立体几何练习题(答案)解析
- 格式:doc
- 大小:5.78 MB
- 文档页数:71
2023年高考数学立体几何真题练习(含答案解析)1.(2022·北京·高考真题)已知正三棱锥−P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34πB .πC .2πD .3π【答案】B 【解析】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且263BO =⨯=PO 因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,而三角形ABC 内切圆的圆心为O ,半径为2364136=>⨯, 故S 的轨迹圆在三角形ABC 内部,故其面积为π 故选:B2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA −=,E ,F 分别是棱11,BC AC 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A −−的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤【答案】A【解析】如图所示,过点F 作FP AC ⊥于P ,过P 作PM BC ⊥于M ,连接PE ,则EFP α=∠,FEP β=∠,FMP γ=∠, tan 1PE PE FP AB α==≤,tan 1FP AB PE PE β==≥,tan tan FP FPPM PEγβ=≥=, 所以αβγ≤≤, 故选:A .3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD −,F ABC −,F ACE −的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACDV ED Sa a a =⋅⋅=⋅⋅⋅=, ()232111223323ABCV FB Sa a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ===,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ==,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFMSEM FM =⋅,AC =, 则33123A EFM C EFM EFMV V V AC S a −−=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确. 故选:CD.4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D −,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒ D .直线1BC 与平面ABCD 所成的角为45︒【答案】ABD【解析】如图,连接1B C 、1BC ,因为11//DA B C ,所以直线1BC 与1B C 所成的角即为直线1BC与1DA 所成的角,因为四边形11BB C C 为正方形,则1B C ⊥1BC ,故直线1BC 与1DA 所成的角为90︒,A 正确;连接1AC ,因为11A B ⊥平面11BB C C ,1BC ⊂平面11BB C C ,则111A B BC ⊥, 因为1B C ⊥1BC ,1111A B B C B =,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC CA ⊥,故B 正确; 连接11AC ,设1111ACB D O =,连接BO ,因为1BB ⊥平面1111D C B A ,1C O ⊂平面1111D C B A ,则11C O B B ⊥, 因为111C O B D ⊥,1111B D B B B ⋂=,所以1C O ⊥平面11BB D D , 所以1C BO ∠为直线1BC 与平面11BB D D 所成的角,设正方体棱长为1,则1C O =1BC =1111sin 2C O C BO BC ∠==, 所以,直线1BC 与平面11BB D D 所成的角为30,故C 错误;因为1C C ⊥平面ABCD ,所以1C BC ∠为直线1BC 与平面ABCD 所成的角,易得145C BC ∠=,故D 正确. 故选:ABD5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC −的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD 【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则112A P μ⎛⎫=−− ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=− ⎪⎝⎭,()110A P BP μμ⋅=−=,所以0μ=或1μ=.故,H Q 均满足,故C 错误; 对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,0A ⎫⎪⎪⎝⎭,所以01,2AP y ⎛⎫=− ⎪ ⎪⎝⎭,11,122A B ⎛⎫=−− ⎪ ⎪⎝⎭,所以00311104222y y +−=⇒=−,此时P 与N 重合,故D 正确. 故选:BD .6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1DBCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D −的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D −为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =||EP =所以侧面11B C CB 与球面的交线上的点到E因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG , 因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==..。
立体几何练习题及答案在学习立体几何的过程中,练习题对于巩固知识、提高应用能力起着至关重要的作用。
本文将为大家提供一些立体几何的练习题,并给出详细的答案解析,以帮助读者更好地理解和掌握立体几何的知识。
一、球的表面积和体积1. 某个球的半径为3cm,求其表面积和体积。
解析:球的表面积公式为S = 4πr²,体积公式为V = (4/3)πr³。
将半径r代入公式进行计算即可。
表面积:S = 4π(3)² = 4π(9) ≈ 113.04cm²体积:V = (4/3)π(3)³ = (4/3)π(27)≈ 113.04cm³因此,该球的表面积约为113.04cm²,体积约为113.04cm³。
二、立方体的表面积和体积2. 一个立方体的边长为5cm,求其表面积和体积。
解析:立方体的表面积公式为S = 6a²,体积公式为V = a³。
将边长a代入公式进行计算即可。
表面积:S = 6(5)² = 6(25) = 150cm²体积:V = (5)³ = 5(5)(5) = 125cm³因此,该立方体的表面积为150cm²,体积为125cm³。
三、圆柱的表面积和体积3. 一个圆柱的底面半径为4cm,高度为10cm,求其表面积和体积。
解析:圆柱的表面积公式为S = 2πr² + 2πrh,体积公式为V = πr²h。
将底面半径r和高度h代入公式进行计算即可。
表面积:S = 2π(4)² + 2π(4)(10) = 2π(16) + 2π(40) ≈ 321.2cm²体积:V = π(4)²(10) = π(16)(10) ≈ 502.4cm³因此,该圆柱的表面积约为321.2cm²,体积约为502.4cm³。
姓名____________班级___________学号____________分数______________一、选择题1 .下列说法正确的是( )A .三点确定一个平面B .四边形一定是平面图形C .梯形一定是平面图形D .平面α和平面β有不同在一条直线上的三个交点2 .若α//β,a//α,则a 与β的关系是( )A .a//βB .a β⊂C .a//β或a β⊂D .A a =β3 .三个互不重合的平面能把空间分成n 部分,则n 所有可能值为( )A .4、6、8B .4、6、7、8C .4、6、7D .4、5、7、84 .一个体积为1的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为( )A .36B .8C .38D .125 .若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是( )A .l ∥aB .l 与a 异面C .l 与a 相交D .l 与a 没有公共点6 .已知三个球的体积之比为1:8:27,则它们的表面积之比为( )A .1:2:3B .1:4:9C .2:3:4D .1:8:27 7 .有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为( )A .π12B .π24C .π36D .π488 .若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( )A .相交B .异面C .平行D .异面或相交9 .设正方体的棱长为233,则它的外接球的表面积为 ( )A .π38B .2πC .4πD .π3410.已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的表面积为 A .π7 B .π14 C .π21 D .π2811.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( )A .12l l ⊥,23l l ⊥13//l l ⇒B .12l l ⊥,23//l l ⇒13l l ⊥C .233////l l l ⇒ 1l ,2l ,3l 共面D .1l ,2l ,3l 共点⇒1l ,2l ,3l 共面12.如图,正方体1111A B C D A B C D -中,E ,F分别为棱A B ,1C C 的中点,在平面11A D D A 内且与平面1D E F 平行的直线 ( ) A .有无数条 B .有2条C .有1条 D .不存在二、填空题13.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根据图中标出的尺寸,计算这个几何体的表面积是______.14.如图,在正方体1111A B C D A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P A B C -的主视图与左视图的面积的比值 为_________.ABCD A 1 B 1C 1D 1EF15.如图,正方体1111A B C D A B C D -中,2A B =,点E 为A D 的1A B C ,中点,点F 在C D 上,若//E F 平面则E F =________.16.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)矩形;(3)正方形;(4)正六边形.其中正确的结论是____________.(把你认为正确的序号都填上)三、解答题17.如图1,空间四边形ABCD 中,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边BC ,CD 上的点,且32==CDCG CBCF ,求证:直线EF ,GH ,AC 交于一点.18.如果一个几何体的主视图与左视图都是全等的长方形,边长分别是4cm 与2cm 如图所示,俯视图是一个边长为4cm 的正方形. (1)求该几何体的全面积.(2)求该几何体的外接球的体积.PDC B A 1A 1D 1B 1C 左视主视AB C DE F 1A 1B 1C 1D19.空间四边形ABCD 的对角线AC=8,BD=6,M 、N 分别为AB 、CD 的中点,MN=5,求异面直线AC 与BD 所成的角20.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ; (2)求该几何体的侧面积S .21.如图,四棱柱1111A B C D A B C D -中,底面A B C D 是正方形,侧棱1A A ⊥底面A B C D ,E为1A A 的中点.求证:1A C ∥平面E B D .ABCDNM 俯视图主视图左视图4224422.如图是一个长方体截去一个角所得的多面体的直观图及它的正(主)视图和侧(左)视图(单位:cm).(I)画出该多面体的俯视图;(Ⅱ)按照给出的尺寸,求该多面体的体积;(Ⅲ)在所给直观图中连结'B C ,证明:'B C ∥平面E F G .直观图E正视图AB B 1A 1 CC 1ED 1 D全国卷设置参考答案一、选择题 1. C 2. C 3. B 4. A 5. D 6. B 7. B 8. D 9. D 10. D 11.答案:B解析:A 答案还有异面或者相交,C 、D 不一定 12. A二、填空题 13. 11π 14. 116. (2),(3),(4) 三、解答题17.提示:FG EH //且FG EH ≠,四边形EFGH为梯形.设EF 与GH 交于点P ,证∈P (平面 ABC 平面DAC ).18.解:(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的全面积是:2×4×4+4×4×2=64cm2几何体的全面积是64cm 2..6(2)由长方体与球的性质可得,长方体的对角线是球的直径,记长方体的对角线为d,球的半径是r,d=63641616==++所以球的半径r=3因此球的体积v=3336273434cmr πππ=⨯=,所以外接球的体积是336cm π 1219.解:取AD 的中点Q,连接MQ 、NQ又∵M、N 分别是AB 、CD 的中点 ∴MQ∥BD,NQ∥AC 且AC NQ BD MQ 21,21==∴∠MQ N 为异面直线AC 与BD 所成角或补角 又AC=8,BD=6,MN=5∴△MQN 中,MQ=3,NQ=4,MN=5即△MQN 为直角三角形且∠MQN=90° ∴异面直线AC 与BD 所成的角为90°20.参考答案:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为1h 的等腰三角形,左、右侧面均为底边长为6,高为2h 的等腰三角形. (1)几何体的体积为为116846433V S h ==⨯⨯⨯=矩形.(2)正侧面及相对侧面底边上的高为:15h ==,左、右侧面的底边上的高为:2h ==故几何体的侧面面积为:S = 2×(12×8×5+12402=+考查内容:简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,三视图所表示的立体模型,球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式) 认知层次:b 难易程度:中21.参考答案:连接A C ,设A C B D F =,连接E F ,因为底面A B C D 是正方形, 所以F 为A C 的中点. 又E 为1A A 的中点,所以E F 是△1A A C 的中位线. 所以E F ∥1A C .因为E F ⊂平面E B D ,1A C ⊄平面E B D , 所以1A C ∥平面E B D .考查内容:直线与平面平行的判定定理,空间图形的位置关系的简单命题 认知层次:c 难易程度:中ABB 1A 1 C C 1 ED 1 D F22.解:(Ⅰ)如图俯视图(Ⅱ)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭3284(c m )3=(Ⅲ)证明:在长方体A B C D A B C D ''''-中,连结A D ',则A D B C ''∥.因为E G ,分别为A A ',A D ''中点, 所以A D E G '∥,从而E G B C '∥.又B C '⊄平面E F G , 所以B C '∥平面E F GABC DE FGA 'B 'C 'D '。
立体几何大题专练1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MNP ABC -,E F ,AC BC //EF PAB PAC ⊥ABC PA PC =90ABC ∠=︒PEF ⊥PBCEF Q E F AC BC //EF AB ∴ ……………………2分 又⊄EF 平面PAB ,⊆AB 平面PAB ,∴ EF ∥平面PAB . ……………………5分(2)PA PC =Q ,E 为AC 的中点,PE AC ∴⊥ ……………………6分 又Q 平面PAC ⊥平面ABCPE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分PAC EBF又因为F 为BC 的中点,//EF AB ∴090,BC EF ABC ⊥∠=∴Q ……………………10分EF PE E =Q IBC ∴⊥面PEF ……………………11分 又BC ⊂Q 面PBC∴面PBC ⊥面PEF ……………………12分3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。
(1)求证:BC 1PC AB N M ABCD PA 、分别是、所在的平面,矩形⊥PAD MN 平面//CD MN ⊥图,正方形ABCD 所在的平面与三角形AD E所在平面互相垂直,△AEB是等腰直角三角形,且AE=ED 设线段BC 、AE 的中点分别为F 、M ,求证:(1)FM ∥ECD 平面; (2)求二面角E-BD—A的正切值.(1)证明:取AD 的中点N,连结FN,MN,则MN ∥ED ,FN ∥CD∴平面FMN ∥平面ECD. ∵ MF 在平面FMN 内,∴ FM ∥平面ECD ......5分 (2)连接EN, ∵AE=ED ,N 为AD 的中点,NMPDCBA∴ EN⊥AD.又∵面ADE⊥面ABCD,∴EN⊥面ABCD.作NP⊥BD,连接EP,则EP⊥BD,∴∠EPN即二面角E-BD-A的平面角,设AD=a,∵ABCD为正方形,⊿ADE为等腰三角形,∴EN=12a,NP=24a.∴tan∠EPN=2. ......10分7.如图,一个圆锥的底面半径为2cm,高为6cm,其中有一个高为x cm的内接圆柱.(1)试用x表示圆柱的侧面积;(2)当x为何值时,圆柱的侧面积最大.19.(1)解:设所求的圆柱的底面半径为r则有662xr-=,即32xr-=.∴2324)32(22xxxxrxSππππ-=-==圆柱侧.......5分(2)由(1)知当3)32(24=--=ππx时,这个二次函数有最大值为π6所以当圆柱的高为3cm时,它的侧面积最大为26cmπ......10分8.(10分)如图,在三棱锥P ABC-中,⊿PAB是等边三角形,∠PAC=∠PBC=90 o.(1)证明:AB⊥PC;(2)若4PC=,且平面PAC⊥平面PBC,求三棱锥P ABC-体积.解:(1)因为PAB ∆是等边三角形,90PAC PBC ∠=∠=︒, 所以Rt PBC Rt PAC ∆≅∆,可得AC BC =。
立体几何试题及解析第一题:求长方体的体积已知长方体的长为6cm,宽为4cm,高为3cm,求长方体的体积。
解析:长方体的体积公式为:体积 = 长 ×宽 ×高代入已知数据:体积 = 6cm × 4cm × 3cm = 72cm³所以长方体的体积为72立方厘米。
第二题:求正方体的表面积已知正方体的边长为5cm,求正方体的表面积。
解析:正方体的表面积公式为:表面积 = 6 ×边长²代入已知数据:表面积 = 6 × (5cm)² = 6 × 25cm² = 150cm²所以正方体的表面积为150平方厘米。
第三题:求圆柱体的体积已知圆柱体的底面半径为2cm,高度为8cm,求圆柱体的体积。
解析:圆柱体的体积公式为:体积= π × 半径² ×高度代入已知数据:体积= 3.14 × (2cm)² × 8cm ≈ 100.48cm³所以圆柱体的体积约为100.48立方厘米。
第四题:求球体的表面积已知球体的半径为3cm,求球体的表面积。
解析:球体的表面积公式为:表面积= 4π × 半径²代入已知数据:表面积= 4 × 3.14 × (3cm)² ≈ 113.04cm²所以球体的表面积约为113.04平方厘米。
总结:在几何学中,立体几何是其中的一个重要部分。
通过对不同类型立体的题目进行解析,可以加深对其体积、表面积等概念的理解。
掌握了基本的立体几何公式和计算方法,能够更好地解决与立体几何相关的问题。
在实际生活中,立体几何的应用广泛,例如建筑、工程、制造等领域。
因此,对立体几何的学习和理解具有重要的意义。
2023年高考数学----立体几何解答题常考全归类真题练习题(含答案解析)1.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值; (3)求平面1ACD 与平面1CC D 所成二面角的余弦值. 【解析】(1)证明:在直三棱柱111ABC A B C -中,1AA ⊥平面111A B C ,且AC AB ⊥,则1111AC A B ⊥以点1A 为坐标原点,1A A 、11A B 、11AC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,0,0A 、()2,2,0B 、()2,0,2C 、()10,0,0A 、()10,0,2B 、()10,0,2C 、()0,1,0D 、()1,0,0E 、11,,12F ⎛⎫⎪⎝⎭,则10,,12EF ⎛⎫= ⎪⎝⎭, 易知平面ABC 的一个法向量为()1,0,0m =,则0EF m ⋅=,故EF m ⊥,EF ⊄平面ABC ,故//EF 平面ABC .(2)()12,0,0C C =,()10,1,2C D =−,()1,2,0EB =,设平面1CC D 的法向量为()111,,u x y z =,则111112020u C C x u C D y z ⎧⋅==⎪⎨⋅=−=⎪⎩,取12y =,可得()0,2,1u =,4cos ,5EB u EB u EB u⋅<>==⋅. 因此,直线BE 与平面1CC D 夹角的正弦值为45.(3)()12,0,2AC =,()10,1,0A D =, 设平面1ACD 的法向量为()222,,v x y z =,则122122200v AC x z v A D y ⎧⋅=+=⎪⎨⋅==⎪⎩,取21x =,可得()1,0,1v =−,则1cos ,5u v u v u v⋅<>==−=⨯⋅因此,平面1ACD 与平面1CC D 2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【解析】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥; 在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC的中点,所以AC BE ⊥; 又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC EF ⊥,所以1=2AFC S AC EF ⋅△, 当EF BD ⊥时,EF 最小,即AFC △的面积最小. 因为ABD CBD ≌△△,所以2CB AB ==, 又因为60ACB ∠=︒,所以ABC 是等边三角形, 因为E 为AC 的中点,所以1AE EC ==,BE 因为AD CD ⊥,所以112DE AC ==, 在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz −,则()()()1,0,0,,0,0,1A B D ,所以()()1,0,1,AD AB =−=−, 设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=−+=⎪⎨⋅=−+=⎪⎩,取y =()3,3,3n =, 又因为()31,0,0,4C F ⎛⎫− ⎪ ⎪⎝⎭,所以31,4CF ⎛⎫= ⎪ ⎪⎝⎭,所以cos ,21n CF n CF n CF⋅===设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以4sin cos ,7nCF θ==所以CF 与平面ABD3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B −−的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.【解析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H . ∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE ∠=∠=︒,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==∠=∠=∠=∠=︒,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD 和Rt DHA ,EG DH == ∵,DC CF DC CB ⊥⊥,且CF CB C ⋂=,∴DC ⊥平面,BCF BCF ∠是二面角F DC B −−的平面角,则60BCF ∠=, ∴BCF △是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴FN BC ⊥,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN CD ⊥,而BC CD C ⋂=,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD FN AD ∴⊥.(2)因为FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz −,设(3,(1,0,3)A B D E,则32M ⎛⎫ ⎪ ⎪⎝⎭,333,,,(2,23,0),(2,22BM AD DE ⎛⎫∴=−=−−=− ⎪ ⎪⎝⎭ 设平面ADE 的法向量为(,,)nx y z =由00n AD n DE ⎧⋅=⎨⋅=⎩,得20230x x z ⎧−−=⎪⎨−+=⎪⎩,取(3,n =−,设直线BM 与平面ADE 所成角为θ,∴3||sin cos ,|||3n BM n BM n BMθ⋅=〈〉====⋅4.(2022·全国·统考高考真题)如图,PO 是三棱锥−P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B −−的正弦值. 【解析】(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥−P ABC 的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC , 所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒, 所以ODA OAD ∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以//OE 平面PAC(2)过点A 作//Az OP ,如图建立平面直角坐标系, 因为3PO =,5AP =,所以4OA =,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB = 所以12AC =,所以()O,()B,()P ,()0,12,0C ,所以32E ⎛⎫ ⎪⎝⎭,则332AE ⎛⎫= ⎪⎝⎭,()43,0,0AB =,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则=3y −,0x =,所以()0,3,2n =−;设平面AEC 的法向量为(),,m a b c =,则33302120m AE a bc m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =−,0b =,所以()3,0,6m =−;所以cos ,13n m n m n m⋅−===设二面角C AE B −−的大小为θ,则43cos cos ,=13n m θ=, 所以11sin 13θ=,即二面角C AE B −−的正弦值为1113.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC −的体积.【解析】(1)由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CDBD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BD ⊥,由于DE BD D ⋂=,,DE BD Ì平面BED , 所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)[方法一]:判别几何关系依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ===由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =. 222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC . 由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅,所以AF CF =,所以EF AC ⊥, 由于12AFCSAC EF =⋅⋅,所以当EF 最短时,三角形AFC 的面积最小 过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得EF =所以13,222DF BF DF ===−=, 所以34BF BD =过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==, 所以34FH =,所以111323324F ABC ABCV SFH −=⋅⋅=⨯⨯=[方法二]:等体积转换AB BC =,60ACB ∠=︒,2AB =ABC ∴∆是边长为2的等边三角形,BE ∴=连接EFADB CDB AF CF EF ACBED EF BD ∆≅∆∴=∴⊥∴∆⊥∆在中,当时,AFC 面积最小222,,2,,BED EF AD CD AD CD AC E AC DE BE BD BE EDBE DE EF BD BD ⊥==∴+=∴⊥⋅⊥∆==为中点DE=1若在中,32113222BEFBF S BF EF ∆∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC −−−∆∴=+=⋅=6.(2022·全国·统考高考真题)在四棱锥P ABCD −中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP ====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.【解析】(1)证明:在四边形ABCD 中,作DE AB ⊥于E ,CF AB ⊥于F , 因为//,1,2CD AB AD CD CB AB ====, 所以四边形ABCD 为等腰梯形, 所以12AE BF ==,故DE =BD = 所以222AD BD AB +=, 所以AD BD ⊥,因为PD ⊥平面ABCD ,BD ⊂平面ABCD , 所以PD BD ⊥, 又=PD AD D ⋂, 所以BD ⊥平面PAD , 又因为PA ⊂平面PAD , 所以BD PA ⊥;(2)如图,以点D 为原点建立空间直角坐标系,BD =则()()(1,0,0,,A B P ,则()()(1,0,3,0,3,3,AP BP DP =−=−=,设平面PAB 的法向量(),,n x y z =,则有0{30n AP x n BP ⋅=−=⋅=−=,可取()3,1,1n =, 则5cos ,5n DPn DP n DP ⋅==所以PD 与平面PAB7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】(1)取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形,而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B ,而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B ,而,,NK MK K NK MK =⊂平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B ,(2)因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A ,平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A ,因为//NK BC ,故NK ⊥平面11ABB A ,因为AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N =,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−, 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯. 若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面MKN , 故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =,而12B B MK ==,MB MN =,故1BB M MKN ≅,所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−, 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C −−的正弦值. 【解析】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h , 则111111112211433333A A BC A A ABC A ABC AB BC C C B V S h h V S A A V −−−=⋅===⋅==,解得h =所以点A 到平面1A BC (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =, 且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC , 由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A , 所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩, 可取()1,0,1m =−,设平面BDC 的一个法向量(),,n a b c =,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩, 可取()0,1,1n =−r , 则11cos ,22m nm n m n ⋅===⨯⋅,所以二面角A BD C −−=本课结束。
立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C。
大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1 设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM =0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m =sin α,-cos α,-sin α 设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM =0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n =sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解. (2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD =(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n =(x 1,y 1,z 1),则n ⋅AE =-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB >|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD -AA 1 ∴D 1P =D 1A +AP =1-λ AB +12λ-12 AD +λ-1 AA 1 ∴D 1P ⋅AC =1-λ AB +12λ-12 AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD 2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1 =81-λ +812λ-12 +4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0 AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P =0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n =0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m =0AC 1 ⋅m =0 ,即-2x +22y =0-322x +322y +hz =0 ,令x =22h ,则m =22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43 .将h =2代入,可得平面AMC 1的法向量m =42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m =x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1 =2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m =1,3,-2 ,又因为平面ABE 的法向量为n =0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22 ,A (-2,2,0),CM =-2,22,22 ,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD =2x =0n ⋅DP =-2y +2z =0,令y =1,得n =(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n ||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQ QC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG =12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MK CQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD =12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG =12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF =2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC =415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 12 2= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,则O 20,0,0 ,A 2,0,0 ,A 11,0,3 ,B 0,2,0 ,C -2,0,0 ,C 1-1,0,3 ,所以BC 1 =(-1,-2,3),BC =(-2,-2,0),AB =(-2,2,0),A 1B =(-1,2,-3).设平面A 1AB 的法向量为m =x ,y ,z ,则-2x +2y =0,-x +2y -3z =0,令y =1,得m =1,1,33 .设平面C 1CB 的法向量为n =a ,b ,c ,则-a -2b +3c =0,-2a -2b =0,令a =3,得n =(3,-3,-1).设平面A 1AB 与平面C 1CB 的夹角为θ,则cos θ=cos m ,n =m ⋅n m n =-3373×7=17.16(2024·广东深圳·二模)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C ⊥底面ABC ,且AB =AC ,A 1B =A 1C .(1)证明:AA 1⊥平面ABC ;(2)若AA 1=BC =2,∠BAC =90°,求平面A 1BC 与平面A 1BC 1夹角的余弦值.【答案】(1)证明见解析;(2)155.【分析】(1)取BC 的中点M ,连结MA 、MA 1,根据等腰三角形性质和线面垂直判定定理得BC ⊥平面A 1MA,进而由A 1A ∥B 1B 得B 1B ⊥BC ,再证明B 1B ⊥平面ABC 即可得证.(2)建立空间直角坐标系,用向量法求解即可;也可用垂面法作出垂直于A 1B 的垂面,从而得出二面角的平面角再进行求解即可.【详解】(1)取BC 的中点M ,连结MA 、MA 1.因为AB =AC ,A 1B =A 1C ,所以BC ⊥AM ,BC ⊥A 1M ,由于AM ,A 1M ⊂平面A 1MA ,且AM ∩A 1M =M ,因此BC ⊥平面A 1MA ,因为A 1A ⊂平面A 1MA ,所以BC ⊥A 1A ,又因为A 1A ∥B 1B ,所以B 1B ⊥BC ,因为平面BB 1C 1C ⊥平面ABC ,平面BB 1C 1C ∩平面ABC =BC ,且B 1B ⊂平面BB 1C 1C ,所以B 1B ⊥平面ABC ,因为A 1A ∥B 1B ,所以AA 1⊥平面ABC .(2)法一:因为∠BAC =90°,且BC =2,所以AB =AC =2.以AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A -xyz ,则A 10,0,2 ,B 2,0,0 ,C 0,2,0 ,C 10,2,2 .所以A 1B =2,0,-2 ,A 1C =0,2,-2 ,A 1C 1 =0,2,0 .设平面A 1BC 的法向量为m =x 1,y 1,z 1 ,则m ·A 1B =0m ·A 1C =0 ,可得2x 1-2z 1=02y 1-2z 1=0 ,令z 1=1,则m =2,2,1 ,设平面A 1BC 1的法向量为n =x 2,y 2,z 2 ,则n ⋅A 1B =0n ⋅A 1C 1 =0 ,可得2x 2-2z 2=02y 2=0 ,令z 2=1,则n =2,0,1 ,设平面A 1BC 与平面A 1BC 1夹角为θ,则cos θ=m ⋅n m n =35×3=155,所以平面A 1BC 与平面A 1BC 1夹角的余弦值为155.法二:将直三棱柱ABC -A 1B 1C 1补成长方体ABDC -A 1B 1D 1C 1.连接C 1D ,过点C 作CP ⊥C 1D ,垂足为P ,再过P 作PQ ⊥A 1B ,垂足为Q ,连接CQ ,因为BD ⊥平面CDD 1C 1,且CP ⊂平面CDD 1C 1,所以BD ⊥CP ,又因为CP ⊥C 1D ,由于BD ,C 1D ⊂平面A 1BDC 1,且BD ∩C 1D =D ,所以CP ⊥平面A 1BDC 1,则△CPQ 为直角三角形,由于A 1B ⊂平面A 1BDC 1,所以A 1B ⊥CP ,因为CP ,PQ ⊂平面CPQ ,且CP ∩PQ =P ,所以A 1B ⊥平面CPQ ,因为CQ ⊂平面CPQ ,所以CQ ⊥A 1B ,则∠CQP 为平面A 1BC 与平面A 1BC 1的夹角或补角,在△A 1BC 中,由等面积法可得CQ =303,因为PQ =A 1C 1=2,所以cos ∠CQP =PQ CQ=155,因此平面A 1BC 与平面A 1BC 1夹角的余弦值为155.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED,求二面角P -EF -B 的正弦值.【答案】(1)证明见解析;(2)31010【分析】(1)根据条件,利用线面平行的判定定理,得到AB ⎳平面PCD ,再线面平行的性质定理,得到AB ⎳CD ,再利用条件得到AC =4,结合AB =2,BC =23,即可证明结果;(2)建立空间直角坐标系,求出平面PCD 和平面ABE 的法向量,利用面面角的向量法,即可解决问题.【详解】(1)因为AB ⎳EF ,EF ⊂平面PCD ,AB ⊄平面PCD ,所以AB ⎳平面PCD ,因为AB ⊂平面ABCD ,平面ABCD ∩平面PCD =CD ,所以AB ⎳CD ,连接AC ,因为PA ⊥平面ABCD ,所以∠PCA 是PC 与平面ABCD 的夹角,则tan ∠PCA =PA AC =23AC=32,解得AC =4.因为AB =2,BC =23,所以AB 2+BC 2=AC 2,所以AB ⊥BC .又AB ≠CD ,所以四边形ABCD 是直角梯形.(2)取CD 的中点M ,连接AM ,以A 为坐标原点建立如图所示的空间直角坐标系,则P 0,0,23 ,D 23,-2,0 ,C 23,2,0 ,B 0,2,0 ,AB =0,2,0 ,PC =23,2,-23 ,PD=23,-2,-23 ,由PE =2ED ,得E 433,-43,233 ,则BE =433,-103,233,设平面PCD 的法向量为n=x ,y ,z ,则n ⋅PC=23x +2y -23z =0n ⋅PD=23x -2y -23z =0,取x =1,得到y =0,z =1,即n=1,0,1 ,设平面ABE 的一个法向量为m=x ,y ,z ,则由m ⋅AB =0m ⋅BE =0 ,得到2y =0433x -103y +233z =0,到x =1,得到y =0,z =-2,所以平面ABE 的一个法向量为m=1,0,-2 设二面角P -EF -B 的平面角为θ,则cos θ =cos n ,m =n ⋅m n m=1010,所以sin θ=1-10102=31010,故二面角P -EF -B 的正弦值为31010.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.【答案】(1)证明见解析(2)31010【分析】(1)借助圆锥的性质及面面垂直的判定定理计算即可得;(2)建立适当空间直角坐标系,借助空间向量计算即可得.【详解】(1)如图,设AC 交BD 于点F ,连接EF ,在圆锥PO 中,PO ⊥底面圆O ,所以PO ⊥BD ,又等边三角形ABD 是圆锥底面圆O 的内接三角形,AC 为直径,所以BD ⊥AC ,所以AB =AC sin π3=23,所以AF =AB sin π3=3,可知OF =12OC =1,即F 是OC 的中点,又E 是母线PC 的中点,所以EF ⎳PO ,所以EF ⊥平面ABD ,又EF ⊂平面BED ,所以平面BED ⊥平面ABD ;(2)由(1)EF ⊥平面ABD ,BD ⊥AC ,以点F 为坐标原点,FA ,FB ,FE 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,在等腰三角形PAC 中AC =4,PO =2EF =6,OM =2,又AF =3,所以BF =DF =AF tan π6=3,所以A 3,0,0 ,B 0,3,0 ,D 0,-3,0 ,E 0,0,3 ,M 1,0,2 ,∴AB =-3,3,0 ,AE =-3,0,3 ,DM=1,3,2 ,设平面ABE 的法向量为n=x ,y ,z ,则AB ⋅n =0AE ⋅n =0,即-3x +3y =0-3x +3z =0 ,令x =1,则y =3,z =1,即n=1,3,1 ,设直线DM 与平面ABE 所成的角为θ,则sin θ=cos n ,DM =n ⋅DM n ⋅DM=1+3×3+21+3+1×1+3+4=31010.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC.(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.【答案】(1)证明见解析;(2)π6.【分析】(1)连结AC ,BD 交于点O ,由条件证明PO ⊥AC ,PO ⊥BD ,建立空间直角坐标系,利用向量方法证明PC ⊥DM ,PC ⊥BM ,结合线面垂直判定定理证明结论;(2)根据线面角的向量求法求出BE 与平面ABCD 所成角的正弦值,再求其最大值,由此可求线面角的最大值.【详解】(1)连结AC ,BD 交于点O ,连PO ,由PA =PC ,PB =PD =210知PO ⊥AC ,PO ⊥BD ,又AC ∩BD =O ,∴PO ⊥平面ABCD又底面ABCD 为菱形,所以AC ⊥BD以O 为坐标原点,OB ,OC ,OP分别为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示∠DAB =60°,边长为4,则OD =OB =2,OA =OC =23在直角三角形BOP 中,PB =210所以OP =6所以点O (0,0,0),P (0,0,6),B (2,0,0),D (-2,0,0),C (0,23,0)PC =4MC ,则M 0,332,32所以PC =(0,23,-6),DM =2,332,32 ,BM =-2,332,32,所以PC ⋅DM =0×2+23×332+(-6)×32=0,PC ⋅BM =0×-2 +23×332+-6 ×32=0,所以PC ⊥DM ,PC ⊥BM ,所以PC ⊥DM ,PC ⊥BM ,又DM ∩BM =M ,DM ,BM ⊂平面BDM ,所以PC ⊥平面BDM ,(2)设DE =λDM ,所以DE =λDM =2λ,332λ,32λ ,故E 2λ-2,332λ,32λ ,所以BE =2λ-4,332λ,32λ 平面ABCD 的一个法向量是n=(0,0,1),设BE 与平面ABCD 所成角为θ,则sin θ=cos BE ,n =BE ⋅n BE ⋅n =32λ(2λ-4)2+332λ 2+32λ 2=32λ13λ2-16λ+16当λ=0时,BE ⊂平面ABCD ,θ=0;当λ≠0时,sin θ=32λ13λ2-16λ+16=3213-16λ+16λ2=3216×1λ-12 2+9≤12,当且仅当λ=12时取等号,又θ∈0,π2 所以θ≤π6,故BE 与平面ABCD 所成角的最大值为π620(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.【答案】(1)62;(2)π4.【分析】(1)连B 1D 1∩A 1C 1=O ,以O 为坐标原点,建立空间直角坐标系,借助向量垂直的坐标表示求出四棱柱的高,进而求出体积.(2)利用对称求出点E 的坐标,进而求出平面A 1C 1D 与平面α的法向量,再借助面面角的向量求法求得结果.【详解】(1)在直四棱柱ABCD -A 1B 1C 1D 1中,连B 1D 1∩A 1C 1=O ,由菱形A 1B 1C 1D 1,得OC 1⊥OD 1,令AA 1=a ,以O 为坐标原点,直线OC 1,OD 1分别为x ,y 轴,过O 平行于AA 1的直线为z 轴,建立空间直角坐标系,则点C 1(1,0,0),D 1(0,3,0),B (0,-3,a ),D (0,3,a ),BD 1 =(0,23,-a ),C 1D=(-1,3,a ),由BD 1⊥平面A 1C 1D ,C 1D ⊂平面A 1C 1D ,得BD 1⊥C 1D ,则BD 1 ⋅C 1D=6-a 2=0,解得a =6,所以四棱柱的体积V =S A 1B 1C 1D 1⋅AA 1=2S △A 1B 1C 1⋅a =2×34×22×6=6 2.(2)由(1)知,B (0,-3,6),BD 1=(0,23,-6),由BD 1⊥平面A 1C 1D ,点D 1关于平面A 1C 1D 的对称点为E ,则点E 在线段BD 1上,且C 1E =C 1D 1=2,设E x ,y ,z ,BE =λBD 1(0<λ<1),则x ,y +3,z -a =λ0,23,-a ,所以E 0,2λ-1 3,1-λ 6 ,C 1E=-1,32λ-1 ,61-λ ,于是C 1E 2=12+3(2λ-1)2+6(1-λ)2=4,解得λ=13,则E 0,-33,263,由点E 和点C 1关于平面α对称,得C 1E =-1,-33,263 是平面α的一个法向量,又BD 1=(0,23,-6)是平面A 1C 1D 的一个法向量,因此|cos ‹BD 1 ,C 1E ›|=|BD 1 ⋅C 1E ||BD 1 ||C 1E |=-33×23-6×263 32×2=22,所以平面A 1C 1D 和平面α所成锐二面角的大小为π4.21(2024·山东济南·二模)如图,在四棱锥P -ABCD 中,四边形ABCD 为直角梯形,AB ∥CD ,∠DAB =∠PCB =60°,CD =1,AB =3,PC =23,平面PCB ⊥平面ABCD ,F 为线段BC 的中点,E 为线段PF 上一点.(1)证明:PF ⊥AD ;(2)当EF 为何值时,直线BE 与平面PAD 夹角的正弦值为74.【答案】(1)证明见解析(2)2【分析】(1)过D 作DM ⊥AB ,垂足为M ,分析可知△PBC 为等边三角形,可得PF ⊥BC ,结合面面垂直的性质可得PF ⊥平面ABCD ,即可得结果;(2)取线段AD 的中点N ,连接NF ,建系,设E 0,0,a ,a ∈0,3 ,求平面PAD 的法向量,利用空间向量处理线面夹角的问题.【详解】(1)过D 作DM ⊥AB ,垂足为M ,由题意知:BCDM 为矩形,可得AM =2,BC =DM =AMtan60°=23,由PC =23,∠PCB =60°,则△PBC 为等边三角形,且F 为线段BC 的中点,则PF ⊥BC ,又因为平面PCB ⊥平面ABCD ,平面PCB ∩平面ABCD =BC ,PF ⊂平面PCB ,可得PF ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PF ⊥AD .(2)由(1)可知:PF ⊥平面ABCD ,取线段AD 的中点N ,连接NF ,则FN ∥AB ,FN =2,又因为AB ⊥BC ,可知NF ⊥BC ,以F 为坐标原点,NF ,FB ,FP 分别为x ,y ,z 轴,建立空间直角坐标系,则A 3,3,0 ,D 1,-3,0 ,P 0,0,3 ,B 0,3,0 ,因为E 为线段PF 上一点,设E 0,0,a ,a ∈0,3 ,可得DA =2,23,0 ,DP =-1,3,3 ,BE=0,-3,a ,设平面PAD 的法向量n=x ,y ,z ,则n ⋅DA=2x +23y =0n ⋅DP=-x +3y +3z =0,令x =-3,则y =3,z =-2,可得n=-3,3,-2 ,由题意可得:cos n ,BE =n ⋅BE n ⋅BE =2a +3 4×3+a2=74,整理得a 2-4a +4=0,解得a =2,所以当EF =2,直线BE 与平面PAD 夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD 中,AB =2BC =4,∠ABC =60°,E 为CD 的中点,将△ADE 沿AE 折起,连结BD ,CD ,且BD =4,如图2.(1)求证:图2中的平面ADE ⊥平面ABCE ;(2)在图2中,若点F 在棱BD 上,直线AF 与平面ABCE 所成的角的正弦值为3010,求点F 到平面DEC 的距离.【答案】(1)证明见解析(2)21515。
高中数学第八章立体几何初步必练题总结单选题1、下列说法正确的是()A.有两个面平行,其余各面都是平行四边形的几何体叫棱柱B.过空间内不同的三点,有且只有一个平面C.棱锥的所有侧面都是三角形D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台答案:C分析:根据定义逐项分析即可对A:根据棱柱的定义知,有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体是棱柱,所以A错误,反例如图:对B:若这三点共线,则可以确定无数个平面,故B错误;对C:棱锥的底面为多边形,其余各面都是有一个公共顶点的三角形,故C正确;对D:只有用平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故D错误,故选:C.2、下列命题中①空间中三个点可以确定一个平面.②直线和直线外的一点,可以确定一个平面.③如果三条直线两两相交,那么这三条直线可以确定一个平面.④如果三条直线两两平行,那么这三条直线可以确定一个平面.⑤如果两个平面有无数个公共点,那么这两个平面重合.真命题的个数为( )A .1个B .2个C .3个D .4个答案:A分析:根据空间位置关系可直接判断各命题.命题①:空间中不共线三个点可以确定一个平面,错误;命题②:直线和直线外的一点,可以确定一个平面,正确;命题③:三条直线两两相交,若三条直线相交于一点,则无法确定一个平面,所以命题③错误;命题④:如果三条直线两两平行,那么这三条直线不能确定一个平面,所以命题④错误;命题⑤:两个平面有无数个公共点,则两平面可能相交,所以命题⑤错误;故选:A.3、在正方体ABCD −A 1B 1C 1D 1中,E 为线段A 1B 1的中点,则异面直线D 1E 与BC 1所成角的余弦值为( )A .√55B .√105C .√155D .2√55 答案:B分析:连接AD 1,,得到AD 1//BC 1,把异面直线D 1E 与BC 1所成角转化为直线D 1E 与AD 1所成角,取AD 1的中点F ,在直角△D 1EF 中,即可求解.在正方体ABCD −A 1B 1C 1D 1中,连接AD 1,,可得AD 1//BC 1,所以异面直线D 1E 与BC 1所成角即为直线D 1E 与AD 1所成角,即∠AD 1E 为异面直线D 1E 与BC 1所成角,不妨设AA 1=2,则AD 1=2√2,D 1E =AE =√5,取AD 1的中点F ,因为D 1E =AE ,所以EF ⊥AD 1,在直角△D 1EF 中,可得cos∠AD 1E =D 1F D 1E =√2√5=√105. 故选:B.AE AE4、如图是四边形ABCD的水平放置的直观图A′B′C′D′,则原四边形ABCD的面积是()A.14B.10√2C.28D.14√2答案:C分析:根据斜二测画法的定义,还原该四边形得到梯形,根据梯形的面积公式即可计算求解. ∵A′D′∥y′轴,A′B′∥C′D′,A′B′≠C′D′,∴原图形是一个直角梯形.又A′D′=4,∴原直角梯形的上、下底及高分别是2,5,8,×(2+5)×8=28.故其面积为S=12故选:C5、甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104答案:C 分析:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r 1r 2=2,所以r 1=2r 2,又2πr 1l +2πr 2l =2π, 则r 1+r 2l =1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l , 乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.6、如图,某圆锥的轴截面ABC 是等边三角形,点D 是线段AB 的中点,点E 在底面圆的圆周上,且BE⏜的长度等于CE⏜的长度,则异面直线DE 与BC 所成角的余弦值是( )A .√24B .√64C .√104D .√144答案:A 分析:过点A 作AO ⊥BC 于点O ,过点A 作DG ⊥BC 于点G ,取AO 的中点F ,连接GE 、OE 、EF ,则有∠DEF (或其补角)就是异面直线DE 与BC 所成的角,设圆锥的底面半径为2,解三角形可求得答案.解:过点A 作AO ⊥BC 于点O ,过点A 作DG ⊥BC 于点G ,取AO 的中点F ,连接GE 、OE 、EF ,则DF//BC ,且DF =12BC ,所以∠DEF (或其补角)就是异面直线DE 与BC 所成的角,设圆锥的底面半径为2,则DF =1,OE =2,AO =2√3,所以DG =OF =√3,在Rt △GOE 中,GO =1,OE =2,所以GE =√GO 2+OE 2=√5,在Rt △GDE 中,GE =√5,DG =√3,所以DE =√GD 2+GE 2=2√2,在Rt △FOE 中,FO =√3,OE =2,FE =√FO 2+OE 2=√7,所以在△DFE 中,满足DF 2+FE 2=DE 2,所以∠DFE =90∘,所以cos∠DEF =DF DE =2√2=√24, 故选:A.7、下列说法中正确的是( )A .如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行B .平面α内△ABC 的三个顶点到平面β的距离相等,则α与β平行C .α//β,a//α,则a//βD .a//b ,a//α,b ⊄α,则b//α答案:D分析:根据线面关系,逐一判断每个选项即可.解:对于A选项,如果一条直线与一个平面平行,那么这条直线与平面内的无数条直线平行,而不是任意的直线平行,故错误;对于B选项,如图1,D,E,F,G分别为正方体中所在棱的中点,平面DEFG设为平面β,易知正方体的三个顶点A,B,C到平面β的距离相等,但△ABC所在平面α与β相交,故错误;对于选项C,a可能在平面β内,故错误;对于选项D,正确.故选:D.8、已知空间四点中,无三点共线,则经过其中三点的平面有()A.一个B.四个C.一个或四个D.无法确定平面的个数答案:C分析:由过不在一条直线上的三点,有且只有一个平面分析判断即可.若空间中的四点共面,则经过其中的三点的平面只有一个,若空间中的四点不共面,设这四点为A,B,C,D,由于无三点共线,所以由公理2,可知过A,B,C三点确定一个平面,过B,C,D三点确定一个平面,过A,B,D三点确定一个平面,过A,D,C三点确定一个平面,所以经过其中三点的平面有4个,综上,空间四点中,无三点共线,则经过其中三点的平面有1个或4个,故选:C多选题9、如图,在菱形ABCD中,AB=2,∠BAD=60°,将△ABD沿对角线BD翻折到△PBD位置,连结PC,则在翻折过程中,下列说法正确的是()A.PC与平面BCD所成的最大角为45°B.存在某个位置,使得PB⊥CDC.当二面角P﹣BD﹣C的大小为90°时,PC=√6D.存在某个位置,使得B到平面PDC的距离为√3答案:BC分析:A,取BD的中点O,连接OP、OC,则OP=OC=√3.可得PC与平面BCD所成的角为∠PCO,当PC=√3时∠PCO=60°>45°,即可判断;B,当点P在平面BCD内的投影为△BCD的重心点Q时,可得PB⊂平面PBQPB⊥CD,即可判断;C,当二面角P﹣BD﹣C的大小为90°时,平面PBD⊥平面BCD,即可得△POC为等腰直角三角形,即可判断;D,若B到平面PDC的距离为√3,则有DB平面PCD,即DB⊥CD,与△BCD是等边三角形矛盾.解:选项A,取BD的中点O,连接OP、OC,则OP=OC=√3.由题可知,△ABD和△BCD均为等边三角形,由对称性可知,在翻折的过程中,PC与平面BCD所成的角为∠PCO,当PC=√3时,△OPC为等边三角形,此时∠PCO=60°>45°,即选项A错误;选项B,当点P在平面BCD内的投影为△BCD的重心点Q时,有PQ⊥平面BCD,BQ⊥CD,∴PQ⊥CD,又BQ∩PQ=Q,BQ、PQ⊂平面PBQ,∴CD⊥平面PBQ,∵PB⊂平面PBQ,∴PB⊥CD,即选项B正确;选项C,当二面角P﹣BD﹣C的大小为90°时,平面PBD⊥平面BCD,∵PB=PD,∴OP⊥BD,∵平面PBD∩平面BCD=BD,∴OP⊥平面BCD,∴OP⊥OC,又OP=OC=√3,∴△POC为等腰直角三角形,∴PC=√2OP=√6,即选项C正确;选项D,∵点B到PD的距离为√3,点B到CD的距离为√3,∴若B到平面PDC的距离为√3,则平面PBD⊥平面PCD.平面CBD⊥平面PCD,则有DB平面PCD,即DB⊥CD,与△BCD是等边三角形矛盾.故选:BC.10、(多选题)下列命题中,错误的结论有()A.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B.如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等C.如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补D.如果两条直线同时平行于第三条直线,那么这两条直线互相平行答案:AC分析:由等角定理可判断A、B的真假;举反例可判断C的真假;由平行公理可判断D的真假.对于选项A:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故选项A错误;对于选项B:由等角定理可知B正确;对于选项C:如果一个角的两边和另一个角的两边分别垂直,这两个角的关系不确定,既可能相等也可能互补,也可能既不相等,也不互补.反例如图,在立方体中,∠A1D1C1与∠A1BC1满足A1D1⊥A1B,C1D1⊥C1B,但是∠A1D1C1=π2,∠A1BC1=π3,二者不相等也不互补.故选项C错误;对于选项D:如果两条直线同时平行于第三条直线,那么这两条直线平行,故选项D正确.故选:AC.11、两平行平面截半径为5的球,若截面面积分别为9π和16π,则这两个平面间的距离是()A.1B.3C.4D.7答案:AD解析:对两个平行平面在球心的同侧和异侧两种情况讨论,计算出球心到两截面的距离,进而可求得两平面间的距离.如图(1)所示,若两个平行平面在球心同侧,则CD=OC−OD=√52−32−√52−42=4−3=1;如图(2)所示,若两个平行截面在球心两侧,则CD=OC+OD=√52−32+√52−42=4+3=7.故选:AD.小提示:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质“与底面全等或相似”,同时结合旋转体中的经过旋转轴的截面“轴截面”的性质,利用相似三角形中的相似比,构设相关几何变量的方程组,进而得解.12、如图,△A′B′C′是水平放置的△ABC 的直观图,A′B′=2,A′C′=B′C′=√5,则在原平面图形△ABC 中,有( )A .B .AB =2C .AC =2√5D .S △ABC =4√2答案:BD分析:将直观图△A′B′C′还原为原平面图形△ABC 即可求解.解:在直观图△A′B′C′中,过Cʹ作CʹDʹ⊥AʹBʹ于Dʹ∵A′B′=2,A′C′=B′C′=√5,∴AʹDʹ=1,CʹDʹ=√AʹCʹ2−AʹDʹ2=2,又∠CʹOʹDʹ=45∘,所以OʹDʹ=2,OʹAʹ=1,OʹCʹ=2√2,所以利用斜二测画法将直观图△A′B′C′还原为原平面图形△ABC ,如图 AC BCOC=4√2,OA=1,AB=2,故选项B正确;又AC=√OA2+OC2=√33,AC=√OB2+OC2=√41,故选项A、C错误;S△ABC=12×AB×OC=12×2×4√2=4√2,故选项D正确;故选:BD.13、沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).假设该沙漏每秒钟漏下0.02cm3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是()A.沙漏中的细沙体积为1024π81cm3B.沙漏的体积是128πcm3C.细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD.该沙漏的一个沙时大约是1565秒(π≈3.14)答案:AC解析:A.根据圆锥的体积公式直接计算出细沙的体积;B.根据圆锥的体积公式直接计算出沙漏的体积;C.根据等体积法计算出沙堆的高度;D.根据细沙体积以及沙时定义计算出沙时.A.根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径r=23×4=83cm,所以体积V=13⋅πr2⋅2ℎ3=13⋅64π9⋅163=1024π81cm3B.沙漏的体积V=2×13×π×(ℎ2)2×ℎ=2×13×π×42×8=2563πcm3;C.设细沙流入下部后的高度为ℎ1,根据细沙体积不变可知:1024π81=13×(π(ℎ2)2)×ℎ1,所以1024π81=16π3ℎ1,所以ℎ1≈2.4cm;D.因为细沙的体积为1024π81cm3,沙漏每秒钟漏下0.02cm3的沙,所以一个沙时为:1024π810.02=1024×3.1481×50≈1985秒.故选:AC.小提示:该题考查圆锥体积有关的计算,涉及到新定义的问题,难度一般.解题的关键是对于圆锥这个几何体要有清晰的认识,同时要熟练掌握圆锥体积有关的计算公式.填空题14、已知一个圆柱的高不变,它的体积扩大为原来的4倍,则它的侧面积扩大为原来的___________倍.答案:2分析:求出底面半径扩大为原来的2倍,从而得到侧面积扩大为原来的2倍.设圆柱的高为ℎ,底面半径为r,则体积为πr2ℎ,体积扩大为原来的4倍,则扩大后的体积为4πr2ℎ,因为高不变,故体积4πr2ℎ=π(2r)2ℎ,即底面半径扩大为原来的2倍,原来侧面积为2πrℎ,扩大后的圆柱侧面积为2π⋅2rℎ=4πrℎ,故侧面积扩大为原来的2倍.所以答案是:215、对于任意给定的两条异面直线,存在______条直线与这两条直线都垂直.答案:无数分析:平移一条直线与另一条相交并确定一个平面,再由线面垂直的意义及异面直线所成角判断作答.令给定的两条异面直线分别为直线a,b,平移直线b到直线bʹ,使bʹ与直线a相交,如图,则直线bʹ与a确定平面α,点A是平面α内任意一点,过点A有唯一直线l⊥α,因此,l⊥a,l⊥bʹ,即有l⊥b,由于点A的任意性,所以有无数条直线与异面直线a,b都垂直.所以答案是:无数16、如图,已知正四棱柱ABCD−A1B1C1D1的底面边长为2,高为3,则异面直线AA1与BD1所成角的正切值为_______.答案:2√23分析:直接利用异面直线所成角的定义求解.因为AA1//DD1,所以∠DD1B是异面直线AA1与BD1所成的角,在正四棱柱ABCD−A1B1C1D1的底面边长为2,高为3,所以tan∠DD1B=BDDD1=2√23,所以答案是:2√23解答题17、如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形(正四棱锥被平行于底面的平面截去一个小正四棱锥后剩下的多面体)玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10√7cm,容器Ⅱ的两底面对角线EG、E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度,玻璃棒粗细均忽略不计)(1)求容器Ⅰ、容器Ⅱ的容积;(2)①将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分(水面以下)的长度;②将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分(水面以下)的长度.答案:(1)11200cm3;26176cm3;(2)①16cm;②20cm.分析:(1)利用正四棱柱和正四棱台的体积公式计算作答.(2)分别作出玻璃棒l所在的正四棱柱和正四棱台的对角面,借助解三角形知识分别求解作答.(1)容器Ⅰ的底面正方形ABCD面积S=12AC2=12×(10√7)2=350(cm2),其容积V1=S1⋅AA1=350×32=11200(cm3),容器Ⅱ的底面EFGH面积S1=12EG2=12×142=98(cm2),底面E1F1G1H1面积S2=12E1G12=12×622=1922(cm2),容器Ⅱ的容积V2=13(S1+√S1S2+S2)×32=13(98+√98×1922+1922)×32=26176(cm3).(2)①由正四棱柱的定义知,对角面是矩形,设玻璃棒的另一端落在CC1上的点M处,如图,由AC=10√7,AM=40得:CM=√AM2−AC2=30,sin∠CAM=CMAM =34,设AM与水面的交点为P1,过P1作P1Q1//CC1交AC于Q1,在容器Ⅰ中,CC1⊥平面ABCD,则P1Q1⊥平面ABCD,因此P1Q1=12,AP1=P1Q1sin∠CAM=16,所以玻璃棒l没入水中部分(水面以下)的长度为16cm.②O,O1是正四棱台两底面中心,由正四棱台的结构特征知,对角面EGG1E1是等腰梯形,点O,O1分别是两底的中点,设玻璃棒的另一端落在GG1上的点N处,如图,过G作GK//OO1交E1G1于点K,则GK⊥G1E1,GK=OO1=32,而EG=14,E1G1=62,因此,KG1=E1G1−EG2=24,GG1=√GK2+KG12=√322+242=40,sin∠EGG1=sin∠GG1K=GKGG1=45,显然∠EGG1为钝角,cos∠EGG1=−35,在△ENG中,由正弦定理得sin∠ENG=EGsin∠EGNEN =14×4540=725,cos∠ENG=2427,于是得sin∠NEG=sin(∠EGN+∠ENG)=sin∠EGNcos∠ENG+cos∠EGNsin∠ENG=45×2425+(−35)×725=35,设EN与水面的交点为P2,过P2作P2Q2//OO1交直线EG于Q2,在容器Ⅱ中,OO1⊥平面EFGH,则P2Q2⊥平面EFGH,因此P2Q2=12,EP2=P2Q2sin∠NEG =20,11ACCA所以玻璃棒l没入水中部分(水面以下)的长度为20cm.18、如图,在正方体ABCD−A1B1C1D1中.(1)求异面直线A1B和CC1所成的角的余弦值;(2)求证:直线A1B//平面DCC1D1.答案:(1)√22(2)证明见解析分析:(1)根据已知CC1//BB1,可将异面直线A1B和CC1所成的角转化为直线A1B和BB1所成的角,再根据题目的边长关系,即可完成求解;(2)可通过连接D1C,证明四边形A1BCD1为平行四边形,从而得到A1B//D1C,再利用线面平行的判定定理即可完成证明.(1)因为CC1//BB1,所以∠A1BB1就是异面直线A1B和CC1所成的角.又因为ABCD−A1B1C1D1为正方体,所.以异面直线A1B和CC1所成的角为45o,所以异面直线A1B和CC1所成的角的余弦值为√22(2)连接D1C,因为A1D1//BC且A1D1=BC,所以四边形A1BCD1为平行四边形,所以A1B//D1C;A1B⊄平面DCC1D1,D1C⊂平面DCC1D1;所以直线A1B//平面DCC1D1. 即得证.。