卡尔曼滤波器
- 格式:doc
- 大小:44.00 KB
- 文档页数:11
倾角卡尔曼滤波-概述说明以及解释1.引言1.1 概述倾角卡尔曼滤波是一种用于测量倾角的方法,它结合了倾角测量与卡尔曼滤波原理。
倾角的测量在许多领域中都是非常重要的,例如航空航天、导航系统以及工业自动化等。
倾角的准确测量可以帮助我们判断物体的姿态、稳定性以及对周围环境做出合适的调整。
然而,由于当前倾角传感器本身存在一定的误差和干扰,因此需要采用合适的滤波算法来对倾角进行精确估计和校正。
在这方面,倾角卡尔曼滤波是一种被广泛应用的方法。
倾角卡尔曼滤波算法基于卡尔曼滤波原理,通过对倾角的测量数据进行预测和更新,以得到更加准确、稳定的倾角估计值。
它利用了传感器测量数据的统计特性和系统模型的动态特性,通过权衡预测值和测量值的不确定性来对倾角进行优化估计。
相比其他滤波算法,倾角卡尔曼滤波具有以下优势:首先,它能够有效地抑制传感器数据中的噪声和干扰,并能够适应不同程度的噪声;其次,它具有较高的估计精度和稳定性,能够准确地跟踪目标物体的倾角变化;最后,倾角卡尔曼滤波算法具有较快的收敛速度和较低的计算复杂度,适用于实时应用场景。
未来,倾角卡尔曼滤波在自动化控制、导航系统等领域具有广阔的应用前景。
随着技术的不断进步和创新,倾角卡尔曼滤波算法将更加成熟和精确,为各行各业提供更加可靠和准确的倾角测量方法。
同时,倾角卡尔曼滤波的应用也将得到进一步的拓展,为我们创造更多便利和可能性。
1.2 文章结构文章结构部分的内容如下:文章结构部分的目的是为了向读者介绍本文的大致结构和内容安排。
本文将按照以下方式进行组织和撰写:第一部分是引言,主要包括概述、文章结构和目的三个小节。
在概述部分,会简要介绍倾角卡尔曼滤波的背景和重要性,引起读者的兴趣。
在文章结构部分,将详细说明本文的结构安排,以便读者能够清楚地了解整篇文章的内容。
在目的部分,将明确本文的目标和意义,为读者提供一个阅读的导向。
第二部分是正文,主要包括倾角测量方法和卡尔曼滤波原理两个小节。
卡尔曼滤波器的状态方程和测量方程
卡尔曼滤波器的状态方程和测量方程如下:
状态方程:X(k)=AX(k-1)+Bu(k-1)+W(k-1)。
其中,X(k)表示k时刻的状态向量,A是状态转移矩阵,u(k-1)是k-1时刻的控制输入向量,B是控制输入矩阵,W(k-1)是k-1时刻的噪声向量。
测量方程:Z(k)=HX(k)+V(k)。
其中,Z(k)表示k时刻的测量向量,H是测量矩阵,V(k)是k时刻的测量噪声向量。
卡尔曼滤波器的目的是通过综合测量值和预测值得到一个最优值,它采用分配权重的方式来综合结果。
具体来说,它通过状态方程来预测下一个结果,然后通过测量方程来矫正预测结果,从而得到最优值。
10.6 卡尔曼滤波器简介本节讨论如何从带噪声的测量数据把有用信号提取出来的问题。
通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内。
如前所述,为了消除噪声,可以把 FIR滤波器或IIR滤波器设计成合适的频带滤波器,进行频域滤波。
但在许多应用场合,需要进行时域滤波,从带噪声的信号中提取有用信号。
虽然这样的过程其实也算是对信号的滤波,但所依据的理论,即针对随机信号的估计理论,是自成体系的。
人们对随机信号干扰下的有用信号不能“确知”,只能“估计”。
为了“估计”,要事先确定某种准则以评定估计的好坏程度。
最小均方误差是一种常用的比较简单的经典准则。
典型的线性估计器是离散时间维纳滤波器与卡尔曼滤波器。
对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的。
当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作。
这项研究是用于防空火力控制系统的。
维纳滤波器是基于最小均方误差准则的估计器。
为了寻求维纳滤波器的冲激响应,需要求解著名的维纳-霍夫方程。
这种滤波理论所追求的是使均方误差最小的系统最佳冲激响应的明确表达式。
这与卡尔曼滤波(Kalman filtering)是很不相同的。
卡尔曼滤波所追求的则是使均方误差最小的递推算法。
在维纳进行滤波理论研究并导出维纳-霍夫方程的十年以前,在1931年,维纳和霍夫在数学上就已经得到了这个方程的解。
对于维纳-霍夫方程的研究,20世纪五十年代涌现了大量文章,特别是将维纳滤波推广到非平稳过程的文章甚多,但实用结果却很少。
这时正处于卡尔曼滤波问世的前夜。
维纳滤波的困难问题,首先在上世纪五十年代中期确定卫星轨道的问题上遇到了。
1958年斯韦尔林(Swerling)首先提出了处理这个问题的递推算法,并且立刻被承认和应用。
1960年卡尔曼进行了比斯韦尔林更有意义的工作。
他严格地把状态变量的概念引入到最小均方误差估计中来,建立了卡尔曼滤波理论。
卡尔曼滤波计算举例⏹计算举例⏹卡尔曼滤波器特性假设有一个标量系统,信号与观测模型为[1][][]x k ax k n k +=+[][][]z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。
系统的起始变量x [0]为随机变量,其均值为零,方差为。
2nσ2σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。
220.9,1,10,[0]10nx a P =σ=σ==1. 计算举例根据卡尔曼算法,预测方程为:ˆˆ[/1][1/1]xk k ax k k -=--预测误差方差为:22[/1][1/1]x x nP k k a P k k -=--+σ卡尔曼增益为:()1222222[][/1][/1][1/1][1/1]x x x nx n K k P k k P k k a P k k a P k k -=--+σ--+σ=--+σ+σˆˆˆ[/][/1][]([][/1])ˆˆ[1/1][]([][1/1])ˆ(1[])[1/1][][]xk k x k k K k z k x k k axk k K k z k ax k k a K k xk k K k z k =-+--=--+---=---+滤波方程:()()2222222222222[/](1[])[/1][1/1]1[1/1][1/1][1/1][1/1]x x x nx n x n x nx nP k k K k P k k a P k k a P k k a P k k a P k k a P k k =--⎛⎫--+σ=---+σ ⎪--+σ+σ⎝⎭σ--+σ=--+σ+σ滤波误差方差起始:ˆ[0/0]0x=[0/0][0]x x P P =k [/1]x P k k -[/]x P k k []K k 012345689104.76443.27012.67342.27652.21422.18362.16832.16089.104.85923.64883.16542.94752.84402.79352.76870.47360.32700.26730.24040.22770.22140.21840.2168ˆ[0/0]0x=[0/0]10x P =220.9110na =σ=σ=2. 卡尔曼滤波器的特性从以上计算公式和计算结果可以看出卡尔曼滤波器的一些特性:(1)滤波误差方差的上限取决于测量噪声的方差,即()2222222[1/1][/][1/1]x nx x na P k k P k k a P k k σ--+σ=≤σ--+σ+σ2[/]x P k k ≤σ这是因为(2)预测误差方差总是大于等于扰动噪声的方差,即2[/1]x nP k k -≥σ这是因为222[/1][1/1]x x n nP k k a P k k -=--+σ≥σ(3)卡尔曼增益满足,随着k 的增加趋于一个稳定值。
卡尔曼滤波器基本方程推导过程卡尔曼滤波器基本方程推导过程主要涉及状态方程、观测方程、卡尔曼增益和状态估计等内容。
卡尔曼滤波器是一种用于估计系统状态的递归滤波器,能够通过利用系统的动态模型和测量数据来实现对状态的最优估计。
首先,我们需要定义系统的状态方程和观测方程。
系统的状态方程可以用如下一阶线性动态系统表示:x(k+1) = Ax(k) + Bu(k) + w(k)其中,x(k)为系统状态向量,A为状态转移矩阵,B为输入矩阵,u(k)为系统输入,w(k)为过程噪声。
系统的状态方程描述了系统状态如何随时间演化。
系统的观测方程可以用如下线性观测系统表示:z(k) = Hx(k) + v(k)其中,z(k)为观测值,H为观测矩阵,v(k)为观测噪声。
观测方程描述了系统状态如何被观测到。
接下来,我们可以通过最小二乘法来推导卡尔曼滤波器的基本方程。
我们的目标是最小化状态估计值和真实状态之间的均方误差。
首先,定义状态估计误差为:e(k) = x(k) - x^(k)其中,x^(k)为状态估计值。
状态估计误差的动态方程为:e(k+1) = x(k+1) - x^(k+1) = (A-KH)e(k) + w(k) - Kh(k) + v(k)其中,K为卡尔曼增益。
接着,我们可以通过最小化状态估计误差的方差来推导卡尔曼增益的表达式。
最小化状态估计误差的方差可得到卡尔曼增益的计算公式:K = P*H^T(HP*H^T + R)^-1其中,P为状态估计误差的协方差矩阵,R为观测噪声的协方差矩阵。
卡尔曼增益的计算公式描述了如何根据系统的动态模型和测量数据来进行状态估计。
最后,我们可以通过状态估计误差的动态方程和卡尔曼增益的计算公式来得到卡尔曼滤波器的状态估计方程:x^(k+1) = (A-KH)x^(k) + KH(z(k) - Hx^(k))P(k+1) = (I-KH)P(k)(I-KH)^T + KRK^T其中,I为单位矩阵,P为状态估计误差的协方差矩阵。
卡尔曼滤波器是一种递归滤波器,它使用测量数据和系统状态方程来估计一个动态系统的状态。
下面是一个简单的卡尔曼滤波器例题:假设我们有一个一维系统,其状态方程为:X(k) = X(k-1) + 1其中X(k) 表示系统在时刻k 的状态,X(k-1) 表示系统在时刻k-1 的状态。
测量方程为:Z(k) = X(k) + 2 * R * randn()其中Z(k) 表示在时刻k 的测量值,R 表示测量噪声的方差,randn() 表示随机数生成函数,用于生成符合标准正态分布的随机噪声。
现在,我们使用卡尔曼滤波器来估计系统在时刻k 的状态X(k)。
在卡尔曼滤波器中,我们需要定义以下几个变量:P(k|k-1):表示在时刻k-1 时对时刻k 的状态估计的不确定性。
K(k):表示卡尔曼增益,用于将测量值和估计值结合起来。
P(k):表示在时刻k 时对状态估计的不确定性。
X(k):表示在时刻k 的状态估计值。
在初始状态下,我们设定X(0|0)=0 和P(0|0)=1。
然后,我们使用以下递归公式来更新这些变量:P(k|k-1) = P(k-1|k-1) + Q,其中Q 表示过程噪声的方差。
K(k) = P(k|k-1) / (P(k|k-1) + R),其中R 表示测量噪声的方差。
X(k) = X(k|k-1) + K(k) * (Z(k) - X(k|k-1)),其中Z(k) 是测量值。
P(k) = (1 - K(k)) * P(k|k-1)。
下面是一个使用Python 实现的卡尔曼滤波器示例代码:import numpy as npfrom scipy.linalg import inv# 定义系统参数和测量参数Q = 0.01 # 过程噪声方差R = 0.25 # 测量噪声方差X_true = np.arange(1, 10) # 真实状态序列Z_measured = X_true + 2 * R * np.random.randn(len(X_true)) # 测量序列# 初始化卡尔曼滤波器参数X_est = np.zeros_like(X_true) # 初始状态估计值P_est = np.ones_like(X_true) # 初始状态估计的不确定性X_est[0] = X_true[0] # 初始状态估计值为真实值P_est[0] = 1 # 初始不确定性设为1K = np.zeros_like(X_true) # 卡尔曼增益数组for k in range(1, len(X_true)):# 预测步骤:根据上一时刻的状态和过程方程预测当前时刻的状态和不确定性P_est[k] = P_est[k-1] + Q # P预测= P上一时刻+ QX_est[k] = X_est[k-1] + 1 # X预测= X上一时刻+ 1# 更新步骤:根据当前时刻的测量值和卡尔曼增益更新状态估计和不确定性K[k] = P_est[k] / (P_est[k] + R) # 卡尔曼增益计算公式X_est[k] = X_est[k] + K[k] * (Z_measured[k] - X_est[k]) # 状态估计更新公式P_est[k] = (1 - K[k]) * P_est[k] # 不确定性更新公式。
卡尔曼滤波卡尔曼滤波(Kalman filtering ) 一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。
由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。
卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerli ng (1958), Kalman (I960) 与Kalma n and Bucy (1961) 发表。
数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态•由于,它便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理,Kalman滤波是目前应用最为广泛的滤波方法,在通信,导航,制导与控制等多领域得到了较好的应用•中文名卡尔曼滤波器,Kalman滤波,卡曼滤波外文名KALMAN FILTER表达式X(k)=A X(k-1)+B U(k)+W(k)提岀者斯坦利施密特提岀时间1958应用学科天文,宇航,气象适用领域范围雷达跟踪去噪声适用领域范围控制、制导、导航、通讯等现代工程斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。
卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导—航电脑使用了这种滤波器。
关于这种滤波器的论文由Swerling (1958), Kalman (1960)与Kalma n and Bucy (1961) 发表。
2定义传统的滤波方法,只能是在有用信号与噪声具有不同频带的条件下才能实现. 20世纪40年代,N .维纳和A. H .柯尔莫哥罗夫把信号和噪声的统计性质引进了滤波理论,在假设信号和噪声都是平稳过程的条件下,利用最优化方法对信号真值进行估计,达到滤波目的,从而在概念上与传统的滤波方法联系起来,被称为维纳滤波。
1.绪论1.1 概述在滤波器的发展过程中,早期的维纳滤波器涉及到对不随时间变化的统计特性的处理,即静态处理。
在这种信号处理过程中,有用信号和无用噪声的统计特性可与它们的频率特性联系起来,因此与经典滤波器在概念上还有一定的联系。
由于军事上的需要,维纳滤波器在第二次世界大战期间得到了广泛的应用。
但是,维纳滤波器有如下不足之处:第一,必须利用全部的历史观测数据,存储量和计算量都很大;第二,当获得新的观测数据时,没有合适的递推算法,必须进行重新计算;第三,很难用于非平稳过程的滤波。
为了克服维纳滤波器的上述不足之处,卡尔曼等人在维纳滤波的基础上,与60年代初提出了一种递推滤波方法,称为卡尔曼滤波。
与维纳滤波不同,卡尔曼滤波是对时变统计特性进行处理。
他不是从频域,而是从时域的角度出发来考虑问题。
30多年来。
卡尔曼已在各个领域得到了广泛的应用,包括机器人导航、控制、传感器数据融合甚至军事方面的雷达系统以及导弹追踪等。
近年来更被应用于计算机图象处理,例如头脸识别、图象分割、图象边缘检测等等。
1.2滤波器的发展滤波器最初是指某种具有选频特性的电子网络,一般由线圈、电容器和电阻器等元件组成。
滤波器将使它所容许通过的频率范围(即通带)内的电信号产生较小的衰减,而使它所阻止通过的频率范围(即阻带)内的电信号产生较大衰减。
划分通带和阻带的频率,称为滤波器的截止频率。
按组成电路的元件,滤波器可分为LC、RLC、RC、晶体和陶瓷滤波器等。
我们也可以用机械元件代替电子元件,制成机械式滤波器,或利用物质的铁磁共振原理制成可点电调谐的滤波器。
按容器通过的频率范围,滤波器可分为低通,高通,带阻和带通滤波器等。
具有选频特性的串联或并联谐振回路,是一种常用的滤波器。
收音机或其他差式接收机中的中频放大器,也是一中滤波器。
也是一种滤波器。
各级中频放大器中回路靠放大器和变压器来耦合,形成一定的通带和阻带。
信号在通过中放级时,通带内的成分将被放大,而阻带内的成分将大大衰减,而且对通带内的信号还有放大作用。
卡尔曼滤波器介绍摘要在1960年,卡尔曼出版了他最著名的论文,描述了一个对离散数据线性滤波问题的递归解决方法。
从那以后,由于数字计算的进步,卡尔曼滤波器已经成为广泛研究和应用的主题,特别在自动化或协助导航领域。
卡尔曼滤波器是一系列方程式,提供了有效的计算(递归)方法去估计过程的状态,是一种以平方误差的均值达到最小的方式。
滤波器在很多方面都很强大:它支持过去,现在,甚至将来状态的估计,而且当系统的确切性质未知时也可以做。
这篇论文的目的是对离散卡尔曼滤波器提供一个实际介绍。
这次介绍包括对基本离散卡尔曼滤波器推导的描述和一些讨论,扩展卡尔曼滤波器的描述和一些讨论和一个相对简单的(切实的)实际例子。
1 离散卡尔曼滤波器在1960年,卡尔曼出版了他最著名的论文,描述了一个对离散数据线性滤波问题的递归解决方法[Kalman60]。
从那以后,由于数字计算的进步,卡尔曼滤波器已经成为广泛研究和应用的主题,特别在自动化或协助导航领域。
第一章讲述了对卡尔曼滤波器非常“友好的”介绍[Maybeck79],而一个完整的介绍可以在[Sorenson70]找到,也包含了一些有趣的历史叙事。
更加广泛的参考包括Gelb74;Grewal93;Maybeck79;Lewis86;Brown92;Jacobs93]. 被估计的过程卡尔曼滤波器卡用于估计离散时间控制过程的状态变量n x ∈ℜ。
这个离散时间过程由以下离散随机差分方程描述: 111k k k k x Ax bu w ---=++ (1.1)测量值m z ∈ℜ,k k k z Hx v =+ (1.2) 随机变量k w 和k v 分别表示过程和测量噪声。
他们之间假设是独立的,正态分布的高斯白噪: ()~(0)p w N Q, (1.3) ()~(0)p v N R , (1.4)在实际系统中,过程噪声协方差矩阵Q 和观测噪声协方差矩阵R 可能会随每次迭代计算而变化。
但在这儿我们假设它们是常数。
卡尔曼滤波一、卡尔曼滤波的起源谈到信号的分析与处理,就离不开滤波两个字。
通常,信号的频谱处于有限的频率范围内,而噪声的频谱则散布在很广的频率范围内,为了消除噪声,可以把FIR滤波器或者IIR滤波器设计成合适的频带滤波器,进行频域滤波。
但在许多应用场合,需要直接进行时域滤波,从带噪声的信号中提取有用信号。
虽然这样的过程其实也算是对信号的滤波,但其所依据的理论,即针对随机信号的估计理论,是自成体系的.人们对于随机信号干扰下的有用信号不能“确知”,只能“估计”.为了“估计",要事先确定某种准则以评定估计的好坏程度.最小均方误差是一种常用的比较简单的经典准则。
对于平稳时间序列的最小均方误差估计的第一个明确解是维纳在1942年2月首先给出的.当时美国的一个战争研究团体发表了一个秘密文件,其中就包括维纳关于滤波问题的研究工作,这项研究是用于防空火力控制系统的.维纳滤波器是基于最小均方误差准则的估计器。
为了寻求维纳滤波器的冲激响应,需要求解著名的维纳–霍夫方程。
这种滤波理论所求的是使均方误差最小的系统最佳冲激响应的明确表达式。
从维纳–霍夫方程来看,维纳滤波算法是十分低效的。
这种算法要求设置大量的存储器来保存过去的测量数据,一个新的数据到来后,要进行刷新,重新计算自相关和互相关序列。
再者,求解这个方程需要耗费大量时间对高阶矩阵求逆。
因此,维纳滤波算法难以运用于实时处理中,尤其是无法用于军事、航空航天等领域。
为此,许多科技工作者进行了多方探索,但在解决非平稳过程的滤波问题时,能给出的方法很少。
到20世纪50年代中期,随着空间技术的发展,要求对卫星轨道进行精确地测量,这种方法越来越不能满足实际应用的需要。
为此,人们将滤波问题以微分方程表示,提出了一系列适应空间技术应用的精炼算法。
1960年和1961年,卡尔曼(R. E. Kalman)和布西(R. S。
Bucy)提出了递推滤波算法,成功的将状态变量引入到滤波理论中来,用消息与干扰的状态空间模型代替了通常用来描述它们的协方差函数,将状态空间描述与离散数间刷新联系起来,适于计算机直接进行计算,而不是去寻求滤波器冲激响应的明确公式。
卡尔曼滤波p和测量值方差概述及解释说明1. 引言1.1 概述在现代科学和工程领域中,卡尔曼滤波是一种重要的估计和预测技术。
它通过对系统状态进行连续观测和更新,使得能够更准确地估计系统的实际状态并预测未来状态。
而在卡尔曼滤波中,p值和测量值方差扮演着重要的角色。
1.2 文章结构本文将首先介绍卡尔曼滤波的概念以及p值和测量值方差的基本概述。
然后,详细解释p值在卡尔曼滤波中的作用与含义,并分析测量值方差在滤波过程中的作用。
接下来,我们将讨论p值和测量值方差之间的关系,并说明其相互影响以及如何优化它们。
此外,我们还将通过示例分析和实际应用案例介绍来进一步说明这些概念。
最后,在结论与展望部分,我们将对整篇文章进行总结,并提出改进建议与未来研究方向。
1.3 目的本文旨在帮助读者更好地理解卡尔曼滤波中p值和测量值方差的概念和作用,并探讨它们的关系。
通过深入解释和实际应用案例介绍,读者将能够更好地理解这些概念在估计和预测问题中的重要性。
同时,本文还旨在为未来的研究提供启示和参考,促进卡尔曼滤波技术的发展和应用。
2. 卡尔曼滤波p和测量值方差概述2.1 卡尔曼滤波简介卡尔曼滤波是一种常用的状态估计算法,主要用于根据系统的动态模型和观测数据来对未知变量进行估计。
它最早由卡尔曼在1960年提出,并被广泛应用于航空航天、导航、自动控制等领域。
卡尔曼滤波的核心思想是通过融合系统模型预测和实际观测值,得到更加准确可靠的状态估计结果。
其中,p和测量值方差是卡尔曼滤波中两个重要参数。
2.2 p和测量值方差的概念解释在卡尔曼滤波算法中,p代表状态估计误差的协方差矩阵。
该矩阵描述了当前状态估计与真实状态之间的误差关系。
通常情况下,p越小代表估计结果越准确,反之则表示不确定性更大。
而测量值方差则指的是传感器或观测系统提供的观测数据的不确定性程度。
具体而言,它反映了传感器测量过程中的随机误差或噪声。
测量值方差越小,说明观测数据越准确可靠,反之则表示观测数据受噪声干扰较大。
集合卡尔曼滤波
1 卡尔曼滤波
卡尔曼滤波(Kalman Filter)是一种最优状态估计方法,它能够
估计一个未知系统及其状态序列的最优值,又被称为集合型的最优滤
波器。
它的基本思想是,由先前的滤波状态和测量值估计当前状态,它
使用状态变量连接先前的和当前的状态,通过相应的估计和更新,使
得滤波器能够不断更新最优状态。
2 集合卡尔曼滤波
卡尔曼滤波可以通过一个给定的模型来实现,但是在实际场景中,多个模型之间存在偏差,因此不能确保一个估计值对应一致的模型。
因此,集合卡尔曼滤波应运而生,以解决单一模型的不确定性问题。
集合卡尔曼滤波实际上是将卡尔曼滤波技术应用到统计学习中,
通过生成一个集合,来表达系统的不确定性,将所有模型进行综合,
从而提高最终预测的准确性。
3 应用
集合卡尔曼滤波可以广泛应用到机器和生物领域,在人工制导的
飞行控制中,使用集合卡尔曼滤波可以减少飞行中的隐藏误差;同样,它也可以用于遥感图像处理,视觉检测和跟踪,以及机器学习任务的
聚类分析等。
另外,集合卡尔曼滤波广泛用于生物偏好追踪,包括脑电图,肌
肉活动记录,以及传感器控制的手部抓取等,可以更好地理解人类特
性和动作,以提高合成饮食追踪能力和精准检测高血压等疾病。
4 总结
集合卡尔曼滤波是一种融合了单一卡尔曼滤波与统计学习的技术,它利用一组测量值和一组不同模型对状态和测量器参数进行估计,从
而获得更准确的结果。
它的应用广泛,可以用于机器和生物领域的飞
行控制,视觉检测,机器学习,以及生物追踪等,为开发自动系统提
供帮助。
抗差卡尔曼滤波原理
抗差卡尔曼滤波是一种用于处理有噪声的、非线性的系统的线性滤波器。
它通过连续地观测系统的状态并进行预测来估计系统的真实状态,同时使用观测到的实际数据来校准估计值。
抗差卡尔曼滤波器使用了两个关键的概率分布:预测分布和更新分布。
预测分布用来预测当前状态的期望值和方差,而更新分布则用来融合观测数据和预测分布的信息。
在抗差卡尔曼滤波中,预测和更新步骤是交替进行的。
在预测步骤中,根据系统的动态模型和上一时刻的状态估计,计算下一时刻的状态估计。
在更新步骤中,根据观测数据和预测分布的信息,对状态估计进行修正。
抗差卡尔曼滤波的一个重要特点是它能够处理有噪声的观测数据,并能够自适应地调整估计误差的协方差矩阵,以便更好地适应观测数据的分布。
这使得抗差卡尔曼滤波在许多领域都有广泛的应用,例如机器人定位、跟踪系统、金融市场预测等。
卡尔曼滤波器最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。
从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。
为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。
卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。
斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与Kalman and Bucy (1961)发表.目前,卡尔曼滤波已经有很多不同的实现.卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器.除此以外,还有施密特扩展滤波器,信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种.也行最常见的卡尔曼滤波器是锁相环,它在收音机,计算机和几乎任何视频或通讯设备中广泛存在.卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度. 在很多工程应用(雷达, 计算机视觉)中都可以找到它的身影. 同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题.比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置,速度,加速度的测量值往往在任何时候都有噪声.卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。
这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑).扩展卡尔曼滤波(EKF)EXTEND KALMAN FILTER扩展卡尔曼滤波器是由kalman filter考虑时间非线性的动态系统,常应用于目标跟踪系统。
现设线性时变系统的离散状态防城和观测方程为:X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)Y(k) = H(k)·X(k)+N(k)其中X(k)和Y(k)分别是k时刻的状态矢量和观测矢量F(k,k-1)为状态转移矩阵U(k)为k时刻动态噪声T(k,k-1)为系统控制矩阵H(k)为k时刻观测矩阵N(k)为k时刻观测噪声则卡尔曼滤波的算法流程为:预估计X(k)^= F(k,k-1)·X(k-1)计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'Q(k) = U(k)×U(k)'计算卡尔曼增益矩阵K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)R(k) = N(k)×N(k)'更新估计X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]计算更新后估计协防差矩阵C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'X(k+1) = X(k)~C(k+1) = C(k)~重复以上步骤1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。
跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
如果对这编论文有兴趣,可以到这里的地址下载:/~welch/media/pdf/Kalman1960.pdf。
简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
但是,他的5条公式是其核心内容。
结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。
假设我们要研究的对象是一个房间的温度。
根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。
假设你对你的经验不是100%的相信,可能会有上下偏差几度。
我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。
另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。
我们也把这些偏差看成是高斯白噪声。
好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。
下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。
假如我们要估算k时刻的是实际温度值。
首先你要根据k-1时刻的温度值,来预测k时刻的温度。
因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。
然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。
由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。
究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。
因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。
可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。
到现在为止,好像还没看到什么自回归的东西出现。
对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。
算法如下:((1-Kg)*5^2)^0.5=2.35。
这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。
他运行的很快,而且它只保留了上一时刻的covariance。
上面的Kg,就是卡尔曼增益(Kalman Gain)。
他可以随不同的时刻而改变他自己的值,是不是很神奇!下面就要言归正传,讨论真正工程系统上的卡尔曼。
3.卡尔曼滤波器算法(The Kalman Filter Algorithm)在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。
下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model 等等。
但对于卡尔曼滤波器的详细证明,这里不能一一描述。
首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B 是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance 还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。