2011年昭通中考数学试题
- 格式:doc
- 大小:268.00 KB
- 文档页数:4
2005年云南省中考数学试卷(课程改革实验区)一、填空题(本大题共6个小题,每小题3分,满分18分)1. 31-的绝对值是_________。
2. 我省今年虽遇到特大干旱,但至5月底大春播种面积已完成应播种面积的84.2%以上,达到44168000亩,这个数用科学记数法表示为_________亩。
3. 已知:如图,圆O 1与圆O 2外切于点P ,圆O 1的半径为3,且O 1O 2=8,则圆O 2的半径R=_________。
4. 若4个数据,1,3,x ,4的平均数为2,则x=_________。
5. 抛物线542+-=x x y 的顶点坐标是_________。
6. 请你添加一个条件,使平行四边形ABCD 成为一个菱形,你添加的条件是_________。
二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 7. 下列运算正确的是( )A. 532)(a a =B. 1)14.3(0=-πC.532=+D. 632-=-8. 数学老师为了估计全班每位同学数学成绩的稳定性,要求每位同学对自己最近4次的数学测试成绩进行统计分析,那么小明需要求出自己这4次成绩的是( )A. 平均数B. 众数C. 频率D. 方差9. 下列图形中,即是轴对称图形,又是中心对称图形的是( )A. 等腰三角形B. 平行四边形C. 梯形D. 圆 10. 函数2-=x y 中自变量x 的取值范围是( )A. x ≥2B. x>2C. x<2D. x ≤2 11. 若n 边形的内角和是1260°,则边数n 为( )A. 8B. 9C. 10D. 11 12. 小亮观察下边的两个物体,得到的俯视图是( )13. 九年级(2)班同学在一起玩报数游戏,第一位同学从1开始报数,当报到5的倍数的数时,则必须跳过该数报下一个数。
如:位置 一 二 三 四 五 六 七 八 九 十 …报出的数 1 2 3 4 6 7 8 9 11 12 …依此类推,第25位置上的小强应报出的数是( ) A. 25 B. 27 C. 31 D. 3314. 小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分迹污损了。
2011年大理、楚雄、临沧、怒江、迪庆、丽江高中(中专)招生统一考试 数学样卷(二)试题卷(全卷三个大题,共24小题,共4页;满分120分,考试时间120分钟)注意:1.考生不能将《云南省高中(中专)招生考试说明与复习指导•数学手册》及科学计算器带入考场使用.2.本卷为试题卷,考生解题作答必须在答题卷上,答案书写在相应的位置上,在试卷草稿纸上作答无效.3.考试结束后请将试题卷和答题卷一并交回.一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.北京2008年奥运会火炬接力活动的传递总路程约为137000000米,这个数据用科学记数 法表示为【 】A . 1.37×108米B . 1.37×109米C .13.7×108米D . 137×106米 2.如图所示的图案中是轴对称图形的是【 】3.小昆设计了一个关于实数运算的程序:输出的数比该数的平方小1,小刚按此程序输入】A .10B .11C .12D .134.小明拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是【 】A .B .C .D .5.已知⊙O 1和⊙O 2的半径分别为2cm 和5cm ,两圆的圆心距是3.5cm ,则两圆的位置关系是【 】A .内含B .外离C .内切D .相交 6.用两块边长为a 的等边三角形纸片拼成的四边形是【 】A .等腰梯形B .菱形C .矩形D . 正方形7.三角形的两边长分别是3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是【 】A .9B .11C .13D .11或13 8.如图,等腰Rt△ABC 绕C 点按顺时针旋转到△A 1B 1C 1的位 置(A ,C ,B 1在同一直线上),∠B =90º,如果AB =1,那么 AC 运动到A 1C 1所经过的图形面积是【 】 A .23π B .32π C .34π D .43π二、填空题(本大题共7个小题,每小题3分,满分21分)ABC (C 1)B 1A 1第8题A .2008年北京B .2004年雅典C .1988年汉城D .1980年莫斯科9.-2008的相反数是_______________.10.不等式:2x +6<0的解集是 .这次成绩的众数是_______________. 12.如图,AB =AD ,∠1=∠2,请你添加一个适当的条件, 使得△ABC ≌△ADE ,则需添加的条件是 (只要写出一个即可).13.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树AB 的高度为 米. 14.以边长1的正方形的对角线为边长作第二个正方形,以第二个正方形的对角线为边长作第三个正方形,……,如此做下去得到第n 个正方形.设第n 个正方形的面积为n S ,通过运算找规律,可以猜想出n S = .15.如图,有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D =120︒,则该零件另一腰AB三、解答题(本大题共10个小题,满分75分)16.(6分)请将式子:2-11(1)-11⨯++x x x 化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x 的值带入求值.17.(6分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(不要求写画法). 18.(6分)如图,已知BE ⊥AD ,CF ⊥AD , 且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.19.(8分)为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位第13题 EBAD2 1第12题 A B C D 第15题 DAB C F E 第18题A B C第17题学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.请结合图表完成下列问题:(1)表中的a = ; (2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第 组;(4)若八年级学生一分钟跳绳次数(x )达标要求是:120x <不合格;120140x <≤为合格;140160x <≤为良;160x ≥为优.根据以上信息,请你给学校或八年级同学提一条合理化建议: . 20.(7分)小杨同学为了测量一铁塔的高度CD ,如图,他先在A 处测得塔顶C 的仰角为︒30,再向塔的方向直行40米到达B 处,又测得塔顶C 的仰角为︒60,请你帮助小杨计算出这座铁塔的高度.(小杨的身高忽略不计,结果精确到0.1米,参考数据:732.13,414.12≈≈)21.(7分)有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢. (1)这个游戏是否公平?请说明理由;(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏. 22.(7分)为响应承办“绿色奥运”的号召,某中学九年级(2)班计划组织部分同学义务植树180棵,由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了50%,结果每人比原计划少栽了2棵树.问实际有多少人参加了这次植树活动?9 次数 C︒30 ︒60 第20题 A B D23.(8分)如图,点A 、B 、D 、E 在⊙O 上,弦AE 、BD 的延长线相交于点C .若AB 是⊙O的直径,D 是BC 的中点.(1)试判断AB 、AC 之间的大小关系,并给出证明;(2)在上述题设条件下,ΔABC 还需满足什么条件,点E 才一定是AC 的中点?(直接24. (本小题8分)某单位团支部组织青年团员参加登山比赛。
2011年九年级教学质量检测数 学 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321 B .27 C .6 D .32.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7) 3.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103 B .6.28×104 C .6.2828×104 D .0.62828×105 4.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( ). A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33第6题图第11题图7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将A B C △沿D E 折叠,使点A 与B C边的中点F 重合,下列结论中①EF AB ∥且12E F A B =;②BAF C AF ∠=∠;③DE AF 21S ADFE∙=四边形;④2B D F F E C B A C ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ). A .a <3 B .a >3 C .a <-3 D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°DABCO第7题图xb +x第9题图第8题图第12题图第16题图第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x m x +=--无解.14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程012)1(2=-++x x k 有两个不相同的实数根,则k 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图2图1最喜欢的体育活 动项目的人数/人育活动项目19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,B D 为圆O 的直径,A B A C =,A D 交B C 于E ,2A E =,4E D =.(1)求证:A B E A D B △∽△,并求A B 的长;(2)延长D B 到F ,使B F B O =,连接F A ,那么直线F A 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.C23.(本题满分11分)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC 交BC的延长线于E点.(1)求证:四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y轴分别相交于A (-6,0),B (0,-8)两点.(1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABCS S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分x181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%. (3)1(302624)20-++=%%%% 20020100÷=% (人)…6分8100100016050⨯⨯=% (人)答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分 (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.(1)证明:A B A C = ,ABC C ∴=∠∠,C D = ∠∠,ABC D ∴=∠∠.又BAE D AB = ∠∠,ABE AD B ∴△∽△.A B A E A D A B∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线F A 与⊙O 相切.理由如下: 连接O A .BD 为⊙O 的直径,∴∠.BD ∴====1122B F B O B D ∴===⨯=AB = ,BF BO AB ∴==.90OAF ∴= ∠.∴直线F A 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆. 方案一的费用是(元); 方案二的费用是(元);方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点 ……………………4分∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分 ∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD=⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(y kx b k =+∵直线AB经过(60)(08)A B --,,,,∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB的函数表达式为483y x =--. (4)分(2)在R t AO B △中,由勾股定理,得10AB ===,x∵圆M 经过O A B ,,三点,且90AO B ∠=°,AB∴为圆M 的直径,∴半径5M A =,设抛物线的对称轴交x 轴于点N ,M N x ⊥∵,∴由垂径定理,得132A N O N O A ===.在R t A M N △中,4M N ===,541C N M C M N ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++, 它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结A C ,B C ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,, 2D E ∴=;设在抛物线上存在点()P x y ,,使得111511515P D E A B C S S =⨯=△△=,则1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =--2(3)P ∴-+-1,3(3)P ---1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P ---.…………………….12分。
2011年安徽省中考试题数 学(本试卷共8大题,计23小题,满分150分,考试时间120分钟.)题号 一 二 三 四 五 六 七 八 总分 得分一.选择题(本大题10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2011安徽,1,4分)-2,0,2,-3这四个数中最大的是……………………………………【 】A .2B .0C .-2D .-3 【分析】. 【答案】A【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆ 【典型错误】 2.(2011安徽,2,4分)安徽省2010年末森林面积为3804.2千公顷,用科学计数法表示3804.2千.正确的是………………………………………………………………………………………………………【 】A .3102.3804⨯ B .41042.380⨯ C .6108042.3⨯ D .7108042.3⨯【分析】.【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆ 【典型错误】 3.(2011安徽,3,4分)下图是五个相同的小正方体搭成的几何体,其左视图为………………………【 】【分析】. 【答案】A【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】4.(2011安徽,4,4分)设119-=a ,a 在两个相邻整数之间,则这两个整数是……………………【 】 A .1和2 B .2和3 C .3和4 D .4和5 【分析】. 【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 5.(2011安徽,5,4分)从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是…………………………………………………………【 】 A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为51D .事件M 发生的概率为52 【分析】 【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】 6.(2011安徽,6,4分)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是…【 】A .7B .9C .10D .11 【分析】. 【答案】D【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】 7.(2011安徽,7,4分)如图,⊙O 的半径是1,A 、B 、C 是圆周上的三点, ∠BAC=36°,则劣弧BC 的长为………………………………………【 】 B第6题图 G HF EDC B A第10题图PM N D CBAA .5π B .52πC .53πD .54π 【分析】. 【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】8.(2011安徽,8,4分)一元二次方程x x x -=-2)2(的根是………………【 】 A .1- B .2C .1和2D .1-和2【分析】. 【答案】D【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】9.(2011安徽,9,4分)如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P 在四边形ABCD 的边上.若P 到BD 的距离为23,则点P 的个数为………………………【 】 A .1 B .2C .3D .4 【分析】A 到BD 的距离为2,故在AB 、AD 存在, .【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】 10.(2011安徽,10,4分)如图所示,P 是菱形ABCD 的对角线AC 上一点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是…………………………………………………………………【 】第9题图D CBAA .B .C .D .【分析】⎪⎪⎩⎪⎪⎨⎧<<-≤<=)21(),2(2)10(,212x x x x x y .【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】二、填空题(本大题4小题,每小题5分,满分20分)11.(2011安徽,11,5分)因式分解b ab b a ++22=_______________.【分析】.【答案】2)1(+a ab【涉及知识点】因式分解,提公因式法,公式法(完全平方公式)【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 12.(2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:n E 10=,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是_______________.【分析】.【答案】100【涉及知识点】数的乘方,整式除法. 【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 13.(2011安徽,13,5分)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_______________ 【分析】过O 作AB 、CD 的垂线垂足分别为M 、N ,则OM=ON=1.【答案】5【涉及知识点】勾股定理,圆的对称性. 【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】14.(2011安徽,14,5分)定义运算)1(b a b a -=⊗,下面给出了关于这种运算的几个结论: ①6)2(2=-⊗;②a b b a ⊗=⊗;第13题图③若0=+b a ,则ab b b a a 2)()(=⊗+⊗; ④若0=⊗b a ,则0=a其中正确结论的序号是_______________.(在横线上填上你认为所有正确结论的序号) 【分析】.ab ab b a b a b b a a b b a a 22)()()()(22222=++-=+-=-+-=⊗+⊗ 【答案】①③ 【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】 三、(本大题共2小题,每小题8分,共16分)15.(2011安徽,15,8分)先化简,再求值:12112---x x ,其中2-=x . 【分析】. 【答案】原式=11)1)(1(1)1)(1(2)1)(1(21+=+--=+--+--+x x x x x x x x x …………………………(6分)当2-=x 时,原式、1121-=+-……………………………………………………(8分)【涉及知识点】分式、分式的运算与化简,简单题。
A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。
云南省贵州省2011年中考数学专题7:统计与概率一、选择题1.(云南昆明3分)小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为A 、91,88B 、85,88C 、85,85D 、85,84.5【答案】D 。
【考点】众数,中位数。
【分析】根据出现次数最多的数是众数的定义:85出现了2次,次数最多,所以众数是:85;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
由此将这组数据重新排序为76,82,84,85,85,91,∴中位数为:(85+84)÷2=84.5。
故选D 。
2.(云南大理、楚雄、文山、保山、丽江、怒江、迪庆、临沧3分)为了庆祝建党90周年,某单位举行了“颂党”歌咏比赛,进入决赛的7名选手的成绩分别是:9.80,9.85,9.81,9.79,9.84,9.83,9.82(单位:分),这组数据的中位数和平均数是A.9.82 9.82B.9.82 9.79C. 9.79 9.82D.9.819.82 【答案】A 。
【考点】中位数和平均数。
【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
由此将这组数据重新排序为9.79,9.80,9.81,9.82,9.83,9.84,9.85,∴中位数为:9.82;由于这组数据的特点,可以只对百分位的数字计算:051143214277++-+++==,故平均数为9.82。
故选A 。
3.(云南曲靖3分)下面的折线图描述了某地某日的气温变化情况,根据图形情况,根据图形提供的信息,下列结论错误的的是A.这一天的温差是10℃B.在0:00——4:00时气温在逐渐下降C.在4:00——14:00时气温都在上升D.14:00时气温最高 【答案】D 。
【考点】折线统计图,极差。
【分析】从图形提供的信息,A.这一天的最高气温32℃,最低气温22℃,温差是32℃-22℃=10℃,故选项正确;B.在0:00——4:00时气温从26℃逐渐下降到22℃,故选项正确; C.在4:00——14:00时气温从22℃一直上升到30℃,故选项正确; D.16:00时气温最高,为32℃,故选项错误。
2011陕西中考数学试题及答案一、选择题1. 计算:$3 \times (4 + 5) - 2^2 =$ (2011陕西中考)解答:首先计算括号内的加法,得到$3 \times 9 - 2^2 =$,然后计算乘法,得到$27 - 4 =$,最后计算减法,得到$23$。
因此,答案为$23$。
2. 下列各数:$\sqrt{9}$,$\frac{12}{4}$,$(-3) \times 2^2 + 5^0$和$-1.1$中,其中不是整数的是:(2011陕西中考)A. $\sqrt{9}$B. $\frac{12}{4}$C. $(-3) \times 2^2 + 5^0$D. $-1.1$解答:$\sqrt{9}=3$,$\frac{12}{4}=3$,$(-3) \times 2^2 + 5^0=-3\times 4 + 1=-11$,$-1.1$不是整数。
因此,答案是D。
3. 用$\frac{4}{9}$表示0.4,则$\frac{41}{90}$的另一种表示是:(2011陕西中考)解答:首先计算$\frac{4}{9} \times 10$,得到$\frac{40}{9}$。
然后在$\frac{40}{9}$的基础上加上$\frac{1}{9}$,得到$\frac{41}{9}$。
最后将$\frac{41}{9}$转化为分数形式,得到$\frac{41}{9}$。
因此,答案是$\frac{41}{9}$。
4. 小花去商场选购衣服,她看中了一件原价为320元的衣服,商场正在举行打折活动,全场商品打7折。
小花还是犹豫不决,她妈妈说:“你有一张价格为20元的优惠券,使用后再打折。
”小花计算了一下,最终衣服的价格是多少元?(2011陕西中考)解答:首先计算打折后衣服的价格,$320 \times 0.7=224$。
然后将优惠券价格减去衣服价格,$20-224=-204$。
因此,最终衣服的价格是负数204元。
数学试卷第1页(共10页)准考证号:**市2011年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。
考试时间120分钟,满分150分。
考试结束后,第Ⅱ卷和答题卡按规定装袋上交。
第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。
3.考试结束后,本试卷由考场统一收回,集中管理。
一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222ba ab a -- 3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠数学试卷第2页(共10页)6.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+ C.23+ D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2 ④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC数学试卷第3页(共10页)绝密★启用前【考试时间:2011年6月】**市2011年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。
2011年云南省昭通市中考数学试卷
一、选择题(本大题共10小题,每小题只有一个正确选项,每小题3分,满分30分)
1、下列结论正确的是()
A、3a+2a=5a2B 、
C、(a+b)(a﹣b)=a2﹣b2
D、x6÷x2=x3
2、下列图形中既是中心对称图形,又是轴对称图形的有()
A、1个
B、2个
C、3个
D、4个
3、一组数据2、1、5、4的方差和中位数分别是()
A、2.5和2
B、1.5和3
C、2.5和3
D、1.5和2
4、如图是一个由4个相同的正方体组成的立体图形,它的三视图为()
A 、
B 、
C 、
D 、
5、下列说法中正确的是()
A、“打开电视,正在播放《新闻联播》”是必然事件B
、某次抽奖活动中奖的概率为
,说明每买100张奖券,一定有一次中奖
C、数据1,1,2,2,3的众数是3
D、想了解台州市城镇居民人均年收入水平,宜采用抽样调查
6、将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()
A、45°
B、60°
C、75°
D、85°
7、由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/米2,通过连续两次降价a%后,售价变为2000元/米2,下列方程中正确的是()
A、2400(1﹣a2)=2000
B、2000(1﹣a2)=2400
C、2400(1+a)2=2000
D、2400(1﹣a)2=2000
8、如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠AB E的度数为()
A、15°
B、20°
C、25°
D、30°
9、已知两圆的半径R,r分别为方程x2﹣3x+2=0的两根,这两圆的圆心距为3,则这两圆的位置关系是()
A、外切
B、内切
C、相交
D、外离
10、函数y=ax2+a 与(a≠0),在同一坐标系中的图象可能是()
A 、
B 、
C 、
D 、
二、填空题(本大题共10小题,每小题3分,满分30分)
11、﹣2的倒数是_________ .
12、分解因式:3a2﹣27= _________ .
13、如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是_________ .(只需填一个即可)
14、使有意义的x的取值范围是_________ .
15、如图所示,AB是⊙O的直径,弦DC与AB相交于点E,若∠ACD=50°,则∠DAB=_________ .
16、不等式﹣3x+1>4的解集是_________ .
17、如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距_________ 米.
18、地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为_________ 千米.
19、已知圆锥的母线长是12cm,它的侧面展开图的圆心角是120°,则它的底面圆的直径为_________ cm.
20、把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2﹣2x+3,则b的值为_________ .
三、解答题(本大题共10小题,满分90分)
21、计算:|﹣2|+()﹣1﹣2cos60°+(3﹣2π)0.
22、解分式方程:﹣=
23、如图所示,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣1,1),C (﹣1,3).
(1)画出△ABC关于x轴对称的图形△A1B1C1,并写出点C1的坐标;
(2)画出△ABC绕原点O顺时针方向旋转90°后得到的图形△A2B2C2,并求出C所走过的路径的长.
24、果农老张进行杨梅科学管理试验.把一片杨梅林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取20棵杨梅树,根据每棵树产量把杨梅树划分成A,B,C,D,E五个等级(甲、乙的等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:
(1)补齐直方图,求a的值及相应扇形的圆心角度数;
(2)选择合适的统计量,比较甲乙两地块的产量水平,并说明试验结果;
(3)若在甲地块随机抽查1棵杨梅树,求该杨梅树产量等级是B的概率.25、如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.
求证:四边形ABCD是平行四边形.
26、如图所示,若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B 处,AB与河岸的夹角是60°,船从A到B处需时间2分钟,求该船的速度.
27、某校初三(5)班同学利用课余时间回收钦料瓶,用卖得的钱去购买5本大小不同的两种笔记本,要求共共钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数
根据上述相关数据,请你设计一种节约资金的购买方案,并说明节约资金的理由.
28、某校举办艺术节,其中A 班和B 班的节目总成绩并列第一,学校决定从A 、B 两班中选派一个班代表学校参加全省比赛,B 班班长想法是:用八张扑克牌,将数字为1,2,3,5的四张牌给A 班班长,将数字为4,6,7,8的四张牌留给自已,并按如下游戏规则进行:A 班班长和B 班班长从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则A 班去;
如果和为奇数,则B 班去.
(1)请用树状图或列表的方法求A 班去参赛的概率.
(2)B 班班长设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.
29、如图①,AB 是⊙O 的直径,AC 是弦,直线EF 和⊙O 相切于点C ,AD⊥EF,垂足为D . (1)求证:∠DAC=∠BAC;
(2)若把直线EF 向上平行移动,如图②,EF 交⊙O 于G 、C 两点,若题中的其它条件不变,这时与∠DAC 相等的角是哪一个?为什么?
30、如图:二次函数y=﹣x 2
+ax+b
的图象与x 轴交于A (﹣,0),B (2,0)两点,且与y 轴交于点C .
(1)求该抛物线的解析式,并判断△ABC 的形状;
(2)在x 轴上方的抛物线上有一点D ,且A 、C 、D 、B 四点为顶点的四边形是等腰梯形,请直接写出D 点的坐标;
(3)在此抛物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由.。