最新云南省昭通市中考数学试卷及答案
- 格式:doc
- 大小:504.00 KB
- 文档页数:15
2024年云南省中考数学参考试卷一、选择题:本题共15小题,每小题2分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零下记作,则零上可记作()A. B. C. D.2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展用科学记数法可以表示为()A. B. C. D.3.如图,直线c与直线a,b都相交.若,,则()A. B. C. D.4.反比例函数的图象位于()A.第一、三象限B.第二、四象限C.第一、四象限D.第二、三象限5.下列计算正确的是()A. B. C. D.6.如图,在中,D,E分别为AB,AC上的点.若,,则()A.B.C.D.7.下列图形是某几何体的三视图其中主视图也称正视图,左视图也称侧视图,则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥8.以下是一组按规律排列的多项式:,,,,,…,其中第n个多项式是()A. B. C. D.9.某中学为丰富学生的校园体育锻炼,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.因此学校数学兴趣小组随机抽取了该校100名同学就体育兴趣爱好情况进行调查,将收集的数据整理并绘制成下列统计图:若该校共有学生1200人,则该校喜欢跳绳的学生大约有()A.280人B.240人C.170人D.120人10.如图,BC是的直径,A是上的点.若,则()A.B.C.D.11.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则下面所列方程正确的是()A. B. C. D.12.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A. B. C. D.13.如图,计划在一块等边三角形的空地上种植花卉,以美化环境.若米,则这个等边三角形的面积为()A.平方米B.平方米C.平方米D.平方米14.函数中,自变量x的取值范围是()A. B. C. D.15.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间二、填空题:本题共4小题,每小题2分,共8分。
2023年云南省中考数学试卷+答案解析(试卷部分)一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.(3分)中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作+60米,则向西走80米可记作()A.﹣80米B.0米C.80米D.140米2.(3分)云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.340×104B.34×105C.3.4×105D.0.34×1063.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=35°,则∠2=()A.145°B.65°C.55°D.35°4.(3分)某班同学用几个几何体组合成一个装饰品美化校园,其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.球B.圆柱C.长方体D.圆锥5.(3分)下列计算正确的是()A.a2•a3=a6B.(3a)2=6a2C.a6÷a3=a2D.3a2﹣a2=2a26.(3分)为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65 B.60 C.75 D.807.(3分)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.8.(3分)若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3 B.﹣3 C.D.9.(3分)按一定规律排列的单项式:a,,,,,…,第n个单项式是()A.B.C.D.10.(3分)如图,A、B两点被池塘隔开,A、B、C三点不共线.设AC、BC的中点分别为M、N.若MN=3米,则AB=()A.4米B.6米C.8米D.10米11.(3分)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是()A.B.C.D.12.(3分)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=()A.66°B.33°C.24°D.30°二、填空题(本大题共4小题,每小题2分,共8分)13.(2分)函数y=的自变量x的取值范围是.14.(2分)五边形的内角和等于度.15.(2分)分解因式:x2﹣4=.16.(2分)数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为分米.三、解答题(本大题共8小题,共56分)17.(6分)计算:|﹣1|+(﹣2)2﹣(π﹣1)0+()﹣1﹣tan45°.18.(6分)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.19.(7分)调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游.这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥勒市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.20.(7分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.21.(7分)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A、B两种型号的帐篷.若购买A种型号帐篷2顶和B种型号帐篷4顶,则需5200元;若购买A种型号帐篷3顶和B种型号帐篷1顶,则需2800元.(1)求每顶A种型号帐篷和每顶B种型号帐篷的价格;(2)若该景区需要购买A、B两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A种型号帐篷数量不超过购买B种型号帐篷数量的,为使购买帐篷的总费用最低,应购买A种型号帐篷和B种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?22.(7分)如图,平行四边形ABCD中,AE、CF分别是∠BAD、∠BCD的平分线,且E、F分别在边BC、AD上,AE=AF.(1)求证:四边形AECF是菱形;(2)若∠ABC=60°,△ABE的面积等于,求平行线AB与DC间的距离.23.(8分)如图,BC是⊙O的直径,A是⊙O上异于B、C的点.⊙O外的点E在射线CB上,直线EA与CD垂直,垂足为D,且DA•AC=DC•AB.设△ABE的面积为S1,△ACD的面积为S2.(1)判断直线EA与⊙O的位置关系,并证明你的结论;(2)若BC=BE,S2=mS1,求常数m的值.24.(8分)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象为图象T.(1)求证:无论a取什么实数,图象T与x轴总有公共点;(2)是否存在整数a,使图象T与x轴的公共点中有整点?若存在,求所有整数a的值;若不存在,请说明理由.2023年云南省中考数学试卷+答案解析(答案部分)一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.(3分)中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作+60米,则向西走80米可记作()A.﹣80米B.0米C.80米D.140米【分析】正数和负数可以表示具有相反意义的量,据此即可得出答案.【解析】解:∵向东走60米记作+60米,∴向西走80米可记作﹣80米,故选:A.【点评】本题考查正数与负数的实际意义,明确正数和负数是一对具有相反意义的量最为关键.2.(3分)云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.340×104B.34×105C.3.4×105D.0.34×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】解:将340000用科学记数法表示为:3.4×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=35°,则∠2=()A.145°B.65°C.55°D.35°【分析】由对顶角相等可得∠3=∠1=35°,再由平行线的性质求解即可.【解析】解:如图,∵∠1=35°,∴∠3=∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:D.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.4.(3分)某班同学用几个几何体组合成一个装饰品美化校园,其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.球B.圆柱C.长方体D.圆锥【分析】由主视图和俯视图确定是柱体,锥体还是球体,再由左视图确定具体形状.【解析】解:根据主视图和左视图、俯视图都为圆形判断出是球.故选:A.【点评】此题主要考查了由三视图判断几何体,3个视图的大致轮廓为圆形的几何体为球体.5.(3分)下列计算正确的是()A.a2•a3=a6B.(3a)2=6a2C.a6÷a3=a2D.3a2﹣a2=2a2【分析】根据同底数幂乘法、幂的乘方与积的乘方、同底数幂除法以及合并同类项的法则计算即可.【解析】解:A、a2•a3=a2+3=a5,原式计算错误,故选项不符合题意;B、(3a)2=9a2,原式计算错误,故选项不符合题意;C、a6÷a3=a6﹣3=a3,原式计算错误,故选项不符合题意;D、3a2﹣a2=2a2,计算正确,故选项符合题意.故选:D.【点评】本题考查了同底数幂乘法、幂的乘方与积的乘方、同底数幂除法以及合并同类项,解题的关键是熟练掌握相关的定义和法则.6.(3分)为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65 B.60 C.75 D.80【分析】根据众数的定义解答即可,一组数据中出现次数最多的数据叫做众数.【解析】解:这组数据中,60出现的次数最多,故这组数据的众数为60.故选:B.【点评】本题考查了众数,熟记定义是解题的关键.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.7.(3分)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解析】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点评】本题主要考查了轴对称图形的概念,熟知:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.这条直线是它的对称轴.8.(3分)若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3 B.﹣3 C.D.【分析】将点A的坐标代入反比例函数的关系式即可求出k的值.【解析】解:∵点A(1,3)在反比例函数y=(k≠0)图象上,∴k=1×3=3,故选:A.【点评】本题考查反比例函数图象上点的坐标特征,将点A的坐标代入反比例函数的关系式是正确解答的关键.9.(3分)按一定规律排列的单项式:a,,,,,…,第n个单项式是()A.B.C.D.【分析】根据题干所给单项式总结规律即可.【解析】解:第1个单项式为a,即a1,第2个单项式为a2,第3个单项式为a3,...第n个单项式为a n,故选:C.【点评】本题考查数式规律问题,根据已知单项式总结出规律是解题的关键.10.(3分)如图,A、B两点被池塘隔开,A、B、C三点不共线.设AC、BC的中点分别为M、N.若MN=3米,则AB=()A.4米B.6米C.8米D.10米【分析】根据三角形中位线定理计算即可.【解析】解:∵点M,N分别是AC和BC的中点,∴AB=2MN=6(m),故选:B.【点评】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.11.(3分)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是()A.B.C.D.【分析】根据“乙同学比甲同学提前4分钟到达活动地点”列方程求解.【解析】解:∵乙同学的速度是x米/分,则甲同学的速度是1.2x米/分,由题意得:,故选:D.【点评】本题考查了分式方程的应用,找到相等关系是解题的关键.12.(3分)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=()A.66°B.33°C.24°D.30°【分析】根据圆周角定理解答即可,在同圆或等圆中,同弧所对的圆周角等于这条弧所对的圆心角的一半.【解析】解:∵∠A=∠BOC,∠BOC=66°,∴∠A=33°.故选:B.【点评】本题考查了圆周角定理,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.二、填空题(本大题共4小题,每小题2分,共8分)13.(2分)函数y=的自变量x的取值范围是x≠10.【分析】根据分式的分母不能为0即可求得答案.【解析】解:已知函数为y=,则x﹣10≠0即x≠10,故答案为:x≠10.【点评】本题考查函数自变量的取值范围,此为基础且重要知识点,必须熟练掌握.14.(2分)五边形的内角和等于540度.【分析】直接根据n边形的内角和=(n﹣2)•180°进行计算即可.【解析】解:五边形的内角和=(5﹣2)•180°=540°.故答案为:540.【点评】本题考查了n边形的内角和定理:n边形的内角和=(n﹣2)•180°.15.(2分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解析】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.16.(2分)数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为分米.【分析】根据勾股定理计算即可.【解析】解:由勾股定理得:圆锥的高为:=(分米),故答案为:.【点评】本题考查的是圆锥的计算,熟记勾股定理是解题的关键.三、解答题(本大题共8小题,共56分)17.(6分)计算:|﹣1|+(﹣2)2﹣(π﹣1)0+()﹣1﹣tan45°.【分析】利用绝对值的性质,有理数的乘方,零指数幂,负整数指数幂,特殊角的三角函数值进行计算即可.【解析】解:原式=1+4﹣1+3﹣1=4+3﹣1=6.【点评】本题考查实数的运算,实数的相关运算法则是基础且重要知识点,必须熟练掌握.18.(6分)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.【分析】求出BC=DC,根据全等三角形的判定定理证明即可.【解析】证明:∵C是BD的中点,∴BC=DC,在△ABC和△EDC中,,∴△ABC≌△EDC(SSS).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.19.(7分)调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游.这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥勒市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.【分析】(1)把5个示范区的人数相加,求出总人数即可解决问题;(2)利用样本估计总体的思想解决问题即可.【解析】解:(1)30+18+15+24+13=100(人).故本次被抽样调查的员工人数是100人;(2)900×30.00%=270(人).故估计该公司意向前往保山市腾冲市的员工人数是270人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种,记种植辣椒为A,种植茄子为B,种植西红柿为C.假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.【分析】(1)根据题意画出树状图,再由树状图求得所有等可能的结果即可;(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,再由概率公式求解即可.【解析】解:(1)画树状图如下:共有9种等可能的结果,分别为(A,A)、(A,B)、(A,C)、(B,A),(B,C),(B,B)、(C,A)、(C,B)、(C,C);(2)由(1)可知,共有9种等可能的结果,其中甲、乙两名同学选择种植同一种蔬菜的结果有3种,∴甲、乙两名同学选择种植同一种蔬菜的概率P=.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(7分)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A、B两种型号的帐篷.若购买A种型号帐篷2顶和B种型号帐篷4顶,则需5200元;若购买A种型号帐篷3顶和B种型号帐篷1顶,则需2800元.(1)求每顶A种型号帐篷和每顶B种型号帐篷的价格;(2)若该景区需要购买A、B两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A种型号帐篷数量不超过购买B种型号帐篷数量的,为使购买帐篷的总费用最低,应购买A种型号帐篷和B种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【分析】(1)设每顶A种型号帐篷m元,每顶B种型号帐篷n元,根据若购买A种型号帐篷2顶和B种型号帐篷4顶,则需5200元;若购买A种型号帐篷3顶和B种型号帐篷1顶,则需2800元得:,即可解得答案;(2)设购买A种型号帐篷x顶,总费用为w元,由购买A种型号帐篷数量不超过购买B种型号帐篷数量的,可得x≤5,而w=600x+1000(20﹣x)=﹣400x+20000,根据一次函数性质可得答案.【解析】解:(1)设每顶A种型号帐篷m元,每顶B种型号帐篷n元,根据题意得:,解得:,∴每顶A种型号帐篷600元,每顶B种型号帐篷1000元;(2)设购买A种型号帐篷x顶,总费用为w元,则购买B种型号帐篷(20﹣x)顶,∵购买A种型号帐篷数量不超过购买B种型号帐篷数量的,∴x≤(20﹣x),解得x≤5,根据题意得:w=600x+1000(20﹣x)=﹣400x+20000,∵﹣400<0,∴w随x的增大而减小,∴当x=5时,w取最小值,最小值为﹣400×5+20000=18000(元),∴20﹣x=20﹣5=15,答:购买A种型号帐篷5顶,购买B种型号帐篷15顶,总费用最低,最低总费用为18000元.【点评】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.22.(7分)如图,平行四边形ABCD中,AE、CF分别是∠BAD、∠BCD的平分线,且E、F分别在边BC、AD上,AE=AF.(1)求证:四边形AECF是菱形;(2)若∠ABC=60°,△ABE的面积等于,求平行线AB与DC间的距离.【分析】(1)根据平行四边形对角相等得到∠BAD=∠BCD,再根据AE、CF分别是∠BAD、∠BCD的平分线,可得到∠DAE=∠BCF,再根据平行四边形对边平行得到∠DAE=∠AEB,于是有∠BCF=∠AEB,得出AE∥FC,根据两组对边分别平行的四边形是平行四边形可证得四边形AECF 是平行四边形,最后根据一组邻边相等的平行四边形是菱形即可得证;(2)连接AC,根据平行四边形的性质和角平分线的定义可证得AB=EB,结合已知∠ABC=60°得到△ABE是等边三角形,从而求出AB=AE=EB=EC=4,∠BAE=60°,再证得∠EAC=30°,即可得到∠BAC=90°,根据勾股定理求出AC的长,从而得出平行线AB与DC间的距离.【解析】(1)证明:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AD∥BC,∵AE、CF分别是∠BAD、∠BCD的平分线,∴,,∴∠DAE=∠BCF,∵AD∥BC,∴∠DAE=∠AEB,∴∠BCF=∠AEB,∴AE∥FC,∴四边形AECF是平行四边形,∵AE=AF,∴四边形AECF是菱形;(2)解:连接AC,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=EB,∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠AEB=∠ABEA=60°,∵△ABE的面积等于,∴,∴AB=4,即AB=AE=EB=4,由(1)知四边形AECF是菱形,∴AE=CE=4,∴∠EAC=∠ECA,∵∠AEB是△AEC的一个外角,∴∠AEB=∠EAC+∠ECA=60°,∴∠EAC=∠ECA=30°,∴∠BAC=∠BAE+∠EAC=90°,即AC⊥AB,由勾股定理得,即平行线AB与DC间的距离是.【点评】本题考查了菱形的判定与性质,掌握一组邻边相等的平行四边形是菱形是此题的关键,理解平行线间的距离的定义,等边三角形的性质与判定.23.(8分)如图,BC是⊙O的直径,A是⊙O上异于B、C的点.⊙O外的点E在射线CB上,直线EA与CD垂直,垂足为D,且DA•AC=DC•AB.设△ABE的面积为S1,△ACD的面积为S2.(1)判断直线EA与⊙O的位置关系,并证明你的结论;(2)若BC=BE,S2=mS1,求常数m的值.【分析】(1)通过证明△ABC∽△DAC,可得∠ACB=∠ACD,可证OA⊥DE,即可求解;(2)设BO=OC=OA=a,则BC=2a,由相似三角形的性质可求CD的长,即可求解.【解析】解:(1)AE与⊙O相切,理由如下:如图,连接OA,∵DA•AC=DC•AB,∴,∵BC是⊙O的直径,∴∠BAC=90°=∠ADC,∴△ABC∽△DAC,∴∠ACB=∠ACD,∵OA=OC,∴∠OAC=∠ACB=∠ACD,∴OA∥CD,∴∠OAE=∠CDE=90°,∴OA⊥DE,又∵OA为半径,∴AE与⊙O相切;(2)如图,∵OA∥CD,∴△AOE∽△DCE,∴,设BO=OC=OA=a,则BC=2a,∵BC=BE=2a,∴S△ABE =S△ABC,EO=3a,EC=4a,∴,∴CD=a,∵△ABC∽△DAC,∴,∴AC2=BC•CD=a2,∵△ABC∽△DAC,∴=()2=,∴S2=S1,∴m=.【点评】本题考查了相似三角形的判定和性质,圆的有关知识,等腰三角形的性质,灵活运用这些性质解决问题是解题的关键.24.(8分)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象为图象T.(1)求证:无论a取什么实数,图象T与x轴总有公共点;(2)是否存在整数a,使图象T与x轴的公共点中有整点?若存在,求所有整数a的值;若不存在,请说明理由.【分析】(1)分一次函数和二次函数分别证明函数图象T与x轴总有交点即可;(2)当a=﹣时,不符合题意;当a≠时,由0=(4a+2)x2+(9﹣6a)x﹣4a+4,得x=﹣或x=,即x==2﹣,因a是整数,故当2a+1是6的因数时,是整数,可得2a+1=﹣6或2a+1=﹣3或2a+1=﹣2或2a+1=﹣1或2a+1=1或2a+1=2或2a+1=3或2a+1=6,分别解方程并检验可得a=﹣2或a=﹣1或a=0或a=1.【解析】(1)证明:当a=﹣时,函数表达式为y=12x+6,令y=0得x=﹣,∴此时函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象与x轴有交点;当a≠时,y=(4a+2)x2+(9﹣6a)x﹣4a+4为二次函数,∵Δ=(9﹣6a)2﹣4(4a+2)(﹣4a+4)=100a2﹣140a+49=(10a﹣7)2≥0,∴函数y=(4a+2)x2+(9﹣6a)x﹣4a+4(实数a为常数)的图象与x轴有交点;综上所述,无论a取什么实数,图象T与x轴总有公共点;(2)解:存在整数a,使图象T与x轴的公共点中有整点,理由如下:当a=﹣时,不符合题意;当a≠时,在y=(4a+2)x2+(9﹣6a)x﹣4a+4中,令y=0得:0=(4a+2)x2+(9﹣6a)x﹣4a+4,解得x=﹣或x=,∵x==2﹣,a是整数,∴当2a+1是6的因数时,是整数,∴2a+1=﹣6或2a+1=﹣3或2a+1=﹣2或2a+1=﹣1或2a+1=1或2a+1=2或2a+1=3或2a+1=6,解得a=﹣或a=﹣2或a=﹣或a=﹣1或a=0或a=或a=1或a=,∵a是整数,∴a=﹣2或a=﹣1或a=0或a=1.【点评】本题考查二次函数的应用,涉及一次函数,二次函数与一元二次方程的关系,解题的关键是理解整点的意义.。
云南省昭通市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)如果单项式2xm+2ny与-3x4y4m-2n是同类项,则m、n的值为()A . m=-1,n=2.5B . m=1,n=1.5C . m=2,n=1D . m=-2,n=-12. (2分)(2011·湛江) 下面四个几何体中,主视图是四边形的几何体共有()A . 1个B . 2个C . 3个D . 4个3. (2分)(2020·天水) 若函数的图象如图所示,则函数和在同一平面直角坐标系中的图象大致是()A .B .C .D .4. (2分) (2019九上·邗江月考) 如图,点A、B、C在⊙ 上,若∠AOB=130°,则∠C的度数为()A . 150°B . 130°C . 115°D . 120°5. (2分)若,则下列函数:①,②,③,④中,的值随的值增大而增大的函数共有()A . 1个B . 2个C . 3个D . 4个6. (2分)如图是某城市部分街道的示意图,AF∥BC,EC⊥BC,AB∥DE,BD∥AE,甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F;乙乘2路车,路线是B→D→C→F.假定两车的速度相同,那么()先到达F站.A . 两人同时到达F站B . 甲C . 乙D . 无法判断二、填空题 (共12题;共12分)7. (1分) (2015七上·福田期末) 的倒数是________8. (1分)(2016·常德) 使代数式有意义的x的取值范围是________.9. (1分) (2019七下·宁化期中) 若,且,则 =________.10. (1分)“天上星星有几颗,7后跟上22个0”,这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数________11. (1分)一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是________.12. (1分)(2018·南宁模拟) 某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有________粒.13. (1分)如图,已知圆锥的母线长OA=8,地面圆的半径r=2.若一只小虫从A点出发,绕圆锥的侧面爬行一周后又回到A点,则小虫爬行的最短路线的长是________(结果保留根式).14. (1分) (2019九下·惠州月考) 如图,将Rt△ABC 绕直角顶点 A 按顺时针方向旋转180° 得△AB1C1 ,写出旋转后 BC 的对应线段________.15. (1分)计算:(﹣2014)0+()﹣1﹣(﹣1)2014=________16. (1分)(2018·柳北模拟) 如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且,过点C作,垂足为F,连接OF,则下列结论正确的是________.∽17. (1分) (2015八下·萧山期中) 某组数据的方差计算公式为S2= [(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是________,该组数据的平均数是________18. (1分)(2019八下·宜兴期中) 已知三角形的三边分别为a,b,c ,其中 a ,b满足,那么这个三角形的第三边c的取值范围是________.三、解答题 (共10题;共99分)19. (10分)(2015·衢州) 计算:﹣|﹣2|+ ﹣4sin60°.20. (10分)解方程: .21. (10分)如图,在四边形ABCD中,AB=AD, AC平分∠BAD,AE⊥BC,垂足为E,AF⊥CD,垂足为F.(1)求证:BC=CD;(2)若,AF= ,求四边形ABCD的面积.22. (10分)(2016·钦州) 网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题组别学习时间x(h)频数(人数)A0<x≤18B1<x≤224C2<x≤332D3<x≤4nE4小时以上4(1)表中的n=________,中位数落在________组,扇形统计图中B组对应的圆心角为________°;(2)请补全频数分布直方图;(3)该校准备召开利用网络资源进行自主学习的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.23. (6分)(2020·张家港模拟) 有四张正面分别标有数字0,1,2,3的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽出一张卡片,则抽到数字“2”的概率为________;(2)随机抽出一张卡片,记下数字后放回并搅匀,再随机抽出一张卡片,请用列表或画树状图的方法,求两次抽出的卡片上的数字之和是3的概率.24. (5分)如图,某建筑物BC顶部有釕一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.25. (11分) (2019九上·东河月考) 如图所示,在中,,,点从点出发,沿着以每秒的速度向点运动;同时点从点出发,沿以每秒的速度向点运动,设运动时间为.(1)当为何值时,;(2)当,求的值;(3)能否与相似?若能,求出的长;若不能,请说明理由.26. (10分)(2018·凉山) 如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点 .(1)求直线的解析式;(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.27. (12分) (2016八下·高安期中) 在如图所示的5×5的正方形网格中,每个小正方形的边长均为1,按下列要求画图或填空;(1)画一条线段AB使它的另一端点B落在格点上(即小正方形的顶点),且AB=2 ;(2)以(1)中的AB为边画一个等腰△ABC,使点C落在格点上,且另两边的长都是无理数;(3)△ABC的周长为________,面积为________.28. (15分)如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共99分)19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、28-1、28-2、。
2024年昭阳区第一次初中毕业诊断性检测九年级数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 若气温上升记作,则气温下降记作( )A. B. C. D. 【答案】C【解析】【分析】本题考查了正负数的应用.解题的关键在于熟练掌握正数与负数表示意义相反的两种量.根据用正负数来表示具有相反的意义量:上升记为正,则下降记为负,直接得出结论即可.【详解】解:若气温上升记作,则气温下降记作,故选:C .2. 2024年昭通市人民政府继续为群众办好“十件民生实事”,为全市群众送上“民生大礼包”.其中,脱贫人口劳动力转移就业稳定在万人以上,把万用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法的定义,关键是理解运用科学记数法.利用科学记数法的定义解决.科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:万.故选:C .3. 如图,已知,则( )2C ︒2C +︒3C ︒2C-︒2C +︒3C -︒3C+︒2C ︒2C +︒3C ︒3C -︒83.683.6483.610⨯48.3610⨯58.3610⨯68.3610⨯10n a ⨯110a ≤<83.658360008.3610==⨯,,160a b c d ∠=︒∥∥2∠=A. B. C. D. 【答案】D【解析】【分析】根据可得,根据可得.【详解】解:如图,,,,,故选:D .【点睛】本题考查平行线的性质,解题的关键是掌握两直线平行、同位角相等.4. 下列运算结果正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了整式的运算,根据同底数幂的乘法、合并同类项法则、积的乘方、幂的乘方分别运算即可判断求解,掌握整式的运算法则是解题的关键.【详解】解:、,该选项错误,不合题意;、,该选项错误,不合题意;、,该选项错误,不合题意;、,该选项正确,符合题意;故选:.120︒150︒30︒60︒a b ∥3160∠=∠=︒c d ∥2360∠=∠=︒ a b ∥∴3160∠=∠=︒ c d ∥∴2360∠=∠=︒339x x x ⋅=336235x x x +=()32626x x =222642ab ab ab -=A 336x x x ⋅=B 333235x x x +=C ()32628x x =D 222642ab ab ab -=D5. 母亲节马上就到了(5月的第二个星期天),娜娜同学准备送给母亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是( )A. 长方体B. 三棱锥C. 圆柱D. 正方体【答案】B【解析】【分析】本题考查的是简单几何体的主视图,熟记简单几何体的三种视图是解本题的关键.【详解】解:∵长方体,正方体,圆柱的主视图是长方形,而三棱锥的主视图是三角形,∴该礼物的外包装不可能是三棱锥,∴A ,D ,C 不符合题意, B 符合题意;故选:B .6. 函数的取值范围为( )A. B. C. D. 【答案】B【解析】【分析】根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,,解得.故选:B .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7. 水平社区卫生所在对本村老年人进行年度免费体检时,发现张奶奶血压偏高,为了准确诊断,随后天,卫生所每天定时为张奶奶测量血压,测得数据如下表:测量时间第天第天第天第天第天第天第天收缩压(毫米汞柱)y =x 4x >4x ≥4x <4x ≤40x -≥4x ≥71234567151148140139140136140舒张压(毫米汞柱)对收缩压,舒张压两组数据分别进行统计分析,其中错误的是()A. 收缩压的中位数为 B. 舒张压的众数为C. 收缩压的平均数为 D.舒张压的方差为【答案】A【解析】【分析】本题考查的是众数,中位数,平均数,方差的含义,熟记众数,中位数,平均数与方差的求解方法是解本题的关键.把数据按照大小排序后再确定中位数,即可判断,出现的次数最多的数为众数,可判断再利用所有数据的和除以数据总个数可得平均数,可判断,先算出来舒张压的平均数,再根据方差公式计算可判断,从而可得答案.【详解】、把收缩压的数据按照从小到大的顺序排列为:,,,,,,,收缩压的数据排在最中间的数据是,可得中位数为,故A不符合题意;、舒张压中出现的次数最多,故舒张压的众数为,故符合题意;、收缩压的平均数为:,故符合题意;、舒张压的平均数为:,则舒张压的方差为:,故符合题意;故选.8. 不等式组的解集在数轴上表示正确的是【】A. B.C. D.【答案】A【解析】9092888890808813988142887A BC DA136139140140140148 151140140B8888BC()113613914031481511427++⨯++=CD()190928839080887++⨯++=()()()()22222188290889288388888908877S⎡⎤=⨯-+-+⨯-+-=⎣⎦DA215{3112xxx-<-+≥【分析】先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)【详解】解 ①得,x<3解②得,x -1不等式的解集为:-1x<3在数轴上表示为:故选A9. 如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D为圆心,大于CD 的长为半径画弧,两弧在∠AO B 内部交于点E ,过点E 作射线OE ,连接CD.则下列说法错误的是A. 射线OE 是∠AOB 的平分线B. △COD 是等腰三角形C. C 、D 两点关于OE 所在直线对称D. O 、E 两点关于CD 所在直线对称【答案】D【解析】【详解】解:A 、连接CE 、DE ,根据作图得到OC =OD ,CE =DE .∵在△EO C 与△EOD 中,OC =OD ,CE =DE ,OE =OE ,∴△EOC ≌△EOD (SSS ).∴∠AOE =∠BOE ,即射线OE 是∠AOB 的平分线,正确,不符合题意.B 、根据作图得到OC =OD ,∴△COD 是等腰三角形,正确,不符合题意.2153112x x x -<⎧⎪⎨-+≥⎪⎩①②≥∴≤12C 、根据作图得到OC =OD ,又∵射线OE 平分∠AOB ,∴OE 是CD 的垂直平分线.∴C 、D 两点关于OE 所在直线对称,正确,不符合题意.D 、根据作图不能得出CD 垂直平分OE ,∴CD 不是OE 的垂直平分线,∴O 、E 两点关于CD 所在直线不对称,错误,符合题意.故选:D .10. 关于x 的方程的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】根据方程各项系数结合根的判别式△=b 2-4ac ,找出方程根的判别式的符号,由此即可得出结论.【详解】方程的判别式为△=-4ac==+80,所以该方程有两个不相等的实数根.故选A.【点睛】本题考查一元二次方程根的判别式.11.的值应在( )A. 4和5之间 B. 5和6之间 C. 6和7之间 D. 7和8之间【答案】A【解析】的大小.解题的关键利用夹逼的大小.,则,的220x px +-=220xpx +-=2b 2412p -⨯⨯-()2p >1-1<<56<<∴,的值应在4和5之间,故选:A .12. 为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有::篮球,:排球,:足球;:羽毛球,:乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A. 选科目的有5人B. 选科目的扇形圆心角是C. 选科目的人数占体育社团人数的一半D. 选科目的扇形圆心角比选科目的扇形圆心角的度数少【答案】C【解析】【分析】本题考查了条形统计图与扇形统计图信息关联, A 选项先求出调查的学生人数,再求选科目的人数来判定,B 选项利用选科目所占的比例判定即可,C 选项中求出的人数即可判定,D 选项利用选科目的人数减选科目,再除以总人数乘求解即可判定.【详解】解:由题意得:调查的学生人数为:(人),选科目的人数为:(人),故A 选项正确,选科目的扇形圆心角是,故B 选项正确,选科目的人数为,总人数为50人,所以选科目的人数占体育社团人数的一半错误,故C 选项不正确,选科目的扇形圆心角比选科目的扇形圆心角的度数.故D 选项正确,故选:C .13. 如图,是边边上的两点,且,若,则与415<-<1-A B C D E E D 72︒A B D 21.6︒E D 360⨯︒B C D ,,B D 360︒1224%50÷=E 5010%5⨯=D 103607250⨯︒=︒B C D ,,7121029++=A B D 336021.650⨯︒=︒,D E ABC ,AB AC DE BC ∥:1:16ADE ABC S S =△△ADE V的周长之比为( )A. B. C. D. 【答案】B【解析】【分析】由平行易证,由面积比等于相似比的平方,周长比等于相似比求解.【详解】∵∴,∴∵∴与周长之比为,故选B .【点睛】本题考查相似三角形的判定和性质,熟练掌握相似三角形性质是解题的关键.14. 如图,A ,B ,C 为上的三个点,,若,则的度数是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查了圆周角定理,根据同圆中同弧所对的圆周角度数是圆心角度数的一半得到,再根据即可得到答案.【详解】解:∵,∴,∵,ABC 1:21:41:51:16ADE ABC DE BC∥ADE B ∠=∠ADE ABC:1:16ADE ABC S S =△△ADE V ABC 1:4O 4AOB BOC ∠=∠60ACB ∠=︒BOC ∠20︒30︒15︒60︒2120AOB ACB ∠=∠=︒4AOB BOC ∠=∠60ACB ∠=︒2120AOB ACB ∠=∠=︒4AOB BOC ∠=∠∴,故选:B .15. 一组数:2,1,5,x ,17,y ,65,满足“前两个数依次为a 、b ,紧随其后的第三个数是”,例如这组数中的第三个数“5”是由“”得到的,那么这组数中y 表示的数为( )A. 27B. 11C. 31D. 41【答案】C【解析】【分析】本题考查了规律型中数字的变化类,根据数列中数的变化,代入数据求出x 值是解题的关键.根据数列中数的规律即可得出,再求出y 的值即可.【详解】解:依题意,得,,故选:C .二、填空题(本大题共4小题,每小题2分,共8分)16. 分解因式:_____.【答案】【解析】【分析】先提取公因式a ,再利用完全平方公式分解因式即可.【详解】解:,故答案为:.【点睛】本题主要考查了分解因式,熟知分解因式方法是解题的关键.17. 如图,图中网格由边长为1的小正方形组成,点为网格线的交点.若线段绕原点顺时针旋转90°后,端点的坐标变为______.的30BOC ∠=︒2a b +221´+215x =⨯+2157x =⨯+=271731y =⨯+=22ab ab a -+=()21a b -22ab ab a -+()221a b b =-+()21a b =-()21a b -A OA O A【答案】【解析】【分析】根据题意作出旋转后的图形,然后读出坐标系中点的坐标即可.【详解】解:线段OA 绕原点O 顺时针旋转90°后的位置如图所示,∴旋转后的点A 的坐标为(2,-2),故答案为:(2,-2).【点睛】题目主要考查图形的旋转,点的坐标,理解题意,作出旋转后的图形读出点的坐标是解题关键.18. 若点关于原点的对称点在反比例函数的图象上,则该反比例函数的解析式为___________.【答案】【解析】【分析】本题考查反比例函数图象上点的坐标特征和关于原点对称坐标的特征;先求出点关于原点的对称点,再代入反比例函数即可求解.【详解】点关于原点的对称点是()2,2-(3,2)P -k y x =6y x =-(3,2)P -k y x =(3,2)P -(3,2)-把代入得:∴该反比例函数的解析式为故答案为:.19. 如图,中,,,以为直径的交于点,为的中点,则图中阴影部分的面积为___________.【答案】【解析】【分析】本题考查了圆周角定理及其推论、等腰三角形的判定和性质以及扇形的面积公式,证明是等腰三角形,求出的度数是解题的关键.首先证明是等腰三角形,求出,然后根据圆周角定理求出,再利用扇形的面积公式计算即可.【详解】解:连接,如图所示,是直径,,即,为的中线,是等腰三角形,,,,半径,为(3,2)-k y x=6k =-6y x =-6y x=-ABC 6AB =24∠︒=C AB O BC D D BC 6π5ABC AOD ∠ABC 24B C ∠=∠=︒AOD ∠AD AB 90ADB ∴∠=︒AD BC ⊥AD BC ABC ∴ 24B C ∴∠=∠=︒248AOD B ∴∠=∠=︒=6AB ∴3,故答案为:.三、解答题(本大题共8小题,共62分)20.【答案】【解析】【分析】先将二次根式化简、分别得出零指数幂、负指数幂、特殊角的三角函数值,然后根据实数的运算法则求得计算结果即可.【详解】解:原式【点睛】本题主要考查二次根式化简、零指数幂、负指数幂、特殊角的三角函数值,熟练掌握二次根式化简、零指数幂、负指数幂、特殊角的三角函数值的化简计算是解决本题的关键.21. 如图,在中,D 、E 是边BC 上两点,且.求证:.【答案】见解析【解析】【分析】本题主要考查对全等三角形判定定理的理解和掌握,先由等角对等边证,再在利用即可证明,即可证得结论.熟练掌握全等三角形的判定定理并灵活运用.【详解】证明:,,在与中,248π36π3605S ∴= 阴影=6π5()20126tan 302π-⎛⎫+---︒ ⎪⎝⎭03146=++--0=ABC ADB AEC B C ∠=∠∠=∠,BD CE =AB AC =AAS ABD ACE △△≌B C ∠=∠ AB AC ∴=ABD △ACE △ADB AEC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD ACE ∴ ≌.22. 某中学在五四青年节来临之际用元购进、两种运动衫共件.已知购买种运动衫与购买种运动衫的费用相同(各为元),种运动衫的单价是种运动衫单价的倍.求、两种运动衫的单价各是多少元?【答案】、两种运动衫的单价各是元、元【解析】【分析】本题考查了分式方程的实际应用,解题的关键是找准等量关系,正确列出分式方程.设种运动衫单价为元,种运动衫单价为元,故种运动衫购买数量为元,种运动衫购买数量为元,即可得出关于的分式方程,解之经检验后,即可得出结果 .【详解】解:设种运动衫单价为元,种运动衫单价为元.则由题意可列: ,解得,,经检验,是所列方程的解,(元),答:、两种运动衫的单价各是元、元.23. 为弘扬中国传统文化,某校举办了中小学生“国学经典大赛”,比赛项目为:A .唐诗,B .宋词,C .论语,D .三字经.比赛形式为“单人组”和“双人组”.(1)小颖参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“论语”的概率为___________;(2)若“双人组”比赛规则是:同一小组的两名成员的比赛项目不能相同,且每人只能随机抽取一次,则小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的概率是多少?请用画树状图或列表的方法进行说明.【答案】(1) (2);见解析【解析】【分析】本题主要考查树状图法或列表法求概率:(1)直接利用概率公式求解;(2)先画树状图展示所有等可能的结果数,再找出恰好小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的结果数,然后根据概率公式求解.BD CE ∴=4800A B 88A B 2400B A 1.2A B A B 5060A x B 1.2x A 2400x B 24001.2xx A x B 1.2x 24002400881.2x x+=50x =50x =1.2 1.25060x =⨯=A B 50601416【小问1详解】解:小颖从4个项目中随机抽取一个比赛项目,恰好抽中“论语”的概率为,故答案为:;【小问2详解】解:画树状图如下:共有12种等可能的结果数,其中小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的结果数为2,所以恰好小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的概率.24. 如图,D 为线段中点,连接,,过A 作且,连接.(1)求证:四边形是矩形.(2)连接交于点F ,若,求的长.【答案】(1)见解析(2【解析】【分析】(1)由题意得,,由,可证四边形是平行四边形,由且D 为线段中点,可得,即,进而结论得证;(2)由(1)知:,则,可知,证明,则,即141421126=BC AB AC 、AB AC =AE BC ∥AE DC =BE AEBD CE AB 602ACB AE ∠=︒=,CF AE BD =AE BC ∥AEBD AB AC =BC AD BC ⊥90ADB ∠=︒2AE BD CD ===4BC =tan 60AD CD =⋅︒=AEBD BE AD ==CE =AEF BCF ∽EF AE CF BC=,计算求解即可.【小问1详解】证明:∵D 为线段中点,∴,∵,∴,又∵,四边形是平行四边形,∵且D 为线段中点,∴,即,四边形矩形;【小问2详解】解:由(1)知:,∴,∵,,∴由矩形可知,由勾股定理得,,∵,∴,∴,∴,解得,,∴.【点睛】本题考查了矩形的判定与性质,等腰三角形的判定与性质,正切,相似三角形的判定与性质等知识.熟练掌握矩形的判定与性质,等腰三角形的判定与性质,正切,相似三角形的判定与性质是解题的关是12=BC BD DC =AE DC =AE BD =AE BC ∥∴AEBD AB AC =BC AD BC ⊥90ADB ∠=︒∴AEBD 2AE BD CD ===4BC =90ADC ∠=︒602ACB CD ∠=︒=,tan 60AD CD =⋅︒=AEBD BE AD ==CE ==AE BC ∥EAB ABC AEC ECB ∠=∠∠=∠,AEF BCF ∽EF AE CF BC =12=CF =CF键.25. 新能源汽车作为一个新兴产业,摆脱了汽车对石油的依赖,而且没有废气排放,发展新能源是保障国家环境安全及能源安全重要措施.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当时,求1千瓦时的电量汽车能行驶的路程,(2)当时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【答案】(1)150千米;6千米(2);20千瓦时【解析】【分析】本题考查的是一次函数的实际应用,掌握利用待定系数法求解函数的解析式是解本题的关键;(1)直接利用函数图象可得答案;(2)设当时, y 关于x 的函数表达式为.把代入求解解析式即可,再求解当时的函数值即可.【小问1详解】解:由图可知,蓄电池剩余电量为35千瓦时时汽车已行驶的路程为150千米.当时,(千米/千瓦时)千瓦时的电量汽车能行驶的路程6千米.0150x ≤≤150200x ≤≤11102y x =-+150200x ≤≤y kx b =+(150,35),(200,10)180x =0150x ≤≤15066035=-1∴.【小问2详解】设当时, y 关于x 的函数表达式为.把代入,得,解得 当时,即蓄电池的剩余电量为20千瓦时26. 已知点和在二次函数(a ,b 是常数,)的图象上,该图象与y 轴交于点C .(1)当时,求a 和b 的值;(2)若二次函数的图象经过点且点N 不在坐标轴上,当时,求n 的取值范围.【答案】(1) (2)且【解析】【分析】本题主要考查二次函数图像上点的坐标特征,熟练掌握二次函数图像上点的坐标特征是解题的关键.(1)用待定系数法求出函数解析式即可得到答案;(2)先求出对称轴为,再根据图象经过点且点不在坐标轴上,得到即可得到答案.【小问1详解】解:当时,二次函数的图象过150200x ≤≤y kx b =+(150,35),(200,10)1503520010k b k b +=⎧⎨+=⎩12110k b ⎧=-⎪⎨⎪=⎩1110,(150200)2y x x ∴=-+≤≤180x =1180110202y =-⨯+=(,0)A m -(3,0)B m 24y ax bx =++0a ≠2m =-(,4)N n 11m -<<14,33a b =-=-22n -<<0n ≠x m =(,4)N n N 2n m =2m =-24y ax bx =++(2,0),(6,0)A B -,解得,即:;【小问2详解】图象过点∴其对称轴为 又的图象过点,即,则, ,有点N 不在坐标轴上且,且.27. 已知中,,且,M 为线段的中点,作,点P 在线段上,点Q 在线段上,以为直径的始终过点M ,且交线段于点E .(1)求线段的长度;(2)求的值;(提示:连接)(3)当是等腰三角形时,求出线段的长.【答案】(1) (2) 的424036640a b a b ++=⎧∴⎨-+=⎩1343a b ⎧=-⎪⎪⎨⎪=-⎪⎩14,33a b =-=-24y ax bx =++ (,0),(3,0)A mB m -32m m x m -+==24y ax bx =++ (,4),(0,4)n 02n m +∴=2n m =2n m =11m -<< 112n -<< 112n ∴-<<0n ≠22n ∴-<<0n ≠Rt ABC △90,20C AB ∠=︒=4cos 5A =AB DM AB ⊥CB AC PQ O PQ DM AD tan PQM ∠CM △MPE AQ 25243(3)或【解析】【分析】(1)中点求出的长,锐角三角函数求出的长即可;(2)连接,斜边上的中线,推出,圆周角定理,推出,,进而得到,进行求解即可;(3)先证明,得到为等腰三角形,分三种情况进行讨论求解即可.【小问1详解】解:为中点,在中,即:,;【小问2详解】连接,是斜边上的中点,,∴,,,是的直径,,,,;10254AM AD CM A ACM ∠=∠A MPQ ∠=∠90ACB PMQ ∠=∠=︒PQM ABC ∠=∠AMO PME △△∽AMQ △M AB 20AB =1102AM AB ∴==DM AB ⊥ Rt ADM 4cos 5AM A AD ==1045AD =252AD ∴=CM M Rt ABC △12CM AB AM BM ∴===A ACM ∠=∠B BCM∠=∠MPQ ACM ∠=∠ A MPQ ∴∠=∠QP O 90ACB PMQ ∴∠=∠=︒PQM ABC BCM ∴∠=∠=∠4cos ,205AC A AB AB === 16,12AC BC ∴===164tan tan 123AC PQM ABC BC ∠=∠===;【小问3详解】由(1)知.,当是等腰三角形时,有为等腰三角形,当时,,当时,,而,所以这种情况不存在;当时,,而由(1)知,可得;或.【点睛】本题考查圆周角定理,解直角三角形,斜边上的中线,相似三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,是解题的关键.4tan 3PQM ∴∠=90,90QMA QMD DMP QMD ∠+∠=︒∠+∠=︒QMA DMP∴∠=∠A MPQ ∠=∠AMO PME ∴∽△△PME △AMQ △AM AQ =10AQ =AM MQ =A AQM ACM ∠=∠=∠AQM ACM ∠>∠AQ MQ =A QMA ∠=∠9090A ADM QMA DMQ ∠+∠=︒∠+∠=︒,ADM DMQ∴∠=∠12QD QM AQ AD ∴===252AD =254AQ =10AQ ∴=254。
2022昭通中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 已知实数a、b满足a+b=1,且a²+b²=2,则ab的值为()。
A. 0B. 1C. -1D. 2答案:A2. 将函数y=2x-3的图象沿y轴向上平移2个单位,所得直线的解析式为()。
A. y=2x-1B. y=2x+1C. y=2x-5D. y=2x+3答案:B3. 已知等腰三角形的两边长分别为4和6,则该三角形的周长为()。
A. 14B. 16C. 12D. 10答案:B4. 已知一个正比例函数的图象经过点(-2,4),则该函数的解析式为()。
A. y=-2xB. y=2xC. y=-4xD. y=4x答案:A5. 已知一个二次函数的图象开口向上,且经过点(0,3)和(2,3),则该二次函数的对称轴为()。
A. x=1B. x=2C. x=0D. x=-1答案:A6. 已知一个圆的半径为5,圆心到直线的距离为3,则该圆与直线的位置关系为()。
A. 相离B. 相切C. 相交D. 内含答案:C7. 已知一个扇形的圆心角为60°,半径为4,则该扇形的面积为()。
A. 4πB. 8πC. 6πD. 2π答案:D8. 已知一个直角三角形的两直角边长分别为3和4,则该三角形的斜边长为()。
A. 5B. 7C. 6D. 8答案:A9. 已知一个样本数据为2,3,4,5,6,则该样本数据的平均数为()。
A. 4B. 3.5C. 3D. 4.5答案:A10. 已知一个多项式f(x)=x³-3x²+4,且f(1)=2,则该多项式可以分解为()。
A. (x-1)(x²-2x+4)B. (x-1)(x²-2x+2)C. (x-1)(x²-x+4)D. (x-1)(x²+x+4)答案:C二、填空题(本题共5小题,每小题3分,共15分)11. 已知一个数列的前三项为1,2,3,且从第四项开始,每一项都是其前三项的和,则该数列的第五项为______。
云南省昭通市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·吉隆期中) ﹣的倒数是()A . ﹣B . 1C . ﹣D .2. (2分)如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是()A . AD=AEB . DB=ECC . ∠ADE=∠CD . DE=BC3. (2分)一组数据2、9、5、5、8、5、8的中位数是()A . 2B . 5C . 8D . 94. (2分) (2019九下·镇原期中) 如图是某几何体的三视图,则该几何体是()A . 圆锥B . 圆柱C . 三棱柱D . 三棱锥5. (2分)化简的结果是()A .B .C .D . 2(x+1)6. (2分)小珍用12. 4元恰好买了单价为0.8元和1.20元两种贺卡共12张,则其中单价为0.8元的贺卡有()A . 5张B . 7张C . 6张D . 4张7. (2分)(2020·黄冈模拟) 如图①,在中,,动点D从点A出发,沿以的速度匀速运动到点B,过点D作于点E,图②是点D运动时,的面积随时间变化的关系图象,则的长为()A . 4B . 6C . 8D . 108. (2分) (2017八上·西安期末) 到三角形三个顶点距离相等的点是().A . 三角形三边垂直平分线的交点B . 三角形三条内角平分线的交点C . 三角形三条高线所在直线的交点D . 三角形三条中线的交点9. (2分)利用求根公式求5x2+=6x的根时,a,b,c的值分别是()A . 5,, 6B . 5,6,C . 5,﹣6,D . 5,﹣6,﹣10. (2分) (2018九上·大石桥期末) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0④当y>0时,x的取值范围是-1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共6分)11. (1分)(2017·港南模拟) 36的算术平方根是________.12. (1分) (2018九上·孝感月考) 如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45,若点M、N分别是AB、AC的中点,则MN长的最大值是________.13. (1分)小明的爸爸前年存了年利率为2.25%的两年期定期储蓄,今年到期后,扣除利息税(税率为20%),所得利息正好为小明买了一个价值576元的CD机,小明爸爸前年存了________元钱.14. (1分)如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=3,则菱形ABCD的边长是15. (1分)(2020·鼓楼模拟) 若反比例函数y=的图象与一次函数y=mx+n的图象的交点的横坐标为1和-3,则关于x的方程=mx-n的解是________.16. (1分) (2018九上·浦东期中) 如图,Rt△ABC中,∠C=90°,BC=4,AC=6,现将△ABC沿ED翻折,使点A与点B重合,折痕为DE,则tan∠BED的值是________.三、解答题 (共8题;共76分)17. (5分) (2018七下·灵石期中)(1)计算:①(﹣x)3÷x•(﹣x)2②(﹣a)3•(﹣a2)3③(m﹣1)2• +(1﹣m)3•(m﹣1)3④(﹣)2017×(2 )2018(2)先化简,再求值:①(a+b)(a﹣b)﹣(a﹣2b)2 ,其中a=2,b=﹣1;②(x+2y)(x﹣2y)﹣(2x﹣y)2+(3x﹣y)(2x﹣5y),其中x=﹣1,y=﹣2.18. (10分) (2019九上·邯郸开学考) 乙知关于x的方程 .(1)试说明无论k取何值时,方程总有两个不相等的实数很;(2)如果方程有一个根为 , 试求的值.19. (8分)(2018·高台模拟) 在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;20. (10分)如图,为测量某建筑物BC上旗杆AB的高度,小明在距离建筑物BC底部11.4米的点F处,测得视线与水平线夹角∠AED=60°,∠BED=45°.小明的观测点与地面的距离EF为1.6米.参考数据:≈1.41,≈1.73.(1)求建筑物BC的高度;(2)求旗杆AB的高度(结果精确到0.1米).21. (10分)(2017·广元模拟) 如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG 于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD= ,求AD的长.22. (11分) (2019九上·台州期中) 周老师家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市后,她记录了15天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系如图所示,日销量P(千克)与时间第x天(x为整数)的部分对应值如下表所示:时间第x天135710111215日销量P(千3203604004405004003000克)(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)从你学过的函数中,选择合适的函数类型刻画P随x的变化规律,请直接写出P与x的函数关系式及自变量x的取值范围;(3)在这15天中,哪一天销售额达到最大,最大销售额是多少元;(4)周老师非常热爱公益事业,若在前5天,周老师决定每销售1千克红心猕猴桃就捐献a元给“环保公益项目”,且希望每天的销售额不低于2800元以维持各种开支,求a的最大值.23. (7分)如图,已知△ABC中,AB=AC=5,BC=6.(1)求△ABC的面积;(2)求tanB的值.24. (15分)(2018·山西模拟) 如图,二次函数y=x2-4x+3的图象与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.、(备用图)(1)求点A,点B和点D的坐标;(2)在y轴上是否存在一点P,使∆PBC为等腰三角形?若存在,请求出点P的坐标;(3)若动点M从点A出发,以每秒1个单位长度的速度沿AB向点B运动,同时另一个动点N从点D出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,∆MNB的面积最大,试求出最大面积.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、解析:答案:8-1、考点:解析:答案:9-1、解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共76分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
2023年云南昭通中考数学试题及答案(全卷三个大题,共24个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走80米可记作()A.80-米B.0米C.80米D.140米【答案】A【解析】【分析】此题主要用正负数来表示具有意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可.【详解】解∶∵向东走60米记作60+米,∴向西走80米可记作80-米,故选A.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负是解题的关键.2.云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.434010⨯ B.53410⨯ C.53.410⨯ D.60.3410⨯【答案】C【解析】【分析】根据科学记数法的记数方法,340000写成10n a ⨯的形式,其中01a <≤,据此可得到答案.【详解】解:533.04040001=⨯.故选C.【点睛】本题考查了科学记数法的定义,准确确定a 和n 的值是本题的解题关键.3.如图,直线c 与直线a b 、都相交.若,135a b ∠=︒∥,则2∠=()A.145︒B.65︒C.55︒D.35︒【答案】D【解析】【分析】根据平行线的性质,对顶角相等,即可求解.【详解】解:如图所示,∵a b ∥,1335==︒∠∠∴2335∠=∠=︒,故选:D.【点睛】本题考查了对顶角相等,平行线的性质,熟练掌握平行线的性质是解题的关键.4.某班同学用几个几何体组合成一个装饰品美化校园.其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.球B.圆柱C.长方体D.圆锥【答案】A【解析】【分析】根据球体三视图的特点确定结果.【详解】解:根据球体三视图的特点:球体的三视图都是大小相等的圆,确定该几何体为球.故选:A.【点睛】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.5.下列计算正确的是()A.236a a a ⋅= B.22(3)6a a = C.632a a a ÷= D.22232a a a -=【答案】D【解析】【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==,故A 错误;2222(3)39a a a ==,故B 错误;63633a a a a -÷==,故C 错误;()22223312a a a a -=-=,故D 正确.故本题选:D.【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键.6.为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65B.60C.75D.80【答案】B【解析】【分析】根据众数的定义求解即可.【详解】解:在65,60,75,60,80中,出现次数最多的是60,∴这组数据的众数是60,故选;B【点睛】本题考查了众数,众数是指一组数据中出现次数最多的数据,掌握众数的定义是解题的关键.7.中华文明,源远流长:中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可求解问题.【详解】解:由题意得:A、B、D 选项都不是轴对称图形,符合轴对称图形的只有C 选项;故选C.【点睛】本题主要考查轴对称图形,熟练掌握轴对称图形的定义是解题的关键.8.若点()1,3A 是反比例函数(0)k y k x =≠图象上一点,则常数k 的值为()A.3B.3-C.32D.32-【答案】A【解析】【分析】将点()1,3A 代入反比例函数(0)k y k x =≠,即可求解.【详解】解:∵点()1,3A 是反比例函数(0)k y k x =≠图象上一点,∴133k =⨯=,故选:A.【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.9.按一定规律排列的单项式:2345,a ,第n 个单项式是()A. B.1n - C.n D.1n-【答案】C【解析】【分析】根据单项式的规律可得,系数为,字母为a ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第n 个单项式是n,故选:C.【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.10.如图,A B 、两点被池塘隔开,、、A B C 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米,则AB =()A.4米B.6米C.8米D.10米【答案】B【解析】【分析】根据三角形中位线定理计算即可.【详解】解∶∵AC BC 、的中点分别为M N 、,∴MN 是ABC 的中位线,∴26(AB MN ==米),故选∶B.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11.阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是()A. 1.24800400x x -= B.1.24800400x x -= C.40080041.2x x -= D.80040041.2x x -=【答案】D【解析】【分析】设乙同学的速度是x 米/分,根据乙同学比甲同学提前4分钟到达活动地点,列出方程即可.【详解】解∶设乙同学的速度是x 米/分,可得:80040041.2x x-=故选∶D.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.12.如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=()A.66︒B.33︒C.24︒D.30︒【答案】B【解析】【分析】根据圆周角定理即可求解.【详解】解:∵ BCBC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒,故选:B.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题(本大题共4小题,每小题2分,共8分)13.函数110y x =-的自变量x 的取值范围是________.【答案】10x ≠【解析】【分析】要使110-x 有意义,则分母不为0,得出结果.【详解】解:要使110-x 有意义得到100x -≠,得10x ≠.故答案为:10x ≠.【点睛】本题考查了函数自变量取值范围,分式有意义的条件,理解分母不为零是解决问题的关键.14.五边形的内角和是________度.【答案】540【解析】【分析】根据n 边形内角和为()2180n -⨯︒求解即可.【详解】五边形的内角和是()52180540-⨯︒=︒.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n 边形内角和为()2180n -⨯︒是解题关键.15.分解因式:24m -=_____.【答案】(2)(2)m m +-【解析】【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.16.数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为________分米.【答案】【解析】【分析】根据勾股定理得,圆锥的高2=母线长2-底面圆的半径2得到结果.【详解】解:由圆锥的轴截面可知:圆锥的高2=母线长2-底面圆的半径2圆锥的高==故答案为【点睛】本题考查了圆锥,勾股定理,其中对圆锥的高,母线长,底面圆的半径之间的关系的理解是解决本题的关键.三、解答题(本大题共8小题,共56分)17.计算:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒.【答案】6【解析】【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒14131=+-+-6=.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.18.如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【解析】【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩,()ABC EDC SSS ∴ ≌【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.19.调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游,这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥物市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.【答案】(1)100人(2)270人【解析】【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.【小问1详解】÷(人),本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;【小问2详解】⨯(人),90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.20.甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种.记种植辣椒为A ,种植茄子为B ,种植西红柿为C ,假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x ,乙同学的选择为y .(1)请用列表法或画树状图法中的一种方法,求(),x y 所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P .【答案】(1)9(2)13【解析】【分析】(1)根据题意列出树状图,即可得到答案;(2)根据(1)列出的情况,找到甲、乙两名同学选择种植同一种蔬菜的情况,得出概率.【小问1详解】解:由题意得:共有9种情况,分别是:()()()()()()()()(),,,,,,,,,A A A B A C B A B B B C C A C B C C 、、、、、、、、.【小问2详解】解:由(1)得其中甲、乙两名同学选择种植同一种蔬菜的情况有()()(),,,A A B B C C 、、,共3种,31==93P ,∴甲、乙两名同学选择种植同一种蔬菜的概率为13【点睛】本题考查了树状图法求概率的问题,解题的关键是画出树状图.21.蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A B 、两种型号的帐篷.若购买A 种型号帐篷2顶和B 种型号帐篷4顶,则需5200元;若购买A 种型号帐篷3顶和B 种型号帐篷1顶,则需2800元.(1)求每顶A 种型号帐篷和每顶B 种型号帐篷的价格;(2)若该景区需要购买A B 、两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,为使购买帐篷的总费用最低,应购买A 种型号帐篷和B 种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【答案】(1)每顶A 种型号帐篷的价格为600元,每顶B 种型号帐篷的价格为1000元(2)当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【解析】【分析】(1)根据题意中的等量关系列出二元一次方程组,解出方程组后得到答案;(2)根据购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,列出一元一次不等式,得出A 种型号帐篷数量范围,再根据一次函数的性质,取A 种型号帐篷数量的最大值时总费用最少,从而得出答案.【小问1详解】解:设每顶A 种型号帐篷的价格为x 元,每顶B 种型号帐篷的价格为y 元.根据题意列方程组为:24520032800x y x y +=⎧⎨+=⎩,解得6001000x y =⎧⎨=⎩,答:每顶A 种型号帐篷的价格为600元,每顶B 种型号帐篷的价格为1000元.【小问2详解】解:设A 种型号帐篷购买m 顶,总费用为w 元,则B 种型号帐篷为(20)m -顶,由题意得6001000(20)40020000w m m m =+-=-+,其中()1203m m ≤-,得5m ≤,故当A 种型号帐篷为5顶时,总费用最低,总费用为()6005100020518000w =⨯+⨯-=,答:当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用及一次函数的应用,找出准确的等量关系及不等关系是解题的关键.22.如图,平行四边形ABCD 中,AE CF 、分别是BAD BCD ∠∠、的平分线,且E F 、分别在边BC AD 、上,AE AF =.(1)求证:四边形AECF 是菱形;(2)若60ABC ∠=︒,ABE 的面积等于AB 与DC 间的距离.【答案】(1)证明见解析(2)【解析】【分析】(1)先证AD BC ∥,再证AE FC ,从而四边形AECF 是平行四边形,又AE AF =,于是四边形AECF 是菱形;(2)连接AC ,先求得60BAE DAE ABC ∠∠∠===︒,再证AC AB ⊥,9030ACB ABC EAC ∠∠∠=︒-=︒=,于是有33AB AC =,得33AB AC =,再证AE BE CE ==,从而根据面积公式即可求得AC =【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,BAD BCD ∠∠=,∴BEA DAE ∠∠=,∵AE CF 、分别是BAD BCD ∠∠、的平分线,∴BAE DAE ∠∠==12BAD ∠,BCF ∠=12BCD ∠,∴DAE BCF BEA ∠∠∠==,∴AE FC ,∴四边形AECF 是平行四边形,∵AE AF =,∴四边形AECF 是菱形;【小问2详解】解:连接AC ,∵AD BC ∥,60ABC ∠=︒,∴180120BAD ABC ∠∠=︒-=︒,∴60BAE DAE ABC ∠∠∠===︒,∵四边形AECF 是菱形,∴EAC ∠=1230DAE ∠=︒,∴90BAC BAE EAC ∠∠∠=+=︒,∴AC AB ⊥,9030ACB ABC EAC ∠∠∠=︒-=︒=,∴AE CE =,tan 30tan AB ACB AC ︒=∠=即33AB AC=,∴3AB AC =,∵BAE ABC ∠∠=,∴AE BE CE ==,∵ABE 的面积等于,∴211332236ABC S AC AB AC AC AC =⋅=⋅==∴平行线AB 与DC 间的距离AC =【点睛】本题考查了平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离,熟练掌握平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离等知识是解题的关键.23.如图,BC 是O 的直径,A 是O 上异于B C 、的点.O 外的点E 在射线CB 上,直线EA 与CD 垂直,垂足为D ,且DA AC DC AB ⋅=⋅.设ABE 的面积为1,S ACD 的面积为2S.(1)判断直线EA 与O 的位置关系,并证明你的结论;(2)若21,BC BE S mS ==,求常数m 的值.【答案】(1)EA 与O 相切,理由见解析(2)23【解析】【分析】(1)EA 与O 相切,理由如下:连接OA ,先证BAC ADC ∽得ABO DAC ∠∠=,又证ABO BAO DAC ∠∠∠==,进而有90OAD OAC DAC ∠∠∠=+=︒,于是即可得EA 与O 相切;(2)先求得2EAC ABE S S = ,再证EAB ECA ∽,得222EAC ABE S AC S AB == ,从而有2232BC AC =,又BAC ADC ∽,即可得解.【小问1详解】解:EA 与O 相切,理由如下:连接OA,∵BC 是O 的直径,直线EA 与CD 垂直,∴90BAC ADC ∠∠==︒,∵DA AC DC AB ⋅=⋅,∴DA DC AB AC=,∴BAC ADC∽∴ABO DAC ∠∠=,∵OA OB =,∴ABO BAO DAC ∠∠∠==,∵90BAC BAO OAC ∠∠∠=+=︒,∴90OAD OAC DAC ∠∠∠=+=︒,∴OA DE ⊥,∴EA 与O 相切;【小问2详解】解:∵BC BE =,∴122EAC ABE S S S == ,1ABC EAB S S S == ,∴2EAC ABES S = ,∵OA DE ⊥,∴90OAB BAE OAE ∠∠∠+==︒,∵90BAC ∠=︒,OBA OBA ∠∠=,∴90OBA ECA ∠∠+=︒,∴EAB ECA ∠∠=,∵E E ∠∠=,∴EAB ECA ∽,∴222EAC ABE S AC S AB== ,∴2212AB AC =又∵90BAC ∠=︒,∴2222221322BC AC AB AC AC ++===,∴2223AC BC =∵BAC ADC ∽,∴222123ADC BAC S S AC m S S BC ==== .【点睛】本题考查了直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定,勾股定理,熟练掌握直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定以及勾股定理等知识是解题的关键.24.数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++--+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.【答案】(1)见解析(2)0a =或1a =-或1a =或2a =-【解析】【分析】(1)分12a =-与12a ≠-两种情况讨论论证即可;(2)当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,得2(42)(96)440a x a x a ++--+=,从而有4421a x a -=+或12x =-,根据整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,从而有211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解之即可.【小问1详解】解:当12a =-时,420a +=,函数2(42)(96)44y a x a x a =++--+为一次函数126y x =+,此时,令0y =,则1260x +=,解得12x =-,∴一次函数126y x =+与x 轴的交点为102⎛⎫- ⎪⎝⎭,;当12a ≠-时,420a +≠,函数2(42)(96)44y a x a x a =++--+为二次函数,∵2(42)(96)44y a x a x a =++--+,∴()2(96)(42)444a a a ∆=+---+228110836643232a a a a =-++--214049100a a -+=()20107a =≥-,∴当12a ≠-时,2(42)(96)44y a x a x a =++--+与x 轴总有交点,∴无论a 取什么实数,图象T 与x 轴总有公共点;【小问2详解】解:当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,则2(42)(96)440a x a x a ++--+=,∴()()()2144210a x a x +--+=⎡⎤⎣⎦,∴()()21440a x a +--=或210x +=∴4421a x a -=+或12x =-,∵6221x a =-+,整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,∴211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解得0a =或1a =-或12a =(舍去)或32a =-(舍去)或1a =或2a =-或52a =(舍去)或72a =-(舍去),∴0a =或1a =-或1a =或2a =-.【点睛】本题主要考查了一次函数的性质,二次函数与一元二次方程之间的关系以及二次函数的性质,熟练掌握一次函数的性质,二次函数与一元二次方程之间的关系,二次函数的性质以及数形相结合的思想是解题的关键.。
2024年云南省中考数学试卷及答案一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.(2分)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作+100米,则向南运动100米可记作()A.100米B.﹣100米C.200米D.﹣200米【分析】正和负具有相对性,向北运动用“+”表示,那么向南运动就用“﹣”表示,据此求解即可.【解答】解:∵向北运动100米记作+100米,∴向南运动100米可记作﹣100米,故选:B.2.(2分)某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A.5.78×104B.57.8×103C.578×102D.5780×10【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:57800用科学记数法可以表示为5.78×104,故选:A.【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)下列计算正确的是()A.x3+5x3=6x4B.x6÷x3=x5C.(a2)3=a7D.(ab)3=a3b3【分析】根据合并同类项法则,幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、x3+5x3=6x3,故A选项错误;B、x6÷x3=x3,故B选项错误;C、(a2)3=a6,故C选项错误;D、(ab)3=a3b3,故D选项正确;故选:D.【点评】本题考查合并同类项、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.(2分)若在实数范围内有意义,则实数x的取值范围为()A.x≥0B.x≤0C.x>0D.x<0【分析】根据二次根式有意义的条件,即被开方数为非负数即可求得答案.【解答】解:∵在实数范围内有意义,∴x≥0,故选:A.【点评】本题考查二次根式有意义的条件,此为基础且重要知识点,必须熟练掌握.5.(2分)某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.正方体B.圆柱C.圆锥D.长方体【分析】根据题中所给几何体的三视图进行求解即可.【解答】解:∵主视图、俯视图、左视图都是矩形,∴这个几何体是长方体.故选:D.【点评】本题主要考查由三视图判断几何体,熟练掌握几何体的三视图是解题的关键.6.(2分)一个七边形的内角和等于()A.540°B.900°C.980°D.1080°【分析】根据n边形内角和公式为(n﹣2)×180°,可以计算出七边形内角和的度数.【解答】解:一个七边形的内角和为:(7﹣2)×180°=5×180°=900°,故选:B.【点评】本题考查多边形内角和,解答本题的关键是明确n边形内角和公式为(n﹣2)×180°.7.(2分)甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数(单位:环)和方差s2如下表所示:甲乙丙丁9.99.58.28.5s20.090.650.16 2.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【答案】A.8.(2分)已知AF是等腰△ABC底边BC上的高,若点F到直线AB的距离为3,则点F到直线AC的距离为()A.B.2C.3D.【答案】C.9.(2分)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x,根据题意,下列方程正确的是()A.80(1﹣x2)=60B.80(1﹣x)2=60C.80(1﹣x)=60D.80(1﹣2x)=60【分析】利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本×(1﹣甲种药品成本的年平均下降率)2,即可列出关于x的一元二次方程,此题得解.【解答】解:根据题意得:80(1﹣x)2=60.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.(2分)按一定规律排列的代数式:2x,3x2,4x3,5x4,6x5,⋯,第n个代数式是()A.2xn B.(n﹣1)xn C.nxn+1D.(n+1)xn【分析】根据题目给出的式子的特点,可以发现第n的代数式的系数应该是n+1,而x的次数为n,然后即可写出第n个代数式.【解答】解:∵按一定规律排列的代数式:2x,3x2,4x3,5x4,6x5,⋯,∴第n个代数式为(n+1)xn,故选:D.【点评】本题考查数字的变换类、单项式,解答本题的关键是发现式子的变化特点,写出第n个代数式.11.(2分)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的定义解答即可.【解答】解:A、B、C中,图形不是轴对称图形,不符合题意;D中,图形是轴对称图形,符合题意.故选:D.【点评】本题考查的是轴对称图形,熟知如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称是解题的关键.12.(2分)如图,在△ABC中,若∠B=90°,AB=3,BC=4,则tanA=()A.B.C.D.【分析】根据正切的定义即可求得答案.【解答】解:∵在△ABC中,若∠B=90°,AB=3,BC=4,∴tanA==,故选:C.【点评】本题考查正切的定义,此为基础且重要知识点,必须熟练掌握.13.(2分)如图,CD是⊙O的直径,点A,B在⊙O上.若=,∠AOC=36°,则∠D=()A.9°B.18°C.36°D.45°【分析】先连接AD,根据在同圆和等圆中,等弧所对的圆周角相等证明∠ADC=∠BDC,最后根据圆周角定理进行解答即可.【解答】解:连接AD,∵,∴∠ADC=∠BDC=,故选:B.【点评】本题主要考查了圆周角定理,解题关键是识别图形,利用圆周角定理找出角与角之间的关系.14.(2分)分解因式:a3﹣9a=()A.a(a﹣3)(a+3)B.a(a2+9)C.(a﹣3)(a+3)D.a2(a﹣9)【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=a(a2﹣9)=a(a﹣3)(a+3),故选:A.【点评】本题考查提公因式法与公式法因式分解,熟练掌握因式分解的方法是解题的关键.15.(2分)某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A.700π平方厘米B.900π平方厘米C.1200π平方厘米D.1600π平方厘米【分析】根据“圆锥的侧面积=底面周长×母线长÷2”得出结论即可.【解答】解:圆锥的侧面积=×2π×30×40=1200π(平方厘米).故选:C.【点评】本题考查了圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题(本大题共4小题,每小题2分,共8分)16.(2分)若一元二次方程x2﹣2x+c=0无实数根,则实数c的取值范围为c>1.【分析】利用根的判别式的意义得到Δ=(﹣2)2﹣4c<0,然后解不等式,从而可确定c的取值范围.【解答】解:∵一元二次方程x2﹣2x+c=0无实数根,∴Δ=(﹣2)2﹣4c<0,∴c>1,故答案为:c>1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.17.(2分)已知点P(2,n)在反比例函数y=的图象上,则n=5.【分析】把点P代入反比例函数解析式,即可求出n.【解答】解:将点P(2,n)代入y=,∴,∴n=5,故答案为:5.【点评】本题考查了反比例函数图象上的点,只需要将点的坐标代入到函数解析中即可.18.(2分)如图,AB与CD交于点O,且AC∥BD.若=,则=.【分析】根据AC∥BD.可以得到△AOC∽△BOD,然后相似三角形的相似比等于周长之比,即可得到的值.【解答】解:∵AC∥BD.∴△AOC∽△BOD,∴=,∵=,∴=,故答案为:.【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确相似三角形的相似比等于周长之比.19.(2分)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有120人.【分析】用总人数乘以喜欢跳绳的学生所占的百分比即可得出答案.【解答】解:根据题意得:1000×12%=120(人),答:该校喜欢跳绳的学生大约有120人.故答案为:120.【点评】本题考查了条形统计图和扇形统计图的综合运用,从统计图中得到必要的信息是解题的关键.三、解答题(本大题共8小题,共62分)20.(7分)计算:70+()﹣1+|﹣|﹣()2﹣sin30°.【分析】先化简零指数幂、负整数指数幂、绝对值、二次根式、三角函数,然后根据实数的运算法则求得计算结果.【解答】解:70+()﹣1+|﹣|﹣()2﹣sin30°=1+6+﹣5﹣=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.21.(6分)如图,在△ABC和△AED中,AB=AE,∠BAE=∠CAD,AC=AD.求证:△ABC≌△AED.【分析】先根据题意得出∠BAC=∠EAD,再由SAS定理即可得出结论.【解答】证明:∵∠BAE=∠CAD,∴∠BAE+∠CAE=∠CAD+∠CAE,即∠BAC=∠EAD,在△ABC与△AED中,,∴△ABC≌△AED(SAS).【点评】本题考查的是全等三角形的判定,熟知全等三角形的判定定理是解题的关键.22.(7分)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.【分析】设D型车的平均速度是x千米/小时,则C型车的平均速度是3x千米/小时,利用时间=路程÷速度,结合乘坐C型车比乘坐D型车少用2小时,可列出关于x的分式方程,解之经检验后,即可得出结论.【解答】解:设D型车的平均速度是x千米/小时,则C型车的平均速度是3x千米/小时,根据题意得:﹣=2,解得:x=100,经检验,x=100是所列方程的解,且符合题意.答:D型车的平均速度是100千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.(6分)为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.【分析】(1)根据题意列出图表得出所有等可能的情况数即可;(2)根据概率公式进行求解即可.【解答】解:(1)根据题意列表如下:a b ca(a,a)(a,b)(a,c)b(b,a)(b,b)(b,c)共有6种等可能的情况数;(2)∵共有6种等可能的情况数,其中七年级年级组、八年级年级组选择的研学基地互不相同的有4种,∴该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P==.【点评】此题考查了列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)如图,在四边形ABCD中,点E、F、G、H分别是各边的中点,且AB∥CD,AD∥BC,四边形EFGH是矩形.(1)求证:四边形ABCD是菱形;(2)若矩形EFGH的周长为22,四边形ABCD的面积为10,求AB的长.【分析】(1)先证明四边形ABCD是平行四边形,再证明AC⊥BD,从而得出四边形ABCD是菱形;(2)根据矩形EFGH的周长和四边形ABCD的面积求出AC2+BD2=444,从而得出AO2+BO2=111,由此得出AB的长.【解答】(1)证明:连接AC,BD交于点O,交FG于点N,交HG于点M,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵四边形EFGH是矩形,∴∠HGF=90°,∵H、G分别是AD、DC的中点,∴HG∥AC,HG=AC,∴∠HGF=∠GNC,∴∠GNC=90°,∵G,F分别是DC、BC的中点,∴GF∥BD,GF=BD,∴∠GNC=∠MOC=90°,∴BD⊥AC,∴四边形ABCD是菱形;(2)解:∵矩形EFGH的周长为22,∴HG+FG=11,∴AC+BD=22,∵,∴AC×BD=20,∵(AC+BD)2=AC2+2×AC×BD+BD2,∴AC2+BD2=444,∴,∴AO2+BO2=111,∴AB2=AO2+BO2=111,∴AB=.【点评】本题考查了平行四边形的性质与判定,菱形的性质与判定,矩形的性质等,掌握性质和判定方法是解题的关键.25.(8分)A 、B 两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A 、B 两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A 型号35a B 型号42b若顾客在该超市购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元.(1)求a 、b 的值;(2)若某公司计划从该超市购买A 、B 两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x (单位:个)不少于B 种型号吉祥物数量的,又不超过B 种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y 元,求y 的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.【分析】(1)根据题意列关于a 、b 的二元一次方程组并求解即可;(2)购买B 种型号吉祥物的数量为(90﹣x )个,根据题意列关于x的一元一次不等式组并求其解集;根据“总利润=每个A 种型号吉祥物的利润×购买A 种型号吉祥物的数量+每个B 种型号吉祥物的利润×购买B 种型号吉祥物的数量”写出y 关于x 的函数关系式,根据该关系式的增减性和x 的取值范围,求出y 的最大值即可.【解答】解:(1)根据题意,得,解得,∴a的值是40,b的值是50.(2)购买B种型号吉祥物的数量为(90﹣x)个.根据题意,得,解得≤x≤60;y=(40﹣35)x+(50﹣42)(90﹣x)=﹣3x+720,∵﹣3<0,∴y随x的减小而增大,∵≤x≤60且x为整数,∴当x=52时,y的值最大,y最大=﹣3×52+720=564,∴y的最大值是564.【点评】本题考查一次函数、二元一次方程组及一元一次不等式组,熟练掌握二元一次方程组、一元一次不等式组的解法和一次函数的增减性是解题的关键.26.(8分)已知抛物线y=x2+bx﹣1的对称轴是直线x=.设m是抛物线y=x2+bx﹣1与x轴交点的横坐标,记M=.(1)求b的值;(2)比较M与的大小.【分析】(1)根据抛物线y=x2+bx﹣1的对称轴是直线x=,可知﹣=.然后即可求得b的值;(2)方法一:将(1)中b的值代入抛物线,求出抛物线与x轴交点的横坐标,然后分类讨论M与的大小即可.方法二:根据m是抛物线y=x2+bx﹣1与x轴交点的横坐标,可以得到0=m2﹣3m﹣1,然后即可得到m2=3m+1,然后先化简m5,再计算M,最后计算M与的大小.【解答】解:(1)∵抛物线y=x2+bx﹣1的对称轴是直线x=.∴﹣=.解得b=﹣3;(2)由(1)知:b=﹣3,∴抛物线y=x2﹣3x﹣1,当y=0时,0=x2﹣3x﹣1,解得x=,∵m是抛物线y=x2+bx﹣1与x轴交点的横坐标,∴m=,方法一:直接计算化简,当m=时,M===,∴﹣=>0,即M>;当m=时,M==<0,∴M<;由上可得,当m=时,M>;当m=时,M<.方法二:∵m是抛物线y=x2﹣3x﹣1与x轴交点的横坐标,∴0=m2﹣3m﹣1,∴m2=3m+1,∴m5=(m2)2•m=(3m+1)2•m=(9m2+6m+1)•m=[9(3m+1)+6m+1]•m=(27m+9+6m+1)•m=(33m+10)•m=33m2+10m=33(3m+1)+10m=99m+33+10m=109m+33,∴M===m,由0=m2﹣3m﹣1,可得m=,当m=时,M﹣=m﹣=﹣=>0,此时M>;当m=时,M﹣=m﹣=﹣=<0,此时M<.【点评】本题考查抛物线与x轴的交点、实数的大小,解答本题的关键是明确题意,求出b和m的值.27.(12分)如图,AB是⊙O的直径,点D、F是⊙O上异于A、B的点.点C在⊙O外,CA=CD,延长BF与CA的延长线交于点M,点N在BA的延长线上,∠AMN=∠ABM,AM•BM=AB•MN.点H在直径AB上,∠AHD=90°,点E是线段DH的中点.(1)求∠AFB的度数;(2)求证:直线CM与⊙O相切;(3)看一看,想一想,证一证:以下与线段CE、线段EB、线段CB有关的三个结论:CE+EB<CB,CE+EB =CB,CE+EB>CB,你认为哪个正确?请说明理由.【分析】(1)利用直径所对的圆周角为直角的性质解答即可;(2)利用相似三角形的判定与性质得到∠NAM=∠MAB=90°,再利用圆的切线的判定定理解答即可;(3)连接OC,OD,过点B作⊙O的切线,交CD的延长线于点K,设BC与DH交于点G,利用全等三角形的判定与性质和圆的切线的判定定理得到CK为⊙O的切线,利用切线长定理得到DK=BK,利用平行线的判定定理得到AC∥DH∥BK,利用相似三角形的判定与性质得到,,利用平行线分线段成比例定理得到,则,进而得到GH=GD,则点G是线段DH的中点,所以点G与点E重合,则结论可得.【解答】(1)解:∵AB是⊙O的直径,∴∠AFB=90°;(2)证明:∵AM•BM=AB•MN,∴,∵∠AMN=∠ABM,∴△AMN∽△ABM,∴∠NAM=∠MAB.∵∠NAM+∠MAB=180°,∴∠NAM=∠MAB=90°,∴OA⊥CM.∵OA为⊙O的半径,∴直线CM与⊙O相切;(3)解:正确的结论为:CE+EB=CB,理由:连接OC,OD,过点B作⊙O的切线,交CD的延长线于点K,设BC与DH交于点G,如图,在△OAC和△ODC中,,∴△OAC≌△ODC(SSS),∴∠OAC=∠ODC.由(2)知:OA⊥CM,∴∠OAC=∠ODC=90°,∴OD⊥CD.∵OD为⊙O的半径,∴CK为⊙O的切线.∵BK为⊙O的切线,∴DK=BK,BK⊥AB.∵DH⊥AB,CA⊥AB,∴AC∥DH∥BK,∴△BHG∽△BAC,△CDG∽△CKB,.∴,,∴,,∴.∵CA=CD,∴GH=GD,∴点G是线段DH的中点,∵点E是线段DH的中点,∴点G与点E重合.∴线段BC经过点E,∴CE+EB=CB.【点评】本题主要考查了圆的有关性质,圆周角定理,圆的切线的判定定理与性质定理,相似三角形的判定与性质,直角三角形的性质,全等三角形的判定与性质,平行线的判定与性质,平行线分线段成比例定理,连接经过切点的半径是解决此类问题常添加的辅助线.。
云南省昭通市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2020·攀枝花) 中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为.该病毒的直径在0.00000008米-0.000000012米,将0.000000012用科学记数法表示为的形式,则为().A . -8B . -7C . 7D . 82. (2分)函数中自变量x的取值范围是()A . x>2B . x≥2C . x≤2D . x<23. (2分)如图所示的是三通管的立体图,则这个几何体的俯视图是()A .B .C .D .4. (2分)李刚同学在黑板上做了四个简单的分式题:①(-3)0=1;②a2÷a2=a;③(-a5)÷(-a)3=a2;④4m-2= .其中做对的题的个数有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2015九上·福田期末) 已知反比例函数y= ,下列各点不在该函数图象上的是()A . (2,3)B . (﹣2,﹣3)C . (2,﹣3)D . (1,6)6. (2分)某公司10名职工3月份工资统计如下,该公司10名职工3月份工资的中位数是()工资(元)3000320034003600人数(人)3331A . 3100元B . 3200元C . 3300元D . 3400元7. (2分) (2020九上·北京月考) 下列四个图案中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .8. (2分)(2018·东营模拟) 在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB交x轴于点A1 ,作正方形A1B1C1C,延长C1B1交x轴于点A2 ,作正方形A2B2C2C1,………按这样的规律进行下去,正方形A2018B2018C2018C2017的面积为()A .B .C .D .二、填空题 (共6题;共10分)9. (1分) (2019七上·海口期中) ________的相反数是25;-0.125的绝对值是________;________的倒数是3;10. (1分) (2020九下·沈阳月考) 如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=85°,则∠1等于________°.11. (1分)(2019·岳阳模拟) 分解因式:a3b-2a2b+ab=________.12. (1分)(2019·本溪) 如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是________.13. (1分)(2020·永嘉模拟) 已知扇形的弧长为8π,圆心角为60°,则它的半径为________.14. (5分)(2017·南宁) 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为________.三、解答题 (共9题;共79分)15. (5分)(2017·营口) 先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0 , y= sin60°.16. (5分)(2019·五华模拟) 如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达点B,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,则渔船继续向东追赶鱼群有无触礁危险?(参考数据:≈1.414,≈1.732)17. (11分)(2016·河池) 某校八年级学生在学习《数据的分析》后,进行了检测,现将该校八(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).分数(分)人数(人)68478780388590109661005(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?18. (3分) (2019八上·包河期中) 甲、乙两人驾车都从Р地出发,沿一条笔直的公路匀速前往Q地,乙先出发一段时间后甲再出发,甲、乙两人到达Q地后均停止,已知P、Q两地相距200 km,设乙行驶的时间为t(h),甲、乙两人之间的距离为y(km),表示y与t函数关系的部分图象如图所示.请解决以下问题:(1)由图象可知,甲比乙迟出发________h.图中线段BC所在直线的函数解析式为________;(2)设甲的速度为,求出的值;(3)根据题目信息补全函数图象(不需要写出分析过程,但必须标明关键点的坐标);并直接写出当甲、乙两人相距32 km时t的值.19. (10分) (2019九上·九龙坡期末) “高新九龙坡,美丽山水城”,九龙坡区的创卫工作己进入最后阶段.某小区准备购买一些清洁用品,改善小区清洁,提升小区品质,增强居民的归属感.现拟购买户外垃圾桶和除草机共100件,且垃圾桶的数量不少于除草机的4倍.(1)该小区最多可以购买除草机多少个?(2)该小区计划以(1)中购买最多除草机的方案采购清洁用品.某商场里,户外垃圾桶每个200元,除草机每台800元.该商场抓住商机,与小区物管协商,将户外垃圾桶的单价降低了m%(m>0),每台除草机的单价降低了50元.于是,该小区购买垃圾桶的数量将在原计划的基础上增加了2m%,除草机的数量不变,总共用去31000元,求m的值.20. (10分)(2019·银川模拟) 如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD 至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tanE=,求CF的长.21. (10分) (2019九上·鹿城月考) 在不透明的袋子中装有5个球,2个红球和3个黄球,每个球除颜色外都相同,(1)从中任意摸出一个球,恰好摸到红球的概率是多少?(2)小明从袋子中摸出一个红球后,小慧再从袋子里剩余的球中摸两个球(不放回),则小慧摸到的球刚好是两个黄球的概率是多少?(要求画树状图或列表)22. (10分)(2018·无锡模拟) 如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为________ cm.23. (15分) (2018九上·嘉兴月考) 如图所示,在平面直角坐标系xoy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线经过点A、B和D(4, ).(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共79分)15-1、16-1、17-1、17-2、17-3、17-4、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
2023年云南中考数学试卷一、选择题(每题3分,共30分)下列哪个数不是偶数?A. 2B. 4C. 7D. 8下列哪个方程有实数解?A. x2+1=0B. x2−4x+5=0C. x2−4=0D. x2+2x+3=0下列哪个图形是轴对称的?A. 等腰三角形B. 平行四边形C. 梯形D. 菱形(但题目未明确是哪种菱形,一般菱形是轴对称的,但此处为严谨性,可视为非特定选项)注:由于D选项表述不够明确,实际情况下可能选择A作为更确定的答案,但此处保留原题形式。
下列哪个数不是质数?A. 3B. 5C. 9D. 11下列哪个函数在x=0处连续?A. f(x)=x1B. f(x)=xx2C. f(x)={x,1,x=0x=0D. f(x)=sinx1下列哪个不等式表示的是x的取值范围在−1和1之间(不包括−1和1)?A. −1<x<1B. −1≤x≤1C. x<−1或 x>1D. x≤−1或x≥1下列哪个选项描述的是等差数列的性质?A. 任意两项之和为常数B. 任意两项之积为常数C. 任意相邻两项之差为常数D. 任意相邻两项之和为常数下列哪个数不是有理数的平方?A. 2B. 41C. 169D. 32下列哪个选项描述的是正比例函数的图像特征?A. 一条经过原点的直线B. 一个圆C. 一个抛物线D. 一条水平的直线下列哪个表达式可以化简为x−1?A. x2−1B. xx2−1C. x−x1D. x−1x2−1(注意:此选项在x=1时可化简为x+1,但题目要求化简为x−1,故不正确;然而,若考虑x=1时的情况,原式无意义,但此逻辑不应用于选择题判断,因此仍判断为不正确)二、填空题(每题3分,共15分)若3x+5=14,则x= _______。
圆的面积公式为S= _______。
若一个长方形的长为l,宽为w,则其面积为_______。
若一次函数y=kx+b(k=0)的图像经过点(2,3)和(−1,−1),则k= _______,b= _______。
云南昭通中考数学试卷真题一、选择题1. 已知函数 $f(x) = 3x + 4$,则 $f\left(\frac{1}{3}\right)$ 的值是多少?A. 1B. 2C. 3D. 42. 若 $a + \frac{1}{a} = 3$,则 $a^2 + \frac{1}{a^2}$ 的值等于多少?A. 5B. 7C. 9D. 113. 已知 $A$ 是一个 $\sqrt{2}$ 长度的线段的两个端点,$B$ 是一个$\sqrt{3}$ 长度的线段的两个端点,将 $A$ 和 $B$ 的两个端点连结,得到线段 $AB$,则线段 $AB$ 的长度为多少?A. 2B. $\sqrt{5}$C. $\sqrt{6}$D. $\sqrt{7}$二、填空题1. 若 $\frac{4x-7}{3} = 5$,则 $x$ 的值为\underline{\hspace{3cm}}。
2. $\sqrt{8} - \sqrt{2}$ 的值等于\underline{\hspace{2cm}}。
3. 已知一个长方体的体积为 216,底面积为 9,则长方体的高为\underline{\hspace{2cm}}。
三、解答题1. 解方程组:$\begin{cases}2x + y = 5 \\x - 3y = 1\end{cases}$2. 矩形长为5cm,宽为3cm。
将这个矩形沿长边平分成两个正方形,求每个正方形的边长。
3. 已知一个三角形的两边分别为5cm、8cm,且夹角的正弦值为$\frac{3}{5}$,求第三条边长。
四、应用题1. 一块钮扣的重量为6克,若10个钮扣的重量等于4个苏打饼干的重量,求一个苏打饼干的重量。
2. 甲队和乙队进行篮球比赛,甲队的投篮命中率为60%,乙队的投篮命中率为70%。
如果两队都进行了100次投篮,甲队比乙队多命中了几次?。
云南省昭通市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·铜仁) 实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是A .B .C .D .2. (2分)计算a12÷a4(a≠0)的结果是()A . a3B .C . a8D .3. (2分) (2018九上·南昌期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)下列说法正确的是().A . 一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D . 若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定5. (2分)(2017·自贡) 不等式组的解集表示在数轴上正确的是()A .B .C .D .6. (2分) (2018九上·新乡期末) 将抛物线y=﹣3x2平移,得到抛物线y=﹣3 (x﹣1)2﹣2,下列平移方式中,正确的是()A . 先向左平移1个单位,再向上平移2个单位B . 先向左平移1个单位,再向下平移2个单位C . 先向右平移1个单位,再向上平移2个单位D . 先向右平移1个单位,再向下平移2个单位7. (2分)(2020·苏州模拟) 如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE 沿AE折叠,点B落在点F处,连接FC,则tan∠ECF = ()A .B .C .D .8. (2分) (2020八下·厦门期末) 在△ABC中,AB=AC=5,P是BC上异于B,C的一点,则AP2+BP⋅PC的值是()A . 15B . 25C . 30D . 209. (2分) (2019七下·合肥期末) 某公司承担了制作600套校服的任务,原计划每天制作x套,实际上平均每天比原计划多制作了5套,因此提前6天完成任务.根据题意,下列方程正确的是()A .B .C .D .10. (2分)(2017·肥城模拟) 如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q 同时出发t秒时,△BPQ的面积为ycm2 .已知y与t的函数关系图象如图2;(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①当0<t≤5时,y= t2;②当t=6秒时,△ABE≌△PQB;③cos∠CBE= ;④当t= 秒时,△ABE∽△QBP;其中正确的是()A . ①②B . ①③④C . ③④D . ①②④二、填空题 (共10题;共11分)11. (2分) (2019七上·萧山月考)(1)写出一个比-2小的无理数________.(2)写出一个次数为3的单项式________.12. (1分) (2018七上·黄陂月考) -38600000用科学记数法表示为________;13. (1分) (2019九上·武邑月考) 将一个正十边形绕其中心至少旋转________°就能和本身重合.14. (1分) (2017八下·兴隆期末) 计算 +()2=________.15. (1分)如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么q的值是________ .16. (1分)(2019·永定模拟) 圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面积为________.17. (1分) (2019九上·延安期中) 如图,圆O的半径为1,是圆O的内接等边三角形,点D.E在圆上,四边形EBCD为矩形,这个矩形的面积是________18. (1分)如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE=________.19. (1分) (2019八下·湖南期中) 点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1________y2(填“>”或“=”或“<”).20. (1分)(2020·杭州模拟) 如图,正方形ABCD的边长为4,将△ADE和△CDF分别沿直线DE和DF折叠后,点A和点C同时落在点H处,且E是AB中点,射线DH交AC于G,交CB于M,则GH的长是________。
云南省昭通市重点中学2024届中考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是( )A .1216B .172C .136D .1122.下列安全标志图中,是中心对称图形的是( )A .B .C .D .3.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°4.如图,点F 是ABCD 的边AD 上的三等分点,BF 交AC 于点E ,如果△AEF 的面积为2,那么四边形CDFE 的面积等于( )A .18B .22C .24D .465.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是266.已知下列命题:①对顶角相等;②若a>b>0,则1a<1b;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A.15B.25C.35D.457.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近8.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C9.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.9610.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.22C.32D.33二、填空题(本大题共6个小题,每小题3分,共18分)11.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程_____.12.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.13.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.14.一个凸边形的内角和为720°,则这个多边形的边数是__________________15.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.16.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则△AED的周长为____cm.三、解答题(共8题,共72分)17.(8分)计算:18.(8分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.19.(8分)先化简,再求值:2569122x x x x -+⎛⎫-÷⎪++⎝⎭,其中x =-5 20.(8分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象与反比例函数my x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m +-的解集(请直接写出答案).21.(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y (米)与小张出发后的时间x (分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y 与x 之间的函数表达式;求小张与小李相遇时x 的值.22.(10分)已知,如图1,直线y=34x+3与x 轴、y 轴分别交于A 、C 两点,点B 在x 轴上,点B 的横坐标为94,抛物线经过A 、B 、C 三点.点D 是直线AC 上方抛物线上任意一点.(1)求抛物线的函数关系式;(2)若P 为线段AC 上一点,且S △PCD =2S △PAD ,求点P 的坐标;(3)如图2,连接OD ,过点A 、C 分别作AM ⊥OD ,CN ⊥OD ,垂足分别为M 、N .当AM+CN 的值最大时,求点D 的坐标.23.(12分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A 、B 两个探测点探测到C 处有生命迹象.已知A 、B 两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C 的深度.(精确到0.1米,参考数据:2 1.41,?3 1.73≈≈)24.如图,在平面直角坐标系xOy 中,以直线52x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于点D . (1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使90APB ∠=︒,求k 的值.参考答案一、选择题(共10小题,每小题3分,共30分) 1、C 【解题分析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可. 【题目详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共666⨯⨯=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为136, 故选C. 【题目点拨】本题考查的是概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=mn.边长为3,4,5的三角形组成直角三角形. 2、B 【解题分析】试题分析:A .不是中心对称图形,故此选项不合题意; B .是中心对称图形,故此选项符合题意; C .不是中心对称图形,故此选项不符合题意; D .不是中心对称图形,故此选项不合题意; 故选B .考点:中心对称图形. 3、C 【解题分析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数. 【题目详解】∵//AB CD ,40ABF ︒∠=, ∴180140CFB B ︒︒∠=-∠=, ∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=, 故选C . 【题目点拨】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等. 4、B 【解题分析】连接FC ,先证明△AEF ∽△BEC ,得出AE ∶EC=1∶3,所以S △EFC =3S △AEF ,在根据点F 是□ABCD 的边AD 上的三等分点得出S △FCD =2S △AFC ,四边形CDFE 的面积=S △FCD + S △EFC ,再代入△AEF 的面积为2即可求出四边形CDFE 的面积. 【题目详解】 解:∵AD ∥BC ,∴∠EAF=∠ACB,∠AFE=∠FBC ; ∵∠AEF=∠BEC , ∴△AEF ∽△BEC , ∴AF BC =AE EC =13, ∵△AEF 与△EFC 高相等, ∴S △EFC =3S △AEF ,∵点F 是□ABCD 的边AD 上的三等分点, ∴S △FCD =2S △AFC , ∵△AEF 的面积为2,∴四边形CDFE 的面积=S △FCD + S △EFC =16+6=22. 故选B. 【题目点拨】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.5、C【解题分析】根据众数、中位数、平均数以及方差的概念求解.【题目详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【题目点拨】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.6、B【解题分析】∵①对顶角相等,故此选项正确;②若a>b>0,则1a<1b,故此选项正确;③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误;∴从中任选一个命题是真命题的概率为:25.故选:B.7、D【解题分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【题目详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【题目点拨】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.8、A【解题分析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.9、C【解题分析】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24% 6+10+16+12+6,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.10、B【解题分析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【题目详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN ∥OB , ∴∠POM =∠OPN ,∴∠PNE =∠PON+∠OPN =∠PON+∠POM =∠AOB =45°,∴PM PN =2. 故选:B . 【题目点拨】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分) 11、3004x - ﹣300x=1. 【解题分析】原有的同学每人分担的车费应该为3004x -,而实际每人分担的车费为300x ,方程应该表示为:3004x -﹣300x=1. 故答案是:3004x -﹣300x=1. 12、12. 【解题分析】根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为12. 考点:概率公式. 13、m≤1 【解题分析】根据一元二次方程有实数根,得出△≥0,建立关于m 的不等式,求出m 的取值范围即可. 【题目详解】解:由题意知,△=4﹣4(m ﹣1)≥0, ∴m≤1, 故答案为:m≤1. 【题目点拨】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键. 14、1【解题分析】设这个多边形的边数是n ,根据多边形的内角和公式:()n 2180-⨯,列方程计算即可.【题目详解】解:设这个多边形的边数是n根据多边形内角和公式可得()n 2180720,-⨯= 解得n 6=.故答案为:1.【题目点拨】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.15、2﹣1【解题分析】连接DB ,若Q 点落在BD 上,此时和最短,且为2,设AP =x ,则PD =1﹣x ,PQ =x .解直角三角形得到AP =2﹣1,根据三角函数的定义即可得到结论.【题目详解】如图:连接DB ,若Q 点落在BD 2,设AP =x ,则PD =1﹣x ,PQ =x .∵∠PDQ =45°,∴PD 2PQ ,即1﹣x 2,∴x 2﹣1,∴AP 2﹣1,∴tan ∠ABP =AP AB21, 21.【题目点拨】本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.16、7【解题分析】根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周长=AC+AE.【题目详解】∵折叠这个三角形点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案为:7.【题目点拨】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等.三、解答题(共8题,共72分)17、-1【解题分析】先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.【题目详解】原式=1﹣4﹣+1﹣=﹣1.【题目点拨】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.18、(1)见解析;(2)1 3 .【解题分析】(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=12AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=2x,求得BD=2x,根据勾股定理得到AD=226AC CD+=x,于是得到结论.【题目详解】解:(1)连接OC,∵OC=OB,∴∠OCB=∠B,∵∠B=∠F,∴∠OCB=∠F,∵D为BC的中点,∴OF⊥BC,∴∠F+∠FCD=90°,∴∠OCB+∠FCD=90°,∴∠OCF=90°,∴CF为⊙O的切线;(2)过D作DH⊥AB于H,∵AO=OB,CD=DB,∴OD=12 AC,∵四边形ACFD是平行四边形,∴DF=AC,设OD=x,∴AC=DF=2x,∵∠OCF=90°,CD⊥OF,∴CD2=OD•DF=2x2,∴2x,∴2x,∴,∵OD=x ,x ,∴x ,∴DH=3CD BD OB ⋅=x , ∴sin ∠BAD=DH AD =13. 【题目点拨】本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.19、13x -,-18【解题分析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算. 详解:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭()23223x x x x -+=⨯+- 13x =-. 当5x =-时,原式18=-. 点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.20、(1)y=﹣8x ,y=﹣x ﹣2(2)3(3)﹣4<x <0或x >2 【解题分析】试题分析:(1)将B 坐标代入反比例解析式中求出m 的值,即可确定出反比例解析式;将A 坐标代入反比例解析式求出n 的值,确定出A 的坐标,将A 与B 坐标代入一次函数解析式中求出k 与b 的值,即可确定出一次函数解析式;(2)对于直线AB ,令y=0求出x 的值,即可确定出C 坐标,三角形AOB 面积=三角形AOC 面积+三角形BOC 面积,求出即可;(3)由两函数交点A 与B 的横坐标,利用图象即可求出所求不等式的解集.试题解析:(1)∵B (2,﹣4)在y=m x上, ∴m=﹣1.∴反比例函数的解析式为y=﹣8x . ∵点A (﹣4,n )在y=﹣8x上, ∴n=2.∴A (﹣4,2). ∵y=kx+b 经过A (﹣4,2),B (2,﹣4),∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩. ∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=3. (3)不等式0m kx b x+-<的解集为:﹣4<x <0或x >2. 21、(1)300米/分;(2)y=﹣300x+3000;(3)7811分. 【解题分析】(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B (10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD 的解析式,列出方程,求解即可.【题目详解】解:(1)由题意得:240012003004-=(米/分), 答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B (10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩解得:3003000,k b =-⎧⎨=⎩∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间: 24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【题目点拨】 考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.22、(1)y=﹣13x 2﹣712x+3;(2)点P 的坐标为(﹣83,1);(3)当AM+CN 的值最大时,点D 的坐标为9373-,3732-). 【解题分析】(1)利用一次函数图象上点的坐标特征可求出点A 、C 的坐标,由点B 所在的位置结合点B 的横坐标可得出点B 的坐标,根据点A 、B 、C 的坐标,利用待定系数法即可求出抛物线的函数关系式;(2)过点P 作PE ⊥x 轴,垂足为点E ,则△APE ∽△ACO ,由△PCD 、△PAD 有相同的高且S △PCD =2S △PAD ,可得出CP=2AP ,利用相似三角形的性质即可求出AE 、PE 的长度,进而可得出点P 的坐标;(3)连接AC 交OD 于点F ,由点到直线垂线段最短可找出当AC ⊥OD 时AM+CN 取最大值,过点D 作DQ ⊥x 轴,垂足为点Q ,则△DQO ∽△AOC ,根据相似三角形的性质可设点D 的坐标为(﹣3t ,4t ),利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之取其负值即可得出t 值,再将其代入点D 的坐标即可得出结论.【题目详解】(1)∵直线y=34x+3与x 轴、y 轴分别交于A 、C 两点, ∴点A 的坐标为(﹣4,0),点C 的坐标为(0,3).∵点B 在x 轴上,点B 的横坐标为94, ∴点B 的坐标为(94,0), 设抛物线的函数关系式为y=ax 2+bx+c (a≠0), 将A (﹣4,0)、B (94,0)、C (0,3)代入y=ax 2+bx+c ,得: 164081901643a b c a b c c -+=⎧⎪⎪++=⎨⎪=⎪⎩,解得:137123a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, ∴抛物线的函数关系式为y=﹣13x 2﹣712x+3; (2)如图1,过点P 作PE ⊥x 轴,垂足为点E ,∵△PCD 、△PAD 有相同的高,且S △PCD =2S △PAD ,∴CP=2AP ,∵PE ⊥x 轴,CO ⊥x 轴,∴△APE ∽△ACO ,∴13AE PE AP AO CO AC ===, ∴AE=13AO=43,PE=13CO=1, ∴OE=OA ﹣AE=83, ∴点P 的坐标为(﹣83,1); (3)如图2,连接AC 交OD 于点F ,∵AM ⊥OD ,CN ⊥OD ,∴AF≥AM ,CF≥CN ,∴当点M 、N 、F 重合时,AM+CN 取最大值,过点D 作DQ ⊥x 轴,垂足为点Q ,则△DQO ∽△AOC ,∴34OQ CO DQ AO ==,∴设点D的坐标为(﹣3t,4t).∵点D在抛物线y=﹣13x2﹣712x+3上,∴4t=﹣3t2+74t+3,解得:t1=﹣3738+(不合题意,舍去),t2=3738-+,∴点D的坐标为(93738-,3732-+),故当AM+CN的值最大时,点D的坐标为(93738-,3732-+).【题目点拨】本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(﹣3t,4t).23、5.5米【解题分析】过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.【题目详解】解:过点C作CD⊥AB于点D,设CD=x,在Rt △ACD 中,∠CAD=30°,则AD=3CD=3x. 在Rt △BCD 中,∠CBD=45°,则BD=CD=x. 由题意得,3x ﹣x=4,解得:()4x 231 5.531==+≈-. 答:生命所在点C 的深度为5.5米.24、(1)255y x x =-+.;(2)点G 坐标为()13,1G -;2931767317,44G ⎛⎫+- ⎪ ⎪⎝⎭.(3)2613k =-+. 【解题分析】分析:(1)根据已知列出方程组求解即可;(2)作AM ⊥x 轴,BN ⊥x 轴,垂足分别为M ,N ,求出直线l 的解析式,再分两种情况分别求出G 点坐标即可; (3)根据题意分析得出以AB 为直径的圆与x 轴只有一个交点,且P 为切点,P 为MN 的中点,运用三角形相似建立等量关系列出方程求解即可.详解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =. ∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==.32MQ =,2NQ ∴=,911,24B ⎛⎫ ⎪⎝⎭,1,91,24k m k m +=⎧⎪∴⎨+=⎪⎩,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x ∴=+,102D ,⎛⎫ ⎪⎝⎭. 同理,152BC y x =-+. BCD BCG S S ∆∆=,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x ∴-+=-+,即22990x x -+=,123,32x x ∴==. 52x >,3x ∴=,()3,1G ∴-. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x ∴=-+,21195522x x x ∴-+=-+,22990x x ∴--=. 52x >,x ∴=G ∴⎝⎭. 综上所述,点G 坐标为()13,1G -;2G ⎝⎭. (3)由题意可得:1k m +=.1m k ∴=-,11y kx k ∴=+-,2155kx k x x ∴+-=-+,即()2540x k x k -+++=.11x ∴=,24x k =+,()24,31B k k k ∴+++.设AB 的中点为'O , P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ∴⊥轴,P ∴为MN 的中点,5,02k P +⎛⎫∴ ⎪⎝⎭. AMP PNB ∆∆∽,AM PN PM BN∴=,••AM BN PN PM ∴=, ()2551314122k k k k k ++⎛⎫⎛⎫∴⨯++=+-- ⎪⎪⎝⎭⎝⎭,即23650k k +-=,960∆=>. 0k >,1k ∴==-+点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.。
2010年昭通市高中(中专)招生统一考试数学(全卷三个大题,共23个小题,共6页;满分120分,考试用时120分钟) 注意事项:1.本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卷一并交回.一、选择题(本大题共7小题,每小题只有一个正确先项,每小题3分,满分21分)1 •下列结论错误的是D. 2x y = 2xyA . \ 4=2 E.方程2x —'4 = 0 的解为x = 2c. (a b)(a -b)二a2 -b22.下列图形是轴对称图形的是|£©0逾A. B. C. D.3.下列运算正确的是A.x2・x3二x5B. (a b)2二a2 b2c. (a2)3二a5D. a2 a3二a54.下列事件中是必然事件的是A . 一个直角三角形的两个锐角分别是40°和60°B.抛掷一枚硬币,落地后正面朝上C.当x是实数时,x2> 0D.长为5cm、5cm、11cm的三条线段能围成一个三角形5.某物体的三视图如图1所示,那么该物体的形状是D.长方体图1A .圆柱B.球C.正方体6.如图2, AB // CD , EF 丄AB 于E , EF 交CD 于F,已知N 2 = 30°,则乂1 是27•二次函数y =ax - bx c 的图象如图3所示,则下列结论正确的是9•计算:(-3)° 1 二210.分解因式:3ab —4ab= ____________11.如图4,上海世博会的中国馆建筑外观以“东方之冠,鼎盛中华,天下粮仓,富庶百姓” 为构思主题,建筑面积 4.6457万平方米,保留两个有效数字是 _____________________ 万平方米. 12•不等式lx-3< 0的解集为213. __________________________________________________________________________ 如图5, O O 的弦AB =8 , M 是AB 的中点,且OM 为3,则O 0的半径为 __________________ . 14.如果两个相似三角形的一组对应边分别为 3cm 和5cm ,且较小三角形的周长为 15cm ,则较大三角形的周长为 ___________ cm .15 .某种火箭被竖直向上发射时,它的高度h (m )与时间t (s )的关系可以用公式h = -5t 2 150t 1表示•经过 _____________ s ,火箭达到它的最高点.A • 20 ° E. 60°C. 30°D. 45°A a :::0, b :::0,c 0, b 2 -4ac 0B . a 0,b :::0, c 0, b2-4ac ::: 0C . a ::: 0, b 0, c ::: 0, b2「4ac 0 D . a ::: 0, b 0 c 0, b 2 「4ac 0 二、填空题 & 3的相反数是(本大题共8小题,每小题3分,满分24分)图4三、解答题(本大题共8小题,满分75分)22x -4 x -2x —3 x — 916. (7分)先化简再求值:,其中X=「5 •17. (8分)如图6, L ABCD的两条对角线AC、BD相交于点0.(1)图中有哪些三角形是全等的?(2)选出其中一对全等三角形进行证明.18. (8分)水是生命之源,水是希望之源,珍惜每一滴水,科学用水,有效节水,就能播种希望.某居民小区开展节约用水活动,3月份各户用水量均比2月份有所下降,其中的20户、120户、60户节水量统计如下表:户数2012060节水量(立方米/每户) 2 2.53(1)节水量众数是多少立方米?(2)该小区3月份比2月份共节约用水多少立方米?(3)该小区3月份平均每户节约用水多少立方米?19.(9分)全球变暖,气候开始恶化,中国政府为了对全球气候变暖负责任,积极推进节能减排,在全国范围内从2008年起,三年内每年推广5000万只节能灯•居民购买节能灯,国家补贴50%购灯费.某县今年推广财政补贴节能灯时,李阿姨买了4个8W和3个24W 的节能灯,一共用了29元,王叔叔买了2个8W和2个24W的节能灯,一共用了17元. 求:(1)该县财政补贴50%后,8W、24W节能灯的价格各是多少元?(2) 2009年我省已推广通过财政补贴节能灯850万只,预计我省一年可节约电费2.3亿元左右,减排二氧化碳43.5万吨左右,请你估算一下全国一年大约可节约电费多少亿元?大约减排二氧化碳多少万吨?(结果精确到0.1)20.(8分)小颖为学校联欢会设计了一个“配紫色”的游戏;下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)禾U用树状图或列表的方法表示出游戏所有可能出现的结果;21.(10分)云南2009年秋季以来遭遇百年一遇的全省性特大旱灾,部分坝塘干涸,小河、小溪断流,更为严重的情况是有的水库已经见底,全省库塘蓄水急剧减少,为确保城乡居民生活用水,有关部门需要对某水库的现存水量进行统计,以下是技术员在测量时的一些数据:水库大坝的横截面是梯形ABCD (如图7所示),AD // BC , EF为水面,点E在DC 上,测得背水坡AB的长为18米,倾角.B =30°迎水坡CD上线段DE的长为8米, NADC =120°.(1)请你帮技术员算出水的深度(精确到0.01米,参考数据.3〜1.732 );(2)就水的深度而言,平均每天水位下降必须控制在多少米以内,才能保证现有水量至少能使用20天?(精确到0.01米)22.(11分)在如图8所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题:(1)图中格点△ ABC •是由格点△ ABC通过怎样变换得到的?(2)如果建立直角坐标系后,点A的坐标为(-5,2),点B的坐标为(—5,0),请求出过A点的正比例函数的解析式,并写出图中格点△DEF各顶点的坐标.23.(14分)如图9,已知直线I的解析式为y =-x 6,它与x轴、y轴分别相交于A、B 两点,平行于直线I的直线n从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t秒,运动过程中始终保持n // I,直线n与x轴,y轴分别相交于C、D两点,线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S,当直线n与直线l重合时,运动结束. (1)求A、B两点的坐标;(2)求S与t的函数关系式及自变量t的取值范围;图8(3)直线n在运动过程中,①当t为何值时,半圆与直线I相切?1②是否存在这样的t值,使得半圆面积S S弟形ABCD ?若存在,求出t值,若不存2图9 (2)备用图图9 (1)2010年昭通中考数学答案一、 选择题:1.D2.B3.A4.C5.D6. B7.D二、 填空题: 8. -3 9. 2 10. ab(3a-4) 11. 4.6 12. x < 6 13. 5 14 . 25 15 . 15 三、解答题:16.解:x 「3 x 2「92x —4 x —2x -3 . x -2 2x -4 x 2 -9 x —3 x — 2 2(x -2) (x 3)(x -3) 12(x 3)17.解:(1) △ AOB ◎△ COD 、△ AOD COB 、△ ABD CDB 、△ ADC CBA ........................................................................................................ 4 分(2 )以厶AOB COD 为例证明,:四边形ABCD 是平行四边形,OA=OC , OB=OD . 在△ AOB 和A COD 中,OA =OC , AOB = COD ,当x 二-5时,原式1 _ 1 2( -5 3厂 4OB =OD.:、△ AOB COD. ................................................................................................. •分18.解:(1 )节水量的众数是2.5立方米. .............................................. 2分(2)该小区3月份比2月份共节约用水:2江20+2.5勺20+3況60 = 520 (立方米). ........................................ •分(3)该小区3月份平均每户节约用水:x = 2 2025 120 3 60吃620 +120 +6019.解:(1 )设8W节能灯的价格为x元,24W节能灯的价格为y元.(立方米)则4x *29,②2x 2y =17.②f x = 3.5,解N j ..................................................................................................................................... •分y = 5.答:该县财政补贴50%后,8W节能灯的价格为3.5元,24W节能灯的价格为5元.................................................................................... •分2 3(2)全国一年大约可节约电费:5000〜13.5 (亿元)........................ 7分85043 5大约减排二氧化碳:一-X5000〜255.9 (万吨)..................................... 9分85020.解:(1 )用树状图表示:................................................................................... 4分所有可能结果:(红、黄),(红、绿),(红、蓝),(白、黄),(白、绿),(白、蓝) (6)(或)用列表表示:黄绿蓝E盘A 盘红(红,黄)(红,绿)(红,蓝)白(白,黄)(白,绿)(白,蓝)1(2) P (获胜)二—... ............................................................... 8 分621•解:分别过A、D作AM丄BC于M、DN丄BC于N ,................... 1分在Rt A ABM 中,:B=30°1.AM AB =9 .2:AD // BC, AM _ BC, DN _ BC ,2分二AM =DN =9 .. ......................................:DN _ BC,DN _ AD ,ADN =90°CDN —ADC - ADN =120°-90° 30延长FE交DN于H .HD 在Rt△ DHE 中,cos EDH =-HD,DEDHcos30二 HN =DN _DH =9_4A /3 = 9_4X 1.732 〜2.07 .(米) ..................... •分(2)=0.1035^ 0.10 (米). ................................................... •分 20答:平均每天水位下降必须控制在 0.10米以内,才能保证现有水量至少能使用 20天. .................................................................................. 10分 22•解:(1)格点△ A BC •是由格点△ ABC 先绕点B 逆时针旋转90°然后向右平移13个 长度单位(或格)得到的. .................................................................... •分 (注:先平移后旋转也行)(2)设过A 点的正比例函数解析式为 y = kx , 将A(-5,2)代入上式得2 = —5k ,.过A 点的正比例函数的解析式为△ DEF 各顶点的坐标为:D(2,-4), E(0,-8), F(7,-7).23•解:(1) : y - -x • 6 - 令 y=0,得 0 = -x 6 - x=6 , A(6,0).令 x=0,得 y=6 , B(0,6).(2) T OA=OB =6 - ■ △ AOB 是等腰直角三角形.:n // I -CDO 二 BAO =45°■ △COD 为等腰直角三角形, OD = OC = t .CD = OC 2 OD 2 = t 2 t 2. 1 CD 2DH=8 3 =4 3 ,2 11分 PD1 2二 s=— n 2(o a < 6). ............................................................................................ •分4(3)①分别过D 、P 作DE_AB 于E 、PF _ AB 于F .AD = OA -0D =6 - t ,在 Rt △ ADE 中,sin /EAD 二 ADDE 2.(6 _t),2 (6 -t).当PF 二PD 时,半圆与I 相切.即律‘),2 2 t =3 .当t =3时,半圆与直线l 相切. .........................................11 1②存在.T S 梯形 ABCD ^S A AOB -S ^cOD 石 6 6 - {仁二18-才'. s 」n 2.4(n 1)t 2 =36 ,t 2 36 “ —;::6 .1S 梯形ABCD . 2 PF 11分 1S s 編形ABCD ,则 二118 一丄t 2 2 2■存在t =6 ' n 1,使得S 14分。
数学试题卷(五)(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1.的绝对值的相反数是( )A.B.C.2024D.2.2024年2月,中国5G基站总数达3509000个,5G用户达八亿,两项数据都是世界第一!中国预计将在2025年实现6G商用.将3509000用科学记数法表示应为( )A.B.C.D.3.随着科技发展,骑行共享单车这种“低碳”生活方式已融入人们的日常生活.如图是共享单车车架的示意图,线段,,分别为前叉、下管和立管(点在上),为后下叉.已知,,,,则的度数为( )A.B.C.D.4.点、在反比例函数的图象上,若,,则此函数图象位于( )A.第一、三象限B.第二、四象限C.第一、二象限D.第二、三象限5.下列计算结果正确的是( )A.B.C.D.6.将相似比为的与如图摆放,现假设可以随意在图中取点,则这个点取在阴影部分的概率是( )A.B.C.D.7.已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为( )A.B.C.D.8.下列图形都是由同样大小的桃心按一定的规律组成,其中第①个图形共有5个桃心,第②个图形共有8个桃心,第③个图形共有11个桃心,……,则第⑦个图形中桃心的个数为( )A.17B.20C.23D.269.“双减”政策实施后,某校展开了丰富的课外活动,、、、分别代表“书法”“绘画”“器乐”“体育”等课外活动,要求每名学生必选且只选一种活动参加,该校八年级学生选择情况如下表及如图所示的扇形统计图:课外活动种类人数(人)175100下列选项错误的是( )A.八年级共500人B.C.“扇形”的圆心角是D.“”所占的百分比是20%10.2023年12月4日是我国第十个宪法日,某校随机抽取50名同学参加宪法知识竞赛,成绩如表所示:成绩(分)7580859095100人数14201852下列说法不正确的是( )A.平均数是87.5分B.众数是85分C.中位数是87.5分D.样本容量是5011.如图,、、、是上的四个点,,且平分,则的形状是( )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形12.2024年4月23日是第29个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一.据统计某书院对外开放的第一个月进书院400人次,进书院人次逐月增加,到第三个月进书院484人次,若进书院人次的月平均增长率为,则可列方程为( )A.B.C.D.13.2023年2月24日下午,中国载人航天工程三十年成就展在国家博物馆正式开展,面向社会公众全面系统展示中国载人航天工程三十年发展历程和建设成就。
机密★2015年云南省初中学业水平考试数学试题卷(全卷三个大题,共23个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷。
考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.−2的相反数是A.−2 B.2 C.12-D.122.不等式26x->0的解集是A.x>1 B.x<−3 C.x>3 D.x<33.若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是A.正方体B.圆锥C.圆柱D.球4.2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所.17580这个数用科学记数法可表示为A.17.58×103B.175.8×104C.1.758 ×105D.1.758×1045.下列运算正确的是A.2510a a a⋅=B.0( 3.14)0π-=CD.222 ()a b a b+=+6.下列一元二次方程中,没有实数根的是A.24520x x-+=B.2690x x-+= C.25410x x--=D.23410x x-+=精品文档精品文档l 1l 2l 3 l 456°120°αOABC7.为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:在上表统计的数据中,平均数和中位数分别为A .42,43.5B . 42,42C .31,42D .36,548.若扇形的面积为3π,圆心角为60°,则该扇形的半径为 A .3B .9C .D .二、填空题(本大题共6个小题,每小题3分,满分18分) 9.分解因式:2312x -= .10.函数y =的自变量x 的取值范围是 . 11.如图,直线l 1∥l 2,并且被直线l 3、l 4所截,则∠α= .12.一台电视机原价是2500元,现按原价的8折出售,则购买a 台这样的电视机需要元.13.如图,点A 、B 、C 是⊙O上的点,OA AB =,则C ∠的度数为 .AB CAB CP1M1AB CP1M1P2M2AB CP1M1P2M2P3M3……图1 图2 图314.如图,在△ABC中,1BC=,点P1、M1分别是AB、AC边的中点,点P2、M2分别是AP1、AM1的中点,点P3、M3分别是AP2、AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).三、解答题(本大题共9个小题,满分58分)15.(本小题5分)化简求值:21(1)11x xx x x x⎡⎤+-⋅⎢⎥---⎦⎣,其中1x.16.(本小题5分)如图,B D∠=∠,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.AB DC精品文档17.(本小题7分)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?18.(本小题5分)已知A、B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶.设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?精品文档精品文档19.(本小题6分)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB = 30°,沿河岸AB 前行30米后到达B 处,在B 处测得∠CBA = 60°.请你根据以上测量数据求出河的宽度.(参考数据: 1.41≈1.73≈;结果保留整数)20.(本小题7分)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方体骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其它都相同).先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢.问小明和小王谁赢的可能性更大?请说明理由.ABCMN机场6个机场投入建设资金金额条形统计图21.(本小题7分)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如下图,已知机场E投入的建设资金金额是机场C、D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图.(2)将铁路、公路、机场三项建设所投入的资金金额绘制成如下扇形统计图以及统计表,根据扇形统计图及统计表中的信息,求得a = ;b = ;c = ;d = ;m = .(请直接填写计算结果)精品文档精品文档AB CDNMP22.(本小题7分)如图,在矩形ABCD 中,4AB =,6AD =.M 、N 分别是AB 、CD 边的中点,P 是AD 上的点,且3PNB CBN ∠=∠. (1)求证:2PNM CBN ∠=∠; (2)求线段AP 的长.23.(本小题9分)如图,在平面直角坐标系中,抛物线2=++(0y ax bx ca≠)与x轴相交于A、B两点,与y轴相交于点C,直线y kx n=+(0k≠)经过B、C两点.已知A,(0,3)(1,0)BC=.C,且5(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B、C、P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2015年云南省初中学业水平考试数学参考答案及评分标准一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)精品文档精品文档二、填空题(本大题共6个小题,每小题3分,满分18分)9.3(2)(2)x x +- 10.x ≥7 11.64° 12.2000a 13.30° 14.11()22nn 或 三、解答题(本大题共9个小题,满分58分) 15.(本小题5分)解: 原式2(1)(1)1x x xx x x x x ⎡⎤+=-⋅⎢⎥---⎣⎦…………………………… 1分2(1)1x xxx x x +-=⋅-- ……………………………………… 2分 2(1)1xx x x =⋅-- ………………………………………… 3分22(1)x =-. ……………………………………… 4分1x =当时,22=(1)x -原式=1.………………… 5分 16.(本小题5分)证法一:添加的条件是:ACB ACD ∠=∠. …………… 2分 理由:∵ACB ACD ∠=∠,B D ∠=∠,AC AC =, ∴△ABC ≌△ADC . …………………………… 5分 证法二:添加的条件是: BAC DAC ∠=∠.…………… 2分 理由:∵BAC DAC ∠=∠,B D ∠=∠,AC AC =,∴△ABC ≌△ADC . …………………………… 5分 17.(本小题7分)解:设九年级一班胜的场数是x 场,负的场数是y 场. …………… 1分依题意,得8,213.x y x y +=⎧⎨+=⎩…………………………………… 4分ABDC精品文档5,3.x y =⎧⎨=⎩解方程组,得 ………………………………………… 6分答:九年级一班胜的场数是5场,负的场数是3场. ……………… 7分18.(本小题5分)解:(1)1020060(03y xx =-≤≤; …………………………… 3分 (2)当x = 2时,y = 200 − 60×2 = 200 − 120 = 80.答:当汽车行驶了2小时时,汽车距B 地80千米. ……………… 5分19.(本小题6分)解:过点C 作CD ⊥AB 于点D ,则线段CD 的长即为河的宽度. … 1分∵∠CAB =30°,∠CBD =60°,由题意可得:tan30°=CD AD ,tan60°=CDDB .∴CD =,CD . )AD AD =-. 解得AD =452. …………………………………………………… 4分∴45132CD =≈(米). …………………………… 5分 答:河的宽度约为13米. …………………………………………… 6分20.(本小题7分)解:(1)列表如下: 树形图(树状图)如下: 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 32 1345 6开 始骰 子卡 片 积1 2 3 2 4 6 3 6 9 4 8 12 5 10 15 6 12 18 A BCMND精品文档机场BFE 6个机场投入建设资金金额条形统计图…………………………………………… 3分由列表或树形图(树状图)可知,所有可能出现的结果一共有18种,这些结果出现的可能性相同,其中骰子向上一面出现的数字与卡片上的数字之积为6的结果有3种,故P (积为6)=31186=. ……………………………………… 5分 (2)小王赢的可能性更大.理由如下: ……………………… 6分∵P (小王赢)=1118,P (小明赢)=718, 又∵1118>718, 故小王赢的可能性更大. ……………………………… 7分21.(本小题7分)解:(1)投入机场E的建设资金金额为:2(24)43+⨯=(亿元);…… 1分 补全条形统计图,如图所示. ……………………………… 2分(2)a = 170 ;b = 30 ;c = 60% ;d = 122.4° ;m = 500 .…… 7分22.(本小题7分)(1)证明:如图,∵四边形ABCD 是矩形,精品文档AB CDNMP23 415∴AB ∥CD ,且AB CD =,90C ∠=°. ∵M 、N 分别为边AB 、CD 的中点, ∴MB ∥NC ,且MB NC =.∴四边形MBCN 是矩形. ………………………………………… 1分∴MN ∥BC ,BMN ∠=90°.∴∠1=∠2. …………………………………………………… 2分 ∵∠PNB =∠2+∠PNM =3∠CBN ,即∠2+∠PNM =3∠1.∴∠PNM =2∠2,即∠PNM =2∠CBN . ………………………… 3分 (2)连接AN . ……………………………………………… 4分∵M 是AB 的中点,∴AM = BM ,∵∠AMN =∠BMN =90°,MN = MN . ∴△AMN ≌△BMN . ∴∠2=∠3 ………5分 ∵MN ∥BC ∥AD , ∴∠1=∠2,∠3=∠4. ∴∠1=∠2=∠3=∠4. ∵∠3 +∠5=2∠2 , ∴∠3 =∠5. ∴∠4 =∠5 ,精品文档yCOAE BxP 4 P 2DMP 3P 1l ∴AP = PN . …………………………………………………… 6分 设AP = x ,则PD = 6 − x .在Rt △PDN 中,222PD DN PN +=,即(6− x )2+22= x 2. 解得103x =,即103AP = . ……………………………………… 7分 23.(本小题9分)解:(1)∵C ( 0 , 3 ) ,∴OC =3.在Rt △BOC 中,OC =3,BC =5,∠BOC =90°, 由勾股定理得4OB ==.∴点B ( 4 , 0 ).∵直线y = kx + n 经过点B ( 4 , 0 )和点C ( 0 , 3 ), ∴340433k n k n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩,,解得 ∴直线BC 的解析式为334y x =-+.……2分∵抛物线y = ax 2+ bx + c 经过点A (1, 0)、 B ( 4 , 0 )和C ( 0 , 3 ).∴340151640433a abc a b c b c c ⎧=⎪++=⎧⎪⎪⎪++==-⎨⎨⎪⎪=⎩=⎪⎪⎩,,,解得,∴抛物线的解析式为2315344y x x =-+. ………………………… 4分 (2)存在点P ,使得△BCP 为直角三角形.………………………… 5分理由如下:∵2315344y x x =-+, ∴522b x a =-=.精品文档∴抛物线的对称轴为直线52x =. 设抛物线的对称轴与直线BC 相交于点D ,将52x =代入334y x =-+,得98y =. ∴点D 的坐标为59)28(,.设点P 5)2m (,,抛物线的对称轴为直线l ,直线l 与x 轴相交于点E .①当以点C 为直角顶点时,过点C 作CP 1⊥BC 于点C交l 于点P 1,作CM ⊥l 于点M .∵∠P 1CM =∠CDM ,∠CMP 1=∠DMC , ∴△P 1CM ∽△CDM .∴1P M CMCM DM =, ∴CM 2 = P 1M ⋅DM . ∴(52)2 = (m −3) (3−98) ,解得m =193.∴点P 1(51923,) . ……………………………………………… 6分②当以点B 为直角顶点时,过点B 作BP 2⊥BC 于点B交l 于点P 2 ∵∠BDE =∠P 2BE ,∠DEB =∠BEP 2 , ∴△BDE ∽△P 2BE∴2BE DEP E BE=,∴22BE DE P E =⋅. ∴(542-)2 =98⋅(−m ),解得m = −2.∴P 2(522-,) ………………………………………………… 7分③当以点P 为直角顶点时∵∠CPM =∠PBE ,∠CMP =∠PEB , ∴△CMP ∽△PEB .∴PM CMBE PE =,532542m m -=-. 解得m 1m 2精品文档∴35(2P,45()2P .综上,使得△BCP 为直角三角形的点P 的坐标为P 1(51923,),P 2(522-,),35()2P,45()2P . ………………………… 9分说明:以上答案及评分标准仅供参考,其他解法请参照评分.。