12 72 31 1 0 12 72 -51 2 12 -72 -1易见,当2,3=-=y x 时,12-=xx f 判别式disc=72, 函数有极大值31; 当0,1==y x 时,12=xx f 判别式disc=72, 函数有极小值-5;当0,3=-=y x 和2,1==y x 时, 判别式disc=-72, 函数在这些点没有极值. 最后,把函数的等高线和四个极值点用图形表示出来,输入d2={x,y}/.critpts;g4=ListPlot[d2,PlotStyle->PointSize[0.02],DisplayFunction->Identity]; g5=ContourPlot[f[x,y],{x,-5,3},{y,-3,5},Contours->40,PlotPoints->60,ContourShading->False,Frame->False,Axes->Automatic,AxesOrigin->{0,0},DisplayFunction->Identity];Show[g4,g5,DisplayFunction->$DisplayFunction]则输出图1.6.从上图可见, 在两个极值点附近, 函数的等高线为封闭的. 在非极值点附近, 等高线不 封闭. 这也是从图形上判断极值点的方法.注:在项目一的实验4中,我们曾用命令FindMinimum 来求一元函数的极值, 实际上,也可 以用它求多元函数的极值, 不过输入的初值要在极值点的附近. 对本例,可以输入以下命令FindMinimum[f[x,y],{x,-1},{y,1}]则输出{-5.,{x->1.,y->-2.36603×10-8}}从中看到在0,1==y x 的附近函数),(y x f 有极小值-5, 但y 的精度不够好.例1.8 求函数22y x z +=在条件0122=-+++y x y x 下的极值. 输入Clear[f,g,la]; f[x_,y_]=x^2+y^2;g[x_,y_]=x^2+y^2+x+y-1; la[x_,y_,r_]=f[x,y]+r*g[x,y]; extpts=Solve[{D[la[x,y,r],x]==0,D[la[x,y,r],y]==0,D[la[x,y,r],r]==0}]得到输出⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+->-+->-+->-⎩⎨⎧⎭⎬⎫⎩⎨⎧-->--->--->-)31(21),31(21),33(31,)31(21),31(21),33(31y x r y x r再输入f[x,y]/.extpts//Simplify得到两个可能是条件极值的函数值}.32,32{-+但是否真的取到条件极值呢? 可利用等高线作图来判断.输入dian={x,y}/.Table[extpts[[s,j]],{s,1,2},{j,2,3}] g1=ListPlot[dian,PlotStyle->PointSize[0.03],DisplayFunction->Identity]cp1=ContourPlot[f[x,y],{x,-2,2},{y,-2,2},Contours->20,PlotPoints->60,ContourShading->False,Frame->False,Axes-> Automatic,AxesOrigin->{0,0},DisplayFunction->Identity]; cp2=ContourPlot[g[x,y],{x,-2,2},{y,-2,2},PlotPoints->60,Contours->{0},ContourShading-> False,Frame->False,Axes->Automatic,ContourStyle->Dashing[{0.01}],AxesOrigin->{0,0},DisplayFunction->Identity]; Show[g1,cp1,cp2,AspectRatio->1,DisplayFunction->$DisplayFunction]输出为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-+-⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----)31(21,2321,)31(21,2321 及图1.7. 从图可见,在极值可疑点,2321,2321⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛+-+-2321,2321 处, 函数),(y x f z =的等高线与曲线0),(=y x g (虚线)相切. 函数),(y x f z =的等高线是一系列同心圆, 由里向外, 函数值在增大, 在)31(21),31(21--=--=y x 的附近观察, 可以得出),(y x f z =取条件极大的结论. 在),31(21+-=x )31(21+-=y 的附近观察, 可以得出),(y x f z =取条件极小的结论.梯度场例1.9 画出函数222),,(y x z z y x f --=的梯度向量. 解 输入命令<<Graphics`ContourPlot3D` <<Graphics`PlotField3D` <<Calculus`VectorAnalysis`SetCoordinates[Cartesian[x,y,z]];f=z^2-x^2-y^2;cp3d=ContourPlot3D[f,{x,-1.1,1.1},{y,-1.1,1.1},{z,-2,2},Contours->{1.0},Axes->Tr ue,AxesLabel->{"x","y","z"}];vecplot3d=PlotGradientField3D[f,{x,-1.1,1.1},{y,-1.1,1.1},{z,-2,2},PlotPoints->3,Ve ctorHeads->True];Show[vecplot3d, cp3d];则输出相应图形(图1.8)例1.10 在同一坐标面上作出⎪⎪⎭⎫⎝⎛++=2211),(y x x y x u 和 ,11),(22⎪⎪⎭⎫⎝⎛+-=y x y y x v 的等高线图(0>x ), 并给出它们之间的关系.解 输入命令<<Calculus`VectorAnalysis` <<Graphics`PlotField`SetCoordinates[Cartesian[x,y,z]];check[u_,v_]:={Grad[u][[1]]-Grad[v][[2]],Grad[v][[1]]+Grad[u][[2]]} u=x(1+1/(x^2+y^2));v=y(1-1/(x^2+y^2)); check[u,v]//Simplifyugradplot=PlotGradientField[u,{x,-2,2},{y,-2,2},DisplayFunction->Identity];uplot=ContourPlot[u,{x,-2,2},{y,-2,2},ContourStyle->GrayLevel[0],ContourShading->False,DisplayFunction->Identity,Contours->40,PlotPoints->40]; g1=Show[uplot,ugradplot,DisplayFunction->$DisplayFunction];vgradplot=PlotGradientField[v,{x,-2,2},{y,-2,2},DisplayFunction->Identity];vplot=ContourPlot[v,{x,-2,2},{y,-2,2},ContourStyle->GrayLevel[0.7],ContourShading->False,DisplayFunction->Identity,Contours->40,PlotPoints->40]; g2=Show[vplot,vgradplot,DisplayFunction->$DisplayFunction]; g3=Show[uplot,vplot,DisplayFunction->$DisplayFunction];g4=Show[ugradplot,vgradplot,DisplayFunction->$DisplayFunction];则输出相应图形(图1.9),其中(a) ),(y x u 的梯度与等高线图;(b) ),(y x v 的梯度与等高线图; (c) ),(y x u 与),(y x v 的等高线图; (d) ),(y x u 与),(y x v 的梯度图.图1.9从上述图中可以看出它们的等高线为一族正交曲线. 事实上, 有,,2222xv y x x y u y v y x x x u ∂∂-=+=∂∂∂∂=+=∂∂ 且,0=∇⋅∇v u 它们满足拉普拉斯方程022222222=∂∂+∂∂=∂∂+∂∂y vx v y u x u 例1.11 (教材 例1.6) 设,),()(22y x xe y x f +-=作出),(y x f 的图形和等高线, 再作出它的梯度向量gradf 的图形. 把上述等高线和梯度向量的图形叠加在一起, 观察它们之间的关系.输入调用作向量场图形的软件包命令<<Graphics\PlotField.m再输入Clear[f];f[x_,y_]=x*Exp[-x^2-y^2];dgx=ContourPlot[f[x,y],{x,-2,2},{y,-2,2},PlotPoints->60, Contours->25,ContourShading->False,Frame->False,Axes->Automatic,AxesOrigin->{0,0}] td=PlotGradientField[f[x,y],{x,-2,2},{y,-2,2},Frame->False] Show[dgx,td]输出为图1.10. 从图可以看到Oxy 平面上过每一点的等高线和梯度向量是垂直的, 且梯度的 方向是指向函数值增大的方向图1.10例1.12 求出函数244),(y xy x y x f +-=的极值, 并画出函数),(y x f 的等高线、驻点以及),(y x f -的梯度向量的图形.输入命令<<Graphics`PlotField`f=x^4-4*x*y+y^2;FindMinimum[f,{x,1},{y,1}]conplot=ContourPlot[f,{x,-2,2},{y,-3,3},ContourShading->False,PlotPoints->100,Contours->{-4,-2,0,2,4,10,20}];fieldplot=PlotGradientField[-f,{x,-2,2},{y,-3,3},ScaleFunction->(Tanh[#/5]&)];critptplot=ListPlot[{{-Sqrt[2],-2*Sqrt[2]},{0,0},{Sqrt[2],2*Sqrt[2]}},PlotStyle->{PointSize [0.03]}];Show[conplot,fieldplot,critptplot];则得到),(y x f 的最小值.4)82843.2,41421.1(-=f 以及函数的图形(图1.11).实验习题 1.设,xy e z =求.dz 2.设),,(y xy f z =求.,,22222y x zyz x z ∂∂∂∂∂∂∂ 3.设),sin (cos ),(228/)(22y x e y x g y x+=+-求.,,2yx zy z x z ∂∂∂∂∂∂∂ 4.试用例1.5的方法求265433051830120),(xy x x x x y x f +++--=的极值. 5.求324y x z +=在01422=-+y x 条件下的极值.6.作出函数42210/)2(),(y x e y x f +-=的等高线和梯度线的图形, 并观察梯度线与等高线的 关系.实验2 多元函数积分学(基础实验)实验目的掌握用Mathematica 计算二重积分与三重积分的方法; 深入理解曲线积分、曲面积分的 概念和计算方法. 提高应用重积分和曲线、曲面积分解决各种问题的能力.基本命令1. 计算重积分的命令lntegrate 和NIntegrate 例如,计算dydx xy x ⎰⎰102, 输入Integrate[x*y^2,{x,0,1},{y,0,x}]则输出 151又如,计算dydx xy )sin(10102⎰⎰的近似值, 输入NIntegrate[Sin[x*y^2],{x,0,1},{y,0,1}] 则输出 0.160839注: Integrate 命令先对后边的变量积分.计算三重积分时,命令Integrate 的使用格式与计算二重积分时类似. 由此可见, 利用 Mathematica 计算重积分, 关键是确定各个积分变量的积分限. 2. 柱坐标系中作三维图形的命令CylindricalPlot3D使用命令Cylindricalplot3D, 首先要调出作图软件包. 输入 <<Graphics`ParametricPlot3D` 执行成功后便可继续下面的工作.使用命令Cylindricalplot3D 时,一定要把z 表示成r ,θ的函数. 例如,在直角坐标系中方 程22y x z +=是一旋转抛物面, 在柱坐标系中它的方程为2r z =. 因此,输入 CylindricalPlot3D[r^2,{r,0,2},{t,0,2Pi}] 则在柱坐标系中作出了该旋转抛物面的图形.3. 球面坐标系中作三维图形命令SphericalPlot3D使用命令SphericalPlot3D, 首先要调出作图软件包. 输入 <<Graphics`ParametricPlot3D` 执行成功后便可继续下面的工作.命令SphericalPlot3D 的基本格式为SphericalPlot3D[r[],θϕ, {}],,{},,,2121θθθϕϕϕ其中r[],θϕ是曲面的球面坐标方程, 使用时一定要把球面坐标中的r 表示成ϕ、θ的函数. 例如,在球面坐标系中作出球面,22222=++z y x 输入Sphericalplot3D[2,{u,0,pi},|v,0,2,pi|,plotpoints->40]则在球面坐标系中作出了该球面的图形. 4. 向量的内积用“.”表示两个向量的内积. 例如,输入 vecl={al,bl,cl} vec2={a2,b2,c2} 则定义了两个三维向量, 再输入 vec1. vec2 则得到它们的内积a1a2+b1b2+c1c2实验举例计算重积分例2.1 (教材 例2.1) 计算,2dxdy xy D⎰⎰ 其中D 为由,,2y x y x ==+ 2=y 所围成的有界区域.先作出区域D 的草图, 易直接确定积分限,且应先对x 积分, 因此, 输入 Integrate[x*y^2,{y,1,2},{x,2-y,Sqrt[y]}] 则输出所求二重积分的计算结果.120193例2.2 (教材 例2.2) 计算,)(22dxdy e Dy x⎰⎰+- 其中D 为.122≤+y x如果用直角坐标计算, 输入Clear[f,r];f[x,y]=Exp [-(x^2+y^2)];Integrate[f[x,y],{x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}]则输出为dx x 1Erf e 211x 2⎥⎦⎤⎢⎣⎡-π⎰--其中Erf 是误差函数. 显然积分遇到了困难.如果改用极坐标来计算, 也可用手工确定积分限. 输入Integrate[(f[x,y]/.{x->r*Cos[t],y->r*Sin[t]})*r,{t,0,2 Pi},{r,0,1}] 则输出所求二重积分的计算结果eπ-π 如果输入NIntegrate[(f[x,y]/.{x->r*Cos[t],y->r*Sin[t]})*r,{t,0,2 Pi},{r,0,1}] 则输出积分的近似值1.98587例 2.3 (教材 例 2.3) 计算dx dy dzz y x)(22++⎰⎰⎰Ω, 其中Ω由曲面222y x z --=与22y x z +=围成.先作出区域Ω的图形. 输入g1=ParametricPlot3D[{Sqrt[2]*Sin[fi]*Cos[th],Sqrt[2]*Sin[fi]*Sin[th], Sqrt[2]*Cos[fi]},{fi,0,Pi/4},{th,0,2Pi}] g2=ParametricPlot3D[{z*Cos[t],z*Sin[t],z},{z,0,1},{t,0,2Pi}] Show[g1,g2,ViewPoint->{1.3,-2.4,1.0}]则分别输出三个图形(图2.1(a), (b), (c)).考察上述图形, 可用手工确定积分限. 如果用直角坐标计算, 输入 g[x_,y_,z_]=x^2+y^2+z;Integrate[g[x,y,z],{x,-1,1},{y,-Sqrt[1-x^2], Sqrt[1-x^2]},{z,Sqrt[x^2+y^2],Sqrt[2-x^2-y^2]}] 执行后计算时间很长, 且未得到明确结果.现在改用柱面坐标和球面坐标来计算. 如果用柱坐标计算,输入Integrate[(g[x,y,z]/.{x->r*Cos[s],y->r*Sin[s]})*r, {r,0,1},{s,0,2Pi},{z,r,Sqrt[2-r^2]}]则输出π⎪⎪⎭⎫⎝⎛+-15281252 如果用球面坐标计算,输入Integrate[(g[x,y,z]/.{x->r*Sin[fi]*Cos[t],y->r*Sin[fi]*Sin[t],z->r*Cos[fi]})*r^2*Sin[fi],{s,0,2Pi},{fi,0,Pi/4},{r,0,Sqrt[2]}]则输出π⎪⎪⎭⎫ ⎝⎛+-321662551这与柱面坐标的结果相同.重积分的应用例2.4 求由曲面()y x y x f --=1,与()222,y x y x g --=所围成的空间区域Ω的体积. 输入Clear[f,g];f[x_,y_]=1-x -y;g[x_,y_]=2-x^2-y^2;Plot3D[f[x,y],{x,-1,2},{y,-1,2}] Plot3D[g[x,y],{x,-1,2},{y,-1,2}] Show[%,%%]一共输出三个图形,首先观察到Ω的形状. 为了确定积分限, 要把两曲面的交线投影到Oxy 平面上输入 jx=Solve[f[x,y]==g[x,y],y] 得到输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-++→⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-+-→22445121,445121x x y x x y为了取出这两条曲线方程, 输入 y1=jx[[1,1,2]] y2=jx[[2,1,2]] 输出为⎪⎭⎫ ⎝⎛-+-2445121x x⎪⎭⎫ ⎝⎛-++2445121x x再输入tu1=Plot[y1,{x,-2,3},PlotStyle->{Dashing[{0.02}]},DisplayFunction->Identity];tu2=Plot[y2,{x,-2,3},DisplayFunction->Identity]; Show[tu1,tu2,AspectRatio->1, DisplayFunction-> $DisplayFunction]输出为图2.2, 由此可见,y 是下半圆(虚线),y 是上半圆,因此投影区域是一个圆.设21y y =的解为1x 与2x ,则21,x x 为x 的积分限. 输入 xvals=Solve[y1==y2,x] 输出为 ()()⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+→⎭⎬⎫⎩⎨⎧-→6121,6121x x 为了取出21,x x , 输入x1=xvals[[1,1,2]] x2=xvals[[2,1,2]]输出为()6121- ()6121+。
mathematica对数运算摘要:1.Mathematica 简介2.对数运算的定义与性质3.Mathematica 中的对数运算函数4.Mathematica 中对数运算的实例5.总结正文:1.Mathematica 简介Mathematica 是一款功能强大的数学软件,广泛应用于科学研究、工程应用和数学教育等领域。
它具有丰富的函数库和强大的计算能力,可以方便地处理各种复杂的数学问题。
2.对数运算的定义与性质对数运算是数学中一种重要的运算方式,其基本概念包括对数、底数、指数等。
对数运算具有如下性质:(1) 幂运算与对数运算互为逆运算,即a^b = c 等价于b = log_a(c)。
(2) 对数运算具有乘法公式,即log_a(b^c) = c*log_a(b)。
(3) 对数运算具有除法公式,即log_a(b/c) = log_a(b) - log_a(c)。
3.Mathematica 中的对数运算函数在Mathematica 中,有多种对数运算函数可供选择,如自然对数函数(Log)、以2 为底的对数函数(Log2)、以10 为底的对数函数(Log10)等。
这些函数的用法如下:(1) 自然对数函数:Log[x],如Log[e] 表示自然对数的底数e 的对数。
(2) 以2 为底的对数函数:Log2[x],如Log2[2] 表示2 的对数。
(3) 以10 为底的对数函数:Log10[x],如Log10[100] 表示10 的对数。
4.Mathematica 中对数运算的实例下面通过一个简单的实例来说明如何在Mathematica 中使用对数运算:假设我们要求解以下等式:2^log_2(8) = 4,我们可以使用以下步骤:(1) 在Mathematica 中输入2^log_2(8)=4,然后按Enter 键。
(2) Mathematica 将自动计算等式左侧的值,得到8。
(3) 我们可以进一步求解log_2(8) 的值,输入Log2[8],得到结果为3。
Mathematica的内部常数Mathematica的常用内部数学函数Mathematica中的数学运算符Mathematica的关系运算符注:上面的关系运算符也可从基本输入工具栏输入。
如何用mathematica求多项式的最大公因式和最小公倍式如何用mathematica求整数的最大公约数和最小公倍数如何用mathematica进行整数的质因数分解如何用mathematica求整数的正约数如何用mathematica判断一个整数是否为质数n个质数如何用mathematica求第如何用mathematica配方Mathematica没有提供专门的配方命令,但是我们可以非常轻松地自定义一个函数进行配方。
如何用mathematica进行多项式运算如何用mathematica进行分式运算如何用Mathematica进行因式分解如何用Mathematica展开如何用Mathematica进行化简如何用Mathematica合并同类项如何用Mathematica进行数学式的转换如何用Mathematica进行变量替换如何用mathematica进行复数运算如何在mathematica中表示集合与数学中表示集合的方法相同,格式如下:下列命令可以生成特殊的集合:如何用Mathematica求集合的交集、并集、差集和补集如何mathematica用排序如何在Mathematica中解方程注:方程的等号必须用:= =如何在Mathematica中解方程组Solve[{方程组},{变元组}]注:方程的等号必须用:= =如何在Mathematica中解不等式先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve`然后执行解不等式的命令InequalitySolve,此命令的使用格式如下:<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve`然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme-->如何在Mathematica中解不等式组先加载:Algebra`InequalitySolve` ,加载方法为:<<Algebra`InequalitySolve` 然后执行解不等式组的命令InequalitySolve,此命令的使用格式如下:<--mstheme-->如何用mathematica表示分段函数如何用mathematica求反函数对系统内部的函数生效,但对自定义的函数不起任何作用,也许是方法不对。
Mathematica 基本运算a+b+c 加a-b 减a b c 或a*b*c 乘a/b 除-a 负号a^b 次方Mathematica 数字的形式256 整数2.56 实数11/35 分数2+6I 复数常用的数学常数Pi 圆周率,π=3.141592654…E 尤拉常数,e=2.71828182…Degree 角度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity 无限大指定之前计算结果的方法% 前一个运算结果%% 前二个运算结果%%…%(n个%) 前n个运算结果%n 或Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的大小或模数(Modulus)Arg[z] 复数z的幅角(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最後一个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果常用数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函数,其引数的单位为弪度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三角函数ArcCot[x],ArcSec[x],ArcCsc[x]ArcSinh[x],ArcCosh[x],ArcTanh[x],… 反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] 自然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] 小於或等於x的最大整数Ceiling[x] 大於或等於x的最小整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0至1之间的乱数Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极大/极小值数之设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或Clear[x] 除去变数x所存的值变数使用的一些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为x^2 y次方运算子比乘法的运算子有较高的处理顺序四个常用处理代数的指令Expand[expr] 将expr展开Factor[expr] 将expr因式分解Simplify[expr] 将expr化简成精简的式子FullSimplify[expr] Mathematica 会尝试更多的化简公式,将expr化成更精简的式子多项式/分式转换的函数ExpandAll[expr] 把算是全部展开Together[expr] 将expr各项通分在并成一项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将expr拆成数项的和Cancel[expr] 把分子和分母共同的因子消去分母/分子的运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分子ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分子多项式的另二种转换函数Collect[expr,x] 将expr表示成x的多项式,如Collect[expr,{x,y,…}] 将expr分别表示成x,y,…的多项式FactorTerms[expr] 将expr的数值因子提出,如4x+2=2(2x+1)FactorTerms[expr,x] 将expr中把所有不包含x项的因子提出FactorTerms[expr,{x,y,…}] 将expr中把所有不包含{x,y,...}项的因子提出三角函数、双曲函数和指数的运算TrigExpand[expr] 将三角函数展开TrigFactor[expr] 将三角函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次方的三角函数化成一次方的基本三角函数之组合ExpToTrig[expr] 将指数函数化成三角函数或双曲函数TrigToExp[expr] 将三角函数或双曲函数化成指数函数复数、次方乘积之展开ComplexExpand[expr] 假设所有的变数都是实数来对expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对expr展开PowerExpand[expr] 将多项式项次、系数与最高次方之取得Coefficient[expr,form] 於expr中form的系数Exponent[expr,form] 於expr中form的最高次方Part[expr,n] 或expr[[n]] 在expr项中第n个项代换运算子expr/.x->value 将expr里所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执行数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将expr代入不同的x值expr//.{x->value1,y->value2,…} 重复代换到expr不再改变为止求解方程式的根Solve[lhs==rhs,x] 解方程式lhs==rhs,求xNsolve[lhs==rhs,x] 解方程式lhs==rhs的数值解Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}]解联立方程式,求x,y,…NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式的数值解FindRoot[lhs==rhs,{x,x0}] 由初始点x0求lhs==rhs的根Mathematica 的四种括号(term) 圆括号,括号内的term先计算f[x] 方括号,内放函数的引数{x,y,z} 大括号或串列括号,内放串列的元素p[[i ]] 或Part[p,i] 双方括号,p的第i项元素p[[i,j]] 或Part[p,i,j] p的第i项第j个元素缩短Mathematica输出的指令expr//Short 显示一行的计算结果Short[expr,n] 显示n行的计算结果Command; 执行command,但不列出结果查询Mathematica的物件?Command 查询Command的语法及说明??Command 查询Command的语法和属性及选择项?Aaaa* 查询所有开头为Aaaa的物件函数的定义、查询与清除f[x_]= expr 立即定义函数f[x]f[x_]:= expr 延迟定义函数f[x]f[x_,y_,…] 函数f有两个以上的引数?f 查询函数f的定义Clear[f] 或f=. 清除f的定义Remove[f] 将f自系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的自订函数lhs:=rhs/;condition 当condition成立时,lhs才会定义成rhsIf指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test无法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]函数之泰勒展开式Series[expr,{x,x0,n}] 对expr於x0点作泰勒级数展开至(x-x0)n项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算子a==b 等於a>b 大於a>=b 大於等於a<b 小於a<=b 小於等於a!=b 不等於逻辑运算子!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表示式展开基本二维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot[]几种常用选项的指令选项预设值说明AspectRatio 1/GoldenRatio 图形高和宽之比例,高/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{"ylabel"},则为y轴之标记。
Mathematica 软件使用简介Mathematica 是一个功能强大的常用数学软件, 它是由美国物理学家Stephen Wolfram领导的Wolfram Research公司用C语言开发的数学系统软件。
不但可以解决数学中的数值计算问题, 还可以解决符号演算问题, 并且能够方便地绘出各种函数图形。
这里介绍的命令可以适用于Windows操作系统的Mathematica2.2以上版本运行。
一、Mathematica 的进入/退出如果你的计算机已经安装了Mathematica 软件, 系统会在Windows【开始】菜单的【程序】子菜单中加入启动Mathematica命令的图标:图1.1 启动Mathematica用鼠标单击它就可以启动Mathematica系统进入Mathematica系统工作界面:图1.2 Mathematica2.2工作界面图图1.3 Mathematica4.0工作界面图Mathematica系统工作界面是基于Windows 环境下的Mathematica 函数或程序运行与结果显示的图形用户接口, 是Mathematica的工作屏幕。
界面上方的主菜单和工具条的功能类似于Windows中的Word软件。
其中的空白位置称为Notebook用户区, 在这里可以输入文本、实际的Mathematica命令和程序等来达到使用Mathematica的目的。
在用户区输入的内容被 Mathematica用一个具有扩展名为“.ma” (Mathematica2.2)或“.mb”(Mathematica4.0)在的文件名来纪录,该文件名是退出Mathematica时保存在用户区输入内容的默认文件名,一般是文件名:“Newnb-1.ma”或“Newnb-1.mb”。
退出Mathematica系统像关闭一个Word文件一样, 只要用鼠标点击Mathematica系统集成界面右上角的关闭按钮即可。
关闭前, 屏幕会出现一个对话框, 询问是否保存用户区的内容, 如果单击对话框的“否(N)”按钮, 则关闭Notebook窗口, 退出Mathematica系统; 如果单击对话框的“是(Y)”按钮, 则先提示你用一个具有扩展名为 .ma或.mb的文件名来保存用户区内的内容, 再退出Mathematica系统。
Mathematica的内部常数Pi , 或π(从基本输入工具栏输入, 或“Esc”+“p”+“Esc”)圆周率πE (从基本输入工具栏输入, 或“Esc”+“ee”+“Esc”)自然对数的底数eI (从基本输入工具栏输入, 或“Esc”+“ii”+“Esc”)虚数单位iInfinity, 或∞(从基本输入工具栏输入, 或“Esc”+“inf”+“Esc”)无穷大∞Degree 或°(从基本输入工具栏输入,或“Esc”+“deg”+“Esc”)度Mathematica的常用内部数学函数指数函数Exp[x]以e为底数对数函数Log[x]自然对数,即以e为底数的对数Log[a,x]以a为底数的x的对数开方函数Sqrt[x]表示x的算术平方根绝对值函数Abs[x]表示x的绝对值三角函数(自变量的单位为弧度)Sin[x]正弦函数Cos[x]余弦函数Tan[x]正切函数Cot[x]余切函数Sec[x]正割函数Csc[x]余割函数反三角函数ArcSin[x]反正弦函数ArcCos[x]反余弦函数ArcTan[x]反正切函数ArcCot[x]反余切函数ArcSec[x]反正割函数ArcCsc[x]反余割函数双曲函数Sinh[x]双曲正弦函数Cosh[x]双曲余弦函数Tanh[x]双曲正切函数Coth[x]双曲余切函数Sech[x]双曲正割函数Csch[x]双曲余割函数反双曲函数ArcSinh[x]反双曲正弦函数ArcCosh[x]反双曲余弦函数ArcTanh[x]反双曲正切函数ArcCoth[x]反双曲余切函数ArcSech[x]反双曲正割函数ArcCsch[x]反双曲余割函数求角度函数ArcTan[x,y]以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度数论函数GCD[a,b,c,...]最大公约数函数LCM[a,b,c,...]最小公倍数函数Mod[m,n]求余函数(表示m除以n的余数)Quotient[m,n]求商函数(表示m除以n的商)Divisors[n]求所有可以整除n的整数FactorInteger[n]因数分解,即把整数分解成质数的乘积Prime[n]求第n个质数PrimeQ[n]判断整数n是否为质数,若是,则结果为True,否则结果为FalseRandom[Integer,{m,n}]随机产生m到n之间的整数排列组合函数Factorial[n]或n!阶乘函数,表示n的阶乘复数函数Re[z]实部函数Im[z]虚部函数Arg(z)辐角函数Abs[z]求复数的模Conjugate[z]求复数的共轭复数Exp[z]复数指数函数求整函数与截尾函数Ceiling[x]表示大于或等于实数x的最小整数Floor[x]表示小于或等于实数x的最大整数Round[x]表示最接近x的整数IntegerPart[x]表示实数x的整数部分FractionalPart[x]表示实数x的小数部分分数与浮点数运算函数N[num]或num//N把精确数num化成浮点数(默认16位有效数字)N[num,n]把精确数num化成具有n个有效数字的浮点数NumberForm[num,n]以n个有效数字表示numRationalize[float]将浮点数float转换成与其相等的分数Rationalize[float,dx]将浮点数float转换成与其近似相等的分数,误差小于dx最大、最小函数Max[a,b,c,...]求最大数Min[a,b,c,...]求最小数符号函数Sign[x]Mathematica中的数学运算符a+b 加法a-b减法a*b (可用空格键代替*)乘法a/b (输入方法为:“ Ctrl ” + “ / ” ) 除法a^b (输入方法为:“ Ctrl ” + “ ^ ” )乘方-a 负号Mathematica的关系运算符==等于<小于>大于<=小于或等于>=大于或等于!=不等于注:上面的关系运算符也可从基本输入工具栏输入。
mathematica对数运算
摘要:
1.Mathematica 简介
2.对数运算的定义与性质
3.Mathematica 中的对数运算函数
4.Mathematica 中对数运算的实例
5.总结
正文:
【1.Mathematica 简介】
Mathematica 是一款功能强大的数学软件,广泛应用于科学研究、工程设计以及教育等领域。
它具有丰富的函数库和强大的计算能力,可以方便地处理各种复杂的数学问题。
【2.对数运算的定义与性质】
对数运算是数学中一种重要的运算方式,主要包括自然对数、常用对数和余对数等。
对数运算具有如下性质:
1) 幂与对数的互反性:a^log_a(x) = x,其中a 为底数,x 为指数;
2) 对数的乘法法则:log_a(x*y) = log_a(x) + log_a(y),其中a 为底数,x 和y 为指数;
3) 对数的除法法则:log_a(x/y) = log_a(x) - log_a(y),其中a 为底数,x 和y 为指数;
4) 对数的幂运算法则:log_a(x^n) = n*log_a(x),其中a 为底数,x 为
指数,n 为整数。
【3.Mathematica 中的对数运算函数】
在Mathematica 中,对数运算主要通过以下函数实现:
1) 自然对数函数:Log[x],表示以自然常数e 为底,x 的对数;
2) 常用对数函数:Log10[x],表示以10 为底,x 的对数;
3) 余对数函数:LogMod[x, y],表示x 除以y 的余数,其中x 和y 均为正整数。
【4.Mathematica 中对数运算的实例】
以下是Mathematica 中对数运算的一些实例:
1) 计算自然对数:Log[27] = 3,表示27 的自然对数为3;
2) 计算常用对数:Log10[1000] = 3,表示1000 的常用对数为3;
3) 计算余对数:LogMod[13, 4] = 1,表示13 除以4 的余数为1;
4) 对数运算法则的验证:Log[2^3] = 3*Log[2],表示对数的乘法法则成立;Log[6] - Log[3] = Log[2],表示对数的除法法则成立。
【5.总结】
通过以上介绍,我们可以看到Mathematica 在对数运算方面的强大功能,可以方便地处理各种对数运算问题。