一元二次方程和反比例函数测试卷
- 格式:doc
- 大小:286.00 KB
- 文档页数:4
第二十六章反比例函数单元测试题(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.下列函数是反比例函数的是()A.y=x B.y=kx﹣1 C.y=-8x D.y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y都随x的增大而增大,则k的值可以是()A.2 B.0 C.﹣2 D.14.函数y=﹣x+1与函数y= -2x在同一坐标系中的大致图象是()CBAy yyy5.若正比例函数y=﹣2x与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为()A.(2,﹣1) B.(1,﹣2) C.(﹣2,﹣1) D.(﹣2,1)6.如图,过反比例函数y=kx(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()x3 C.4 D.57.若反比例函数y=kx(k≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点()A.(1,﹣1)B.(﹣12,4) C.(﹣2,﹣1)D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2x B.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12x B.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22m x-的图象在第二、四象限,m 的值为 .12.若函数y=(3+m )28m x -是反比例函数,则m= .13.已知反比例函数y=k x (k >0)的图象与经过原点的直线L 相交于点A 、B 两点,若点A 的坐标为(1,2),14.反比例函数y=k x的图象过点P (2,6),那么k 的值是 .15.已知:反比例函数y=k x的图象经过点A (2,﹣3),那么k= .16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x(k ≠0)上,AB ∥x 轴,分别过点A 、B 向x 轴作垂线,垂足ABCD 的面积是8,则k 的值为 .x三、解答题(共8题,共72分)17.(本题8分)当m 取何值时,函数y=2m 113x 是反比例函数?18.(本题8分)如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y=k x (k >0)的图象与BC 边交于点E .当F 为AB 的中点时,求该函数的解析式;y 1、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴的平行线交y 2于S △AOB =1,求双曲线y 2的解析式.=4xC在反比例函数y=kx的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODCx的解析式;(2)若CD=1,求直线OC的解析式.21.(本题8分)(1)点(3,6)关于y轴对称的点的坐标是.(2)反比例函数y=3x关于y轴对称的函数的解析式为.(3)求反比例函数y=kx(k≠0)关于x轴对称的函数的解析式.22.(本题10分)如图,Rt△ABC的斜边AC的两个顶点在反比例函数y=1kx 的图象上,点B在反比例函数y=2kx的图象上,AB与x轴平行,BC=2,点A的坐标为(1,3).(1)求C点的坐标;(2)求点B所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.24.(本题12分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,函数y=kx(1)求反比例函数y=k的解析式;x(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误;C 、符合反比例函数的定义;故本选项正确;D 、y=28x 的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a、b,面积为S.则ab.S=12∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选:B.3.【答案】∵y都随x的增大而增大,∴此函数的图象在二、四象限,∴1﹣k<0,∴k>1.故k可以是2(答案不唯一),故选A.分布在第二、四象限.4.【答案】函数y=﹣x+1经过第一、二、四象限,函数y=﹣2x故选A.5.【答案】∵正比例函数与反比例函数的图象均关于原点对称,∴两函数的交点关于原点对称,∵一个交点的坐标是(﹣1,2),∴另一个交点的坐标是(1,﹣2).故选B.图象上一点,且AB⊥x轴于点B,6.【答案】∵点A是反比例函数y=kx∴S△AOB=1|k|=2,2解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.(k≠0)的图象经过点(﹣1,2),7.【答案】∵反比例函数y=kx∴k=﹣1×2=﹣2,A、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;×4=﹣2,故此点,在反比例函数图象上;B、﹣12C、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;×4=2≠﹣2,故此点不在反比例函数图象上.D、12故选B.8.【答案】设反比例函数解析式y=k,x把(2,1)代入得k=2×1=2,.所以反比例函数解析式y=2x故选B.9.【答案】依照题意画出图形,如下图所示.xmx2+6x﹣n=0,∴△=62+4mn≥0,∴mn≥﹣9.故选A.10.【答案】由题意得y=2×12÷x=24.故选C.x二、填空题11.【答案】由题意得:2﹣m2=﹣1,且m+1≠0,解得:m=∵图象在第二、四象限,∴m+1<0,解得:m<﹣1,∴m=故答案为:12.【答案】根据题意得:8-m2= -1,3+m≠0,解得:m=3.故答案是:3.13.【答案】∵点A(1,2)与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故答案是:(﹣1,﹣2).的图象过点P(2,6),∴k=2×6=12,故答案为:12.14.【答案】:∵反比例函数y=kx15.【答案】根据题意,得﹣3=k 2,解得,k=﹣6. 16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x 上,∴矩形EODA 的面积为:4,∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12,则k 的值为:xy=k=12.故答案为:12.x17.【解答】∵函数y=2m 113x 是反比例函数,∴2m+1=1,解得:m=0.18.【解答】∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=kx (k>0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x>0);19.【解答】设双曲线y2的解析式为y2=kx,由题意得:S△BOC﹣S△AOC=S△AOB,k 2﹣42=1,解得;k=6;则双曲线y2的解析式为y2=6x.20.【解答】(1)设C点坐标为(x,y),∵△ODC的面积是3,∴12 OD•DC=12x•(﹣y)=3,∴x•y=﹣6,而xy=k,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC的解析式为y=mx,把C (1,﹣6)代入y=mx得﹣6=m,∴直线OC的解析式为:y=﹣6x.21.【解答】(1)由于两点关于y轴对称,纵坐标不变,横坐标互为相反数;则点(3,6)关于y轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y轴对称,比例系数k互为相反数;则k=﹣3,即反比例函数y=3x 关于y轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x轴对称,比例系数k互为相反数;则反比例函数y=kx (k≠0)关于x轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A(1,3)代入反比例函数y=1kx得k1=1×3=3,所以过A点与C点的反比例函数解析式为y=3x,∵BC=2,AB与x轴平行,BC平行y轴,∴B点的坐标为(3,3),C点的横坐标为3,把x=3代入y=3x得y=1,∴C点坐标为(3,1);(2)把B(3,3)代入反比例函数y=2kx得k2=3×3=9,所以点B所在函数图象的解析式为y=9x.23.【解答】(1)∵点A(﹣1,4)在反比例函数y=kx(k为常数,k≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x.把点A(﹣1,4)、B(a,1)分别代入y=x+b中,解得:a= -4,b=5.(2)连接AO,设线段AO与直线l相交于点M,如图所示.M 为线段OA 的中点,,∴点M 的坐标为(﹣12,2).∴直线l 与线段AO 的交点坐标为(﹣12,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x .(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4.在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴,cos∠OAB=ABOA ==.(3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1).设经过点C 、D 的一次函数的解析式为y=ax+b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x+3. 第二十六章 反比例函数全章测试一、填空题1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xk y =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内;③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xk y =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______.二、选择题7.下列函数中,是反比例函数的是( ). (A)32x y = (B 32x y = (C)x y 32= (D)xy -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线x y 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变 (C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xk y =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m (D)410.若反比例函数xk y =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ).(A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和xk y 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xk y 32-=的y 都随x 的增大而增大,则k 满足( ).(A)k >1 (B)1<k <2 (C)k >2(D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524 (B)不小于3m 3524(C)不大于3m 3724(D)不小于3m 372414.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0(D)k <0,b <0,a >015.如图,双曲线xk y =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。
巩固练习一、填空题 1.把一元二次方程化为一般形式是________________,其中二次项为: ______,一次项系数为:______,常数项为:______. 2.写出一个有一根为的一元二次方程___________________.3.已知三角形两边长分别是2和9,第三边的长为一元二次方程x 2-14x+48=0的一个 根,则这个三角形的周长为。
4.已知方程x 2+kx+3=0的一个根是-1,则k=______, 另一根为______.5.直角三角形的两直角边的比是3︰4,而斜边的长是20㎝,那么这个三角形的面积是______.6.已知关于x 的方程x ²-mx+2m-1=0的两个实数根的平方和为7,那么m 的值是7. 一般地,函数__________是反比例函数,其图象是__________,当时,图象两支在__________象限内。
8. 已知反比例函数,当时,_________。
9. 反比例函数的函数值为4时,自变量x 的值是_________。
10. 反比例函数的图象过点(-3,5),则它的解析式为_________ 二、选择题11.下列方程中,关于x 的一元二次方程是( ) (A) (B) (C)(D)k <0y x=2y =6x =y a xa a =---()322412.已知一个直角三角形的两条直角边恰好是方程2x 2-8x+7的两根,则此三角形的斜 边长为( )A 3B 6C 9D 12 13.关于的一元二次方程有实数根,则( )(A)<0 (B)>0 (C)≥0 (D)≤0 14.用配方法解关于x 的方程x 2+px+q=0时,此方程可变形为( ) (A) (B)(C) (D)15.使分式的值等于0的x 的值是( )A 2B -2C ±2D ±416.已知m 是方程x 2-x-1=0的一个根,则代数式m 2-m 的值等于( ) A 、 -1 B 、0 C 、1 D 、2 18. 下列函数中,是反比例函数的是( ) A. B. C. D. 19. 函数与的图象可能是( )A B C Dy x=-2y x =-12y x=-11y x =12y kx b =+y kx kb =≠()20. 函数与()的图象的交点个数是( ) A. 0 B. 1 C. 2 D. 不确定21.一个面积为120的矩形苗圃,他的长比宽多2米,苗圃长是( ) A 10 B 12 C 13 D 14 22.若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( )A. 正比例函数B. 反比例函数C. 二次函数D. z 随x 增大而增大23.下列函数中y 既不是x 的正比例函数,也不是反比例函数的( ) A. B. C.D.三、解答题 24.解下列方程: (1) (2)(3) (4)x 2+4x=2y kx =-y kx =k ≠0y x=-19105=-x y :y x =412152xy =-25.(8分)已知一元二次方程kx 2+(2k-1)x+k+2=0有两个不相等的实数根,求k 的取值范围.26. 已知一次函数与反比例函数的图象的一个交点为P (a ,b ),且P 到原点的距离是10,求a 、b 的值及反比例函数的解析式。
2019—2019学年度第一学期湘教版九年级数学上 第一、二章(反比例函数+一元二次方程) 综合单元测试题考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1。
下列各式中能够表示y 是x 的反比例函数的是( )ﻫ①xy =−1.2;②y =−34x ;③y =x3;④y =2x −5、 A 、①② B 、② C。
②③ D。
①③ 2、用配方法解方程x 2−2x −1=0时,配方后所得的方程为( ) A 。
(x −1)2=2 B 。
(x −1)2=0 C 、(x +1)2=2 D 、(x +1)2=03、为了更好保护水资源,某市污水处理厂计划再建一个容积V(m 3)一定的污水处理池,已知污水处理池的底面积S(m 2)与其深度ℎ(m)满足函数关系:S =Vℎ(V ≠0),则S 关于ℎ的函数图象大致是( ) A 、 B、 C 、 D 、 4、下列说法正确的是( )A 、方程3x 2=5x −1中,a =3、b =5、c =1B。
一元二次方程a 2+bx +c =0(a ≠0),当b 2−4ac ≥0时,它的根是x =−b+√b 2−4ac2aC 、方程x 2=9的一般形式为x 2−9=0D 、方程(x +2)(x −4)=0的解是x 1=2,x 2=45、如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数y =kx (k ≠0)在第一象限的图象经过顶点A(a, 4)和CD 边上的点E(b, 2),过点E 的直线l 交x 轴于点F,交y 轴于点G(0, −1),则△OFG 的面积是( ) A 。
43B 。
53C 、23D 。
736、如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x 轴平行,点P(4a, a)是反比例函数y =kx (k >0)的图象上与正方形的一个交点,若图中阴影部分的面积等于16,则k 的值为( ) A、16 B、1 C、4 D 、−16 7、解方程(5x −1)2=(2x +3)2的最适当方法应是( ) A 、直截了当开平方法 B 、配方法 C 、公式法 D。
《一元二次方程》单元过关测试卷一、单选题1.已知反比例函数y=ab/x ,当x>0时,y随x的增大而增大,则关于x的方程ax2-2x+b=0的根的情况是()A、有两个正根B、有两个负根C、有一个正根一个负根D、没有实数根2.若x1 ,x2是一元二次方程x2-7x+5=0的两根,则x1 +x2的值是()A、7B、-7C、5D、-53.已知三角形两边的长分别是3和6,第三边的长是方程x2-6x+8=0的根,则这个三角形的周长等于()A、13B、11C、11或13D、12或154.方程x2+ax+1=0和x2-x-a=0有一个公共根,则a的值是()A、0B、1C、2D、35.方程x2﹣2x+3=0的根的情况是()A、有两个相等的实数根B、只有一个实数根C、没有实数根D、有两个不相等的实数根6.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A. k≤9/4B. k≥﹣9/4 且k≠0C. k≥﹣9/4D. k>﹣9/4 且k≠07.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠38.奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A、4元B、6元C、4元或6元D、5元二、填空题9.一元二次方程x2=3x的解是:_____ ___ .10.已知关于x的一元二次方程3(x﹣1)(x﹣m)=0的两个根是1和2,则m的值是________11..将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=________12.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为________.13.已知x=﹣2是方程x2+mx﹣6=0的一个根,则方程的另一个根是________.14.若关于x的一元二次方程x2+4x﹣k=0有实数根,则k的最小值为________.三、解答题15.解下列方程(1) 9(x+2)2=25;(2)5x2-4x+1=0;(3) (2-3x)(x+4)=(3x-2)(1-5x);(4)(x+2)2-(x+1)2+(x-3)2=4x.16.已知关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.17.已知关于x的一元二次方程x2-4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足5x1+2x2=2,求实数m的值.18. 随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A ,B 两种型号的空气净化器,已知一台A 型空气净化器的进价比一台B 型空气净化器的进价多300元,用7500元购进A 型空气净化器和用6000元购进B 型空气净化器的台数相同. (1)求一台A 型空气净化器和一台B 型空气净化器的进价各为多少元?(2)在销售过程中,A 型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B 型空气净化器的销量,商社电器决定对B 型空气净化器进行降价销售,经市场调查,当B 型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B 型空气净化器的利润为3200元,请问商社电器应将B 型空气净化器的售价定为多少元?19.请阅读下列材料:问题:已知方程x 2+x -1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为y ,则y =2x ,所以x =y2.把x =y 2代入已知方程,得⎝⎛⎭⎫y 22+y 2-1=0.化简,得y 2+2y -4=0.故所求方程为y 2+2y -4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程x 2+x -2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为____________________;(2)已知关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.答案解析一、单选题1、【答案】C【考点】根的判别式,根与系数的关系,反比例函数的图象【解析】【解答】因为反比例函数y=abx ,当x>0时,y随x的增大而增大,所以ab<0,所以△=4-4ab>0,所以方程有两个实数根,再根据x1x2=ba<0,故方程有一个正根和一个负根.故选C.【分析】本题是对反比例函数的图象性质,一元二次方程的根的判别式以及根与系数的关系的综合考查,可以根据反比例函数的图象性质判断出ab的符号,从而得出解的个数,然后利用根与系数的关系求出两个根的符号关系.本题重点考查了反比例函数的性质及一元二次方程根的判别式和根与系数的关系,是一个综合性的题目,也是一个难度中等的题目.2、【答案】A【考点】根与系数的关系【解析】【分析】由题意可得x1x2,x1x2,再化1x1+1x2x2+x1x1x2 ,即可求得结果.【解答】由题意得x1x2=7,x1x2=5则1x1+1x2=x2+x1x1x2=75故选A.3、【答案】A【考点】解一元二次方程-因式分解法,三角形三边关系【解析】【分析】由方程x2-6x+8=0 用十字交叉相乘法因式分解,得(x-2)(x-4)=0:解得x1=2或x2=4,当第三边的长是2时,2+3<6,不能构成三角形,应舍去;当第三边的长是4时,三角形的周长为4+3+6=13。
1.下列方程中是一元二次方程的是( ). A.xy +2=1 B. 09212=-+xx C. x 2=0 D.02=++c bx ax 2.配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=3.(2008山东潍坊)已知反比例函数y ab x=,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根4.若1762+--x x x 的值等于零,则x 的值是( )A 7或-1B -7或1C 7D -15.已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 2 6.方程0134)2(||=++++m x xm m 是关于x 的一元二次方程,则( )A. m=±2B. m=2C. m= -2D. m ≠±2 7.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a+b)x+4c=0的根的情况是( ). A .没有实数根 B .有两个不相等的正实数根 C .有两个不相等的负实数根 D .有两个异号实数根8.下面是某同学在一次数学测验中解答的填空题,其中答对的是( ) A .若x 2=4,则x=2 B 若3x 2=6x ,则x=2 C .02=-+k x x 的一个根是1,则k=2 D .若分式()xx x 2- 的值为零,则x=2 9.等腰三角形的底和腰是方程2680x x -+=的两个根,则这个三角形的周长是( ) A .8B .10C .8或10D . 不能确定10.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.11.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.12.已知代数式532++x x 的值是7,则代数式2932-+x x 的值是13.(2008江苏宿迁)已知一元二次方程032=++px x 的一个根为3-,则_____=p 14.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12b x x a +=-,ac x x =⋅21.根据该材料填空:已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ . 15.若()()06522222=-+-+y x yx ,则=+22y x __________。
初三数学一元二次方程试题答案及解析1.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.【答案】(1)A(12,0),C(﹣6,0);(2)k=36;(3)满足条件的点Q的个数是6,x轴的下方的Q4(10,﹣12),Q6(﹣3,6﹣3);【解析】(1)先求出一元二次方程x2﹣18x+72=0的两根就可以求出OA,OC的值,进而求出点A,C的坐标;(2)先由勾股定理求出AB的值,得出AE的值,如图1,作EM⊥x轴于点M,由相似三角形的现在就可以求出EM的值,AM的值,就可以求出E的坐标,由待定系数法就可以求出结论;(3)如图2,分别过C、E作CE的垂线交坐标轴三个点P1、P3、P4,可作出三个Q点,过E点作x轴的垂线与x轴交与P2,即可作出Q2,以CE为直径作圆交于y轴两个点P5、P6,使PC⊥PE,即可作出Q5、Q6.试题解析:(1)∵x2﹣18x+72=0∴x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∴=,∴,∴OB=16.在Rt△AOB中,由勾股定理,得AB=.∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,∴,∴EM=12,AM=9,∴OM=12﹣9=3.∴E(3,12).∴k=3×12=36;(3)满足条件的点Q的个数是6,如图2所示,x轴的下方的Q4(10,﹣12),Q6(﹣3,6﹣3);【考点】1、一次函数的交点;2、勾股定理的运用;3、三角函数;4、三角形相似2.设x1,x2是方程2x2+4x-3=0的两个根,则x12+x22= .【答案】7【解析】根据根与系数的关系得x1+x2=-2,x1x2=-,再根据完全平方公式变形得到x12+x22=(x1+x2)2-2x1x2,然后利用整体代入的方法计算.根据题意得x1+x2=-2,x1x2=-,所以x12+x22=(x1+x2)2-2x1x2=(-2)2-2×(-)=7.故答案为7.【考点】根与系数的关系.3.如果关于x的方程有两个相等的实数根,那么m的值为.【答案】.【解析】若一元二次方程有两相等根,则根的判别式△=b2-4ac=0,建立关于m的等式,求出m 的值:∵方程有两相等的实数根,∴.【考点】一元二次方程根的判别式.4.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()A.a>2B.a<2C.a<2且a≠1D.a<-2【答案】C.【解析】根据题意得:△=b2-4ac=4-4(a-1)=8-4a>0,且a-1≠0,解得:a<2,且a≠1.故选C.考点: 1.根的判别式;2.一元二次方程的定义.5.在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m2,求道路的宽度.【答案】2米【解析】解:设道路的宽度为x m,则(20-x)(32-x)=540即x2-52x+100=0,解之得x1=50(舍),x2=2.答:道路的宽度为2米.6.现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.【答案】3cm.【解析】设剪去的小正方形的边长为x,根据题意列出方程,求出方程的解即可得到结果.试题解析:设剪去的小正方形的边长为xcm,根据题意得:(20-2x)(10-2x)=56,整理得:(x-3)(x-12)=0,解得:x=3或x=12,经检验x=12不合题意,舍去,∴x=3,则剪去小正方形的边长为3cm.考点: 一元二次方程的应用.7.为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。
人教版九年级数学下册第二十六章-反比例函数综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知函数22(1)ny n x-=+是反比例函数,则n的值为().A.1 B.-1 C.±1D.±22、如图,两个反比例函数4yx=和2yx=在第一象限内的图象分别是1C和2C,点P在1C上,PA x⊥轴于点A,交2C于点B,连接OB,OP,则POB的面积为()A.1 B.2 C.4 D.8 3、下列函数,其中y是x的反比例函数的是()A .21y x =-B .1y x=C .21y x =D .3x y =4、已知:点A (﹣1,y 1),B (1,y 2),C (2,y 3)都在反比例函数ky x=图象上(k <0),则y 1、y 2、y 3的关系是( ) A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 2<y 3<y 1D .y 3<y 2<y 15、下列说法正确..的个数有( ) ①方程210x x -+=的两个实数根的和等于1; ②半圆是弧;③正八边形是中心对称图形;④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;⑤如果反比例函数的图象经过点()1,2,则这个函数图象位于第二、四象限. A .2个B .3个C .4个D .5个6、在平面直角坐标系中,已知点P (a ,0)(a ≠0),过点P 作x 轴的垂线,分别交直线y =-x +1和反比例函数2y x=-的图象于点M ,N ,若线段MN 的长随a 的增大而增大,则a 的取值范围为( ) A .-1<a <2B .0<a <2C .a >2或a <-1D .-1<a <0或a >27、如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,BC //x 轴,反比例函数ky x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为( )A .60B .48C .36D .208、如果反比例函数的图象经过点P(﹣3,﹣1),那么这个反比例函数的表达式为()A.y=3xB.y=﹣3xC.y=13x D.y=﹣13x9、反比例函数kyx=经过点(2,1),则下列说法错误的是()A.点(﹣1,﹣2)在函数图象上B.函数图象分布在第一、三象限C.y随x的增大而减小D.当y≥4时,0<x≤1210、点A(1,y1),点B(2,y2),在反比例函数4yx=的图象上,则()A.y1<y2B.y1>y2C.y1=y2D.不能确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABOC的边长为2,双曲线y=kx的一个分支经过点A,若点(﹣1,y1),(2,y2),(4,y3)都在该双曲线上,则y1,y2,y3的大小关系是_____(用“<”号连接).2、如图,在反比例函数y=20x(x>0)的图象上有点P1,P2,P3,P4,P5,它们的横坐标依次为2,4,6,8,10,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,S4,则阴影部分的面积S1+S2+S3+S4=_____.3、反比例函数3y x=中,反比例常数k 的值为_____. 4、如图,点()6,1P ,点()2,Q n -都在反比例函数ky x=的图象上.过点P 分别向x 轴、y 轴作垂线,垂足分别为点M ,N .连接OP ,OQ ,PQ .若四边形OMPN 的面积记作1S ,POQ △的面积记作2S ,则12:S S =__________.5、若点()3,1A -、(),2B m 都在反比例函数()0k y k x=≠的图象上,则m 的值是___________. 三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象过点()0,4B -,且与函数()40y x x=-<的图象交于点(),2A m .(1)求一次函数的解析式;(2)若P 是x 轴上一点,PAB △的面积是5,请求出点P 的坐标; (3)直接写出不等式4kx b x+≥-的解集. 2、当x =2时,x =(1)求y 与x 的函数关系式; (2)当x =4时,求y 的值.5.已知正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(),k y x 0k 0x =>>的图象上,点()P m n ,是函数(),ky x 0k 0x=>>的图象上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .若矩形OEPF 和正方形OABC 不重合部分(阴影)面积为S .(提示:考虑点P 在点B 的左侧或右侧两种情况)(1)求B 点的坐标和k 的值; (2)写出S 关于m 的函数关系式; (3)当3S =时,求点P 的坐标.3、心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y 随时间x (分)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,第 分钟时学生的注意力更集中.(2)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?请说明理由.4、在直角坐标系中,直线y 13=x 与反比例函数y kx=的图象在第一、三象限分别交于A 、B 两点,已知B 点的纵坐标是﹣2.(1)写出点A 的坐标,并求反比例函数的表达式;(2)将直线y 13=x 沿y 轴向上平移5个单位后得到直线l ,l 与反比例函数图象在第一象限内交于点C ,与y 轴交于点D .(ⅰ)S △ABC S △ABD ;(请用“<”或“=”或“>”填空) (ⅱ)求△ABC 的面积.5、如图,在▱ABCD 中,设BC 边的长为x (cm ),BC 边上的高线AE 长为y (cm ),已知▱ABCD 的面积等于24cm2.(1)求y关于x的函数表达式;(2)求当3<y<6时x的取值范围.---------参考答案-----------一、单选题1、A【分析】根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),即可得到关于n的方程,解方程即可求出n.【详解】解:∵函数22(1)ny n x-=+是反比例函数,∴n+1≠0且n2−2=−1,∴n=1,故答案选A【点睛】本题考查了反比例函数的定义,反比例函数解析式的一般式y=kx(k≠0),特别注意不要忽略k≠0这个条件.2、A 【分析】根据反比例函数k y x=(k ≠0)系数k 的几何意义得到S △POA =12×4=2,S △BOA =12×2=1,然后利用S △POB =S △POA -S △BOA 进行计算即可.【详解】解:∵PA ⊥x 轴于点A ,交C 2于点B , ∴S △POA =12×4=2,S △BOA =12×2=1, ∴S △POB =2-1=1. 故选:A . 【点睛】本题考查了反比例函数k y x =(k ≠0)系数k 的几何意义:从反比例函数ky x=(k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k |. 3、B 【分析】根据反比例函数的定义即可判断. 【详解】解:A 、21y x =-是一次函数,不是反比例函数,故此选项不合题意; B 、1y x=是反比例函数,故此选项符合题意;C 、21y x =不是反比例函数,故此选项不合题意; D 、3x y =是正比例函数,不是反比例函数,故此选项不合题意; 故选B . 【点睛】此题主要考查反比例函数的识别,解题的关键是熟知反比例函数的定义:一般地,形如()10-=≠y kx k 的函数叫做反比例函数. 4、C 【分析】利用k <0,得到反比例函数ky x=图象在第二、四象限,在每一象限内y 随x 的增大而增大;于是y 1>0,y 2<0,y 3<0.利用在第四象限内y 随x 的增大而增大,根据1<2,可得y 2<y 3<0.最终结论可得. 【详解】解:在反比例函数k y x=中,∵k <0,∴反比例函数k y x=图象在第二、四象限,在每一象限内y 随x 的增大而增大. ∵A (﹣1,y 1),B (1,y 2),C (2,y 3),∴A (﹣1,y 1)在第二象限,B (1,y 2),C (2,y 3)在第四象限. ∴y 1>0,y 2<0,y 3<0. 又∵1<2, ∴y 2<y 3<0. ∴y 2<y 3<y 1. 故选:C . 【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 5、B 【分析】根据所学知识对五个命题进行判断即可.【详解】1、214130=-⨯=-<,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则0k>,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键.6、D【分析】根据题意作出图像,分别求得,A B的坐标,分第二象限和第四象限分别讨论【详解】解:如图,设直线y=-x+1和反比例函数2yx=-的图象交于点,A B,根据题意, 12y x y x =-+⎧⎪⎨=-⎪⎩解得121221,12x x y y ==-⎧⎧⎨⎨=-=⎩⎩ ()()2,1,1,2A B ∴--P (a ,0),根据题图像可知,当-1<a <0或a >2,线段MN 的长随a 的增大而增大,故选D【点睛】本题考查了反比例函数与一次函数图像交点问题,数形结合是解题的关键.7、A【分析】过A 作AE ⊥BC 于E 交x 轴于F ,则由三线合一定理得到142BE BC ==,即可利用勾股定理求出3AE =,设OB =a ,由BD =AB =5,得到A 点坐标为(4,a +3),D 点坐标为(5,a ),再由反比例函数ky x =(0k >,0x >)的图象经过点A ,交BC 于点D ,()435k a a =+=,由此求解即可.解:过A 作AE ⊥BC 于E 交x 轴于F ,∵5AB AC ==,8BC =, ∴142BE BC ==,∴3AE ==,设OB =a ,∵BD =AB =5,∴A 点坐标为(4,a +3),D 点坐标为(5,a ), ∵反比例函数k y x=(0k >,0x >)的图象经过点A ,交BC 于点D .∴4(3)5k a a =+=,解得:a =12,∴k =60,故选A .【点睛】本题主要考查了坐标与图形,三线合一定理,勾股定理,反比例函数图像上点的坐标特点,解题的关键在于能够熟练掌握相关知识进行求解.8、A根据点P 的坐标,利用待定系数法即可得.【详解】 解:设这个反比例函数的表达式为(0)k y k x =≠,由题意,将点(3,1)P --代入得:3(1)3k =-⨯-=, 则这个反比例函数的表达式为3y x =,故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键.9、C【分析】利用待定系数法求得k 的值,再利用反比例函数图象的性质对每个选项进行逐一判断即可.【详解】 解:∵反比例函数k y x =经过点(2,1),∴k =2.∴﹣1×(﹣2)=2,故A 正确;∵k =2>0,∴双曲线y =2x分布在第一、三象限,故B 选项正确;∵当k =2>0时,反比例函数y =2x 在每一个象限内y 随x 的增大而减小,故C 选项错误,当y≥4时,0<x≤12,D选项正确,综上,说法错误的是C,故选:C.【点睛】本题考查了反比例函数图象上点的坐标的特征,待定系数法确定函数的解析式,反比例函数图象的性质.利用待定系数法求得k的值是解题的关键.10、B【分析】利用反比例函数4yx=的图象分布在一、三象限,在每个单独的象限内y随x的增大而减小,利用2>1得出y1>y2即可.【详解】解:∵反比例函数4yx=的图象分布在一、三象限,在每个单独的象限内y随x的增大而减小,而A(1,y1),B(2,y2)都在第一象限,∴在第一象限内,y随x的增大而减小,∵2>1,∴y1>y2,故选:B.【点睛】本题主要考查了反比例函数的性质,当k>0时,图象分布在一、三象限,在每个单独的象限内,y随x 的增大而减小,当k<0时,图象分布在二、四象限,在每个单独的象限内,y随x的增大而增大,由x 的值的变化得出y的值的变化情况;也可以把x的值分别代入到关系式中求出y1和y2的值,然后再做比较即可.二、填空题1、231y y y <<【解析】【分析】先根据正方形的性质可得点A 的坐标,再利用待定系数法可得反比例函数的解析式,然后分别求出123,,y y y 的值即可得.【详解】 解:正方形ABOC 的边长为2,(2,2)A ∴-,将点(2,2)A -代入k y x =得:224k =-⨯=-, 则反比例函数的解析式4y x =-,将点1(1,)y -代入得:1441y =-=-, 将点2(2,)y 代入得:2422y =-=-,将点3(4,)y 代入得:3414y =-=-,则231y y y <<,故答案为:231y y y <<.【点睛】本题考查了比较反比例函数的函数值,熟练掌握待定系数法是解题关键.2、16【解析】【分析】由题意易知点P1的坐标为(2,10),然后根据平移可把右边三个矩形进行平移,进而可得S1+S2+S3+S4=S矩形ABCP1,最后问题可求解.【详解】=10,解:当x=2时,y=202∴点P1的坐标为(2,10),如图所示,将右边三个矩形平移,把x=10代入反比例解析式得:y=2,∴P1C=AB=10﹣2=8,则S1+S2+S3+S4=S矩形ABCP1=2×8=16,故答案为:16.【点睛】本题主要考查反比例函数的几何意义,熟练掌握反比例函数的几何意义是解题的关键.3、3【解析】【分析】根据反比例函数基本定义求解即可.【详解】解:根据反比例函数定义得: 反比例函数3y x =中,k =3,故答案为:3.【点睛】 本题考查反比例函数的基本定义,理解反比例函数()0k y k x =≠各字母的含义是解题关键. 4、3:4【解析】【分析】根据图象上点的坐标特征得到6k =,3n =-,根据反比例函数系数k 的几何意义求得16=S ,然后根据()211184611428222PQK PON ONKQ S S S S =--=⨯⨯-⨯⨯-+⨯=梯形,即可得答案. 【详解】解:点()61P ,,点()2Q n -,都在反比例函数k y x =的图象上, ∴16k=,-2k n =, ∴612k n =⨯=-,∴6k =,3n =-,∴()23Q --,, ∴反比例函数为6y x =,∴16=S ,作QK PN ⊥,交PN 的延长线于K ,则6PN =,1ON =,8PK =,4KQ =, ∴()211184611428222PQK PONONKQ S S S S =--=⨯⨯-⨯⨯-⨯+⨯=梯形, ∴12:6:8=3:4S S =,故答案为:3:4.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义,分别求得S 1、S 2的值是解题的关键.5、32-## 1.5-【解析】【分析】将点,A B 的坐标都代入反比例函数的解析式即可得.【详解】 解:点()3,1A -、(),2B m 都在反比例函数()0k y k x =≠的图象上,231k m ∴==-⨯, 解得32m =-,故答案为:32-.【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题关键.三、解答题1、(1)34y x =--;(2)1(,0)3或(3,0)-;(3)2x -≤【分析】1)将A 点坐标代入代入()40y x x =-<,求出m 的值为2,再将(),2A m ()0,4B -代入y kx b =+,求出k 的值,即可得到一次函数的解析式;(2)将三角形以x 轴为分界线,分为两个三角形计算,再把它们相加;(3)根据图象即可求得.【详解】(1)将(),2A m 代入()40y x x=-<得,m =-2, 则A 点坐标为A (-2,2),将A (-2,2)、()0,4B -代入y kx b =+得422b k b-=⎧⎨=-+⎩,解得43b k =-⎧⎨=-⎩, 则一次函数解析式为34y x =--;(2)∵一次函数34y x =--与x 轴的交点为C 4(,0)3- S △ABP =S △ACP +S △BPC∴1124522CP CP ⨯+⨯=,解得53CP =,则P 点坐标为1(,0)3或(3,0)-.(2)∵A (-2,2),()40y x x=-< ∴由图象可知不等式4kx b x +≥-的解集为2x -≤;【点睛】本题考查了反比例函数与一次函数的交点问题,求出函数解析式并熟悉点的坐标与图形的关系是解题的关键.2、(1)(3,3)B ,9k =;(2)93(03)279(3)m m S m m -<<⎧⎪=⎨-≥⎪⎩;(3)(92,2)或9(,2)2. 【分析】(1)先根据正方形的面积公式可得3OA AB ==,从而可得点B 的坐标,再利用待定系数法即可得k 的值;(2)先将点(,)P m n 代入反比例函数的解析式可得9n m=,再分①点P 在点B 的右侧,②点P 在点B 的左侧两种情况,分别利用矩形的面积公式即可得;(3)根据(2)的结果,求出3S =时,m 的值,由此即可得出答案.【详解】解:(1)正方形OABC 的面积为9,3OA AB ∴==,(3,3)B ∴, 将点(3,3)B 代入k y x =得:339k =⨯=;(2)由(1)得:反比例函数的解析式为9y x =,将点(,)P m n 代入9y x =得:9n m=, 由题意,分以下两种情况: ①如图,当点P 在点B 的右侧,即3m ≥时,则9,OE m PE n m===, 3AE OE OA m ∴=-=-,927(3)9S AE PE m m m∴=⋅=-⋅=-; ②如图,当点P 在点B 的左侧,即03m <<时,则9,PF OE m OF PE n m=====, 93CF OF OC OF AB m∴=-=-=-, 9(3)93S PF CF m m m∴=⋅=⋅-=-,综上,S关于m的函数关系式为93(03)279(3)m mSmm-<<⎧⎪=⎨-≥⎪⎩;(3)①当03m<<时,933S m=-=,解得2m=,则92n=,即此时点P的坐标为9 (2,)2 P;②当3m≥时,2793Sm=-=,解得92m=,则9292n==,即此时点P的坐标为9(,2)2P;综上,点P的坐标为(92,2)或9(,2)2.【点睛】本题考查了反比例函数与几何综合等知识点,较难的是题(2),正确分两种情况讨论是解题关键.3、(1)5;(2)能,理由见解析.【分析】(1)根据函数解析分别求得5x=时,30x=时的函数值,即可得到结论;(2)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能.【详解】设线段AB的解析式为:y AB=kx+b,把(10,50)和(0,30)代入得,105030k bb+=⎧⎨=⎩,解得230k b =⎧⎨=⎩, ∴直线AB 的解析式为:230AB y x =+;设双曲线CD 的函数关系式为:CD a y x =, 把(20,50)代入得,50=20a , ∴a =1000,∴双曲线CD 的函数关系式为:1000CD y x=; (1)当5x =时,40AB y =,30x =时,1003CD y = 100403> 故答案为:5;(2)当y =40时,则2x +30=40,解得x =5;当y =40时,则1000x=40,解得x =25. ∴25﹣5=20>18.∴教师能在学生注意力达到所需要求状态下讲完这道题.【点睛】本题考查了反比例函数与一次函数的应用,根据函数图象获取信息是解题的关键.4、(1)y =12x,A (6,2);(2)(ⅰ)=;(ⅱ)30 【分析】(1)根据点B的纵坐标是﹣2,结合正比例函数可得B(﹣6,﹣2),利用点B在反比例函数图像上,求出反比例函数的表达式为12yx=,再利用解方程组1213yxy x⎧=⎪⎪⎨⎪=⎪⎩时,求出点A即可;(2)(ⅰ)根据直线13y x=沿y轴向上平移5个单位后得到直线l,1y x53=+,得出直线AB与直线l1互相平行,可得平行线间的距离处处相等,两三角形底相同,高是平行线间的距离可得S△ABC=S△ABD;(ⅱ)根据平移可得OD=5,利用S△ABD=S△BOD+S△AOD求出S△ABD,再利用S△ABC=S△ABD可求.【详解】解:(1)∵点B的纵坐标是﹣2,∴123x-=即x=﹣6,∴B(﹣6,﹣2),把B的坐标代入kyx=,即k=12,∴反比例函数的表达式为12yx =,点A是两函数的交点∴1213 yx y x ⎧=⎪⎪⎨⎪=⎪⎩解方程组得6622 x xy y==-⎧⎧⎨⎨==-⎩⎩,∴A(6,2);(2)(ⅰ)S△ABC=S△ABD;直线13y x=沿y轴向上平移5个单位后得到直线l,1y x53=+∴直线AB与直线l1互相平行,∵平行线间的距离处处相等,∴S △ABC =S △ABD ;故答案为:=;(ⅱ)由题意得,OD =5,∴S △ABD =S △BOD +S △AOD =()11166=56+6=30222OD OD ⨯-+⨯⨯⨯,∴S △ABC =S △ABD =30.【点睛】本题考查一次函数及其应用;反比例函数及其应用;模型思想.反比例函数和一次函数的交点问题,根据题意求出函数解析式是解题关键.5、(1)y =24x(x >0);(2)当3<y <6时x 的取值范围为4<x <8. 【分析】(1)利用平行四边形的面积公式列出函数关系式即可;(2)根据x 的取值范围确定y 的取值范围即可.【详解】(1)∵BC 边的长为x (cm ),BC 边上的高线AE 长为y (cm ),已知▱ABCD 的面积等于24cm 2. ∴根据平行四边形的面积计算方法得:xy =24,∴y =24x (x >0); (2)当y =3时x =8,当y =6时x =4,所以当3<y <6时x 的取值范围为4<x <8.【点睛】本题考查了反比例函数的应用及平行四边形的性质的知识,解题的关键是根据题意列出函数关系式.。
九年级数学测试题(反比率函数与一元二次方程)姓名:成绩:本试卷共有三大题:选择题,填空题,应用题。
试卷总分 120 分,考试时间 100 分钟。
一、选择题(本大题共12 小题,每题 3 分,共 36 分)1.函数y(a 2)x a22 是反比率函数,则 a 的值是()(A) - 1(B) - 2(C)2(D)2 或- 22.下边因式分解正确的选项是()(A )6x (C)6x 2211x4(6x3)(6x4) (B) 6x 211x4( x1)( x4)323 11x4(2x1)(3x4) (D)6 x211x4(6x1)( x4)233. 已知k0 ,函数y kx k 和函数k yy yx 在同一坐标系内的图象大概是()y yOxOxOx xOCA2x 2B D4.不解方程,判断方程31x 7 0 的两个根的符号()(A )同号( B)异号( C)两个正根( D )不可以确立5.若点(x1,y1)、(x2,y2)和(x3,y3)分别在反比率函数2y的图象上,且xx1 x20x3,则以下判断中正确的选项是()(A) y1y2y3(B) y3y1 y2(C) y2y3y1(D) y3y2y16.已知对于 x 的一元二次方程的两个根是 1 和 -2,则这个方程是()(A )x2x 2 0 (B) x2x 2 0( C)x22x 10 (D) x22x 1 0 7. 以下函数中,y 是x的反比率函数的是( )A. x y 1 2B.1C.yx 21D.1y2yx7 x8.若n是x2mx n 0的根 (n0),则 m n等于()(A )1( B)1(C)1(D )1 229.已知,如图,动点P 在函数 y 1 ( x 0) 的图象上运动,PM⊥x2 x轴于点 M ,PN⊥ y 轴于点 N,线段 PM 、PN 分别与直线AB : y x1订交于点E,F,则 AF· BE 的值是()A .4B .2C. 1D.210.一元二次方程ax 2bx c 0 中,若a0, b 0, c 0 ,则方程有()(A )两个正根(B)两个负根( C)一正一负且正根的绝对值大(D)一正一负,负根的绝对值大11. 甲、乙两地相距100km,一辆汽车从甲地开往乙地, 把汽车抵达乙地所用的时间y( h) 表示为汽车的均匀速度x( km/ h) 的函数 , 则这个函数的图象大概是( )12.若一元二次方程ax 2bx c0 有两个正根,则a,b,c的符号分别是()(A )a0, b0,c0 (B) a0,b0,c0(C)a0,b0,c0 (D) a0,b0,c0二、填空题(本大题共8 小题,每题 3 分,共 24 分)13.若双曲线y 6经过点 A m, 2m,则 m 的值是x114. 点A a,b、 B a 1,c 均在函数 y0 ,则 b c的图象上,若 ax15.把方程( 2x+1 )×( x- 2) =5- 3x 整理成一般形式后,得,此中一次项系数为16.若 (m+1)x m - 3+5x-3=0 是对于 x 的一元二次方程,则m=17. 反比率函数y 2的图象对于x 轴对称的反比率函数为xk18. 已知反比率函数y k0 ),当 x 0 时, y 值随x值的增大而减小, 则一次函数(xy kx (k 2 1) 的图象必定不经过第______象限.19.若方程x23x10 的两个根为、,则以,为根的一元二次方程是2220.已知方程3x25x1 0 的两个根分别是x1, x2。
相似阶段性复习19.如图1,△ABC 中,∠ACB=90°,CD ⊥AB,垂足为D;(2)如图2,延长DC 至点G,连接BG,过点A 作AF ⊥BG,垂足为F,AF 交CDE,求证:DG DE CD ⋅=220.如图,在锐角三角形ABC 中,点D,E 分别在边AC,AB 上,AG ⊥BC 于点G,AF ⊥DE 于点F,∠EAF=∠GAC(1)求证:△ADE ∽△ABC; (2)若AD=3,AB=5,求28.如图所示,△ABC 中,AB=6cm ,BC=8cm ,∠B=90°,点P 从点A 开始沿AB 边向B 以1cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,经过几秒,使△PBQ 与△ABC 相似?(2)如果P 、Q 分别从A 、B 出发,并且P 到B 后又继续在BC 边上前进,Q 到C 后又继续在CA 上前进经过几秒,使△PCQ 得面积等于12.6平方厘米?29.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?30.已知:如图①在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为1cm/s,当点P与点C重合时△PNM停止平移,点Q也停止运动.如图②设运动时间为t(s).解答下列问题:(1)当t为 ______ S时,点P与点C重合;(2)设△QMC的面积为y(cm 2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.答案1、D2、C3、B4、D5、D6、A7、B8、B9、A10、D11、2<a 且1≠a12、113、314、4±或49±15、()3,5--或(1,0)16、(1)(3)(4)17、略18、(1)0)1(2≥-=∆k (2)k<019、(1)略(2)射影定理20、(1)略(2)53 21、(1)x y 6=、532+-=x y (2)445(3)230<<x 或6>x 22、(1)20%(2)方案一23、(1)26.8(2)624、当FG=40时面积为120025、长为50,宽为40时面积最大26、甲:5米 乙:4.2米 丙:2355+ 27、(1)20%(2)超过28、29、30、(1)4。
星海学校新津校区2013年暑假精品班二轮次结业考试数学试卷命题人:李老师 满分:150分姓名:_______ 得分:_______ 一、选择题(39分)1.下列方程中,关于x 的一元二次方程是( ) A.()()12132+=+x x B.02112=-+xx C.02=++c bx ax D.1222-=+x x x 2, 下列函数中,反比例函数是( ) A.32+=x y B.y = 8x + 1 C.x y 38-= D.182+=xy 3.若分式23622+---x x x x 的值为0,则x 的值为( ).A .3或-2B .3C .-2D .-3或24.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,则这个三角形的周长是( ). A .8 B .8或10 C .10 D .8和105. 已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3) 6. 设a b ,是方程x 2+x-2013=0的两个实数根,则22a a b ++的值为( ) A .2012 B .2013 C .2014 D .20117. 已知α,β,满足α+β=5且αβ=6,以α,β为两根的一元二次方程是( ). A .x 2+5x+6=0 B .x 2-5x+6=0 C .x 2-5x-6=0 D .x 2+5x-6=08. 为了让新津的山更绿、水更清,2013年新津政府提出了确保到2015年实现全县森林覆盖率达到63%的目标,已知2013年我县森林覆盖率为60.05%,设从2013年起我县森林覆盖率的年平均增长率为x ,则可列方程( ) A .%632105.60=+)(x B .632105.60=+)(xC .%63105.602=+)(x D .63105.602=+)(x9. 若反比例函数2212--=m xm y )(的图像在第二、四象限,则m 的值是( )A 、-1或1B 、1C 、-1D 、以上 10. 函数y=kx-k 与y )0(≠=k xk在同一坐标系中的大致图像是( )11. 如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=3、x 2=1,那么这个一元二次方程是( )A. x 2+3x +4=0B. x 2-4x +3=0C. x 2+4x -3=0D. x 2+3x -4=012.已知1x ,2x 为方程2260x x k --=(k 为常数)的两个不相等实数根,且14221=+x x ,则K=( )A.4B.-4C.4或者-4D.213.已知a 、b 是方程x 2+2006x+1=0的两个根,则)20081()20081(22b b a a ++⨯++的值为( )A.1B.2C.3D.4二、填空题(21分)14.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________. 15. 已知实数x 满足4x 2-4x+l=O ,则代数式2x+x21的值为________. 16. 已知x 1,x 2是一元二次方程x 2-5x-6=0的两个根,则2221x x +=_________.17. 关于x 的一元二次方程0122=-+-m mx x 的两个实数根分别是1x 、2x ,且72221=+x x ,则221)(x x -的值是 .18. 如果反比例函数ky x=的图像经过点(-3,-4),那么函数的图像应在 象限. 19. 反比例函数ky x=(k>0)在第一象限内的图象如右图,点M 是图像上一点,MP 垂 直x 轴于点P ,如果△MOP 的面积为3,那么k 的值是 .20.已知关于x 的方程x 2-(a 2-2a-15)+a-1=0的两个根是互为相反数,则a 的值为 . 三、用适当的方法解方程(30分)21.用适当的方法解下列一元二次方程.(1)(x+2)2-36=0; (2)3(x-5)2=2(5-x)y xO P M(3)3x 2+5(2x+1)=0 (4) x 2—4x+1=0(5)2890x x +-= (6)(x+3)2+3(x+3)-4=0.四、解答题(60分)22. 如果x 2-10x+y 2-16y+89=0,求xy的值.(10分)23. 设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2b -12a=0有两个相等的实数根,方程3cx+2b=2a 的根为x=0.(12分)(1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值.24. 已知x =1是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.(12分)25. 如图,已知一次函数y = kx且点A 的横坐标和点B (1)求点A 、B 的坐标;(2)求一次函数的解析式。
一元二次方程和反比例函数测试卷 一.选择题
1.反比例函数y =1
k x - 的图象,在每个象限内,y 的值随x 值的增大而增大,则k 的值
可 为( ) A .0
B .1
C .2
D .3
2.在反比例函数3
k y x
-=
图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A .k >3 B .k >0 C .k <3 D . k <0 3.若反比例函数2
2
)12(--=m
x m y 的图像在第二、四象限,则m 的值是( )
A 、-1或1
B 、小于2
1
的任意实数 C 、 -1 D、不能确定 4.已知反比例函数y =
x
a
(a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则 一次函数y =-a x +a 的图象不经过...
( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5若关于z 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( ) A .m<l B .m>-1 C .m>l D .m<-1 6.若反比例函数k
y x
=
的图象经过点(3)m m ,
,其中0m ≠,则此反比例函数的图象在( ) A .第一、二象限;B .第一、三象限 ;C .第二、四象限; D .第三、四象限
7.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x , 则下面所列方程中正确的是( )
A.()2
2891256x -= B.()2
2561289x -= C.289(1-2x )=256 D.256(1-2x )=289 8、已知120k k <<,则函数1y k x =和2
k y x
=
的图象大致是( )
9、已知函数5y x =-+,4
y x
=
,它们的共同点是:①在每一个象限内,都是函数y 随x 的增大而增大;②都有部分图象在第一象限;③都经过点(14),,其中错误..
的有( ) A.0个 B.1个 C.2个
D.3个
x
x
x
x
D.
10.在反比例函数4
y x
=
的图象中,阴影部分的面积不等于4的是( )
二填空题。
11.已知反比例函数的图象经过点(2)m ,
和(23)-,,则m 的值为 . 12.已知反比例函数y =x
a 2
-的图象在第二、四象限,则a 的取值范围是 . 13.已知反比例函数y=
2
k x
-,其函数图象在第一、第三象限内,则k 的值可为_______ (写出满足条件的一个值即可)。
14. 双曲线x
k
y =
和一次函数y =ax +b 的图象的两个交点分别是A(-1,-4),B(2,m),则a +2b =____________. 15.函数()()124
0y x x y x x
==
>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,
;②当2x >时,21y y >;③当1x =时,3BC =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是 . 16.如图,直线OA 与反比例函数
的图象在第一象限交于A 点,AB ⊥x 轴于点B ,
若△OAB 的面积为2,则k = . 17.如图,若点A 在反比例函数(0)k
y k x
=
≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k = .
三.解答题。
18解方程 (1)y 2 -16=0 (2) (a -1)2
-25=0
(3) 4 (x -1)2=(x +1)2 (4) 4(x 2-1)=2-2x
(5) x x 4)1(2=+; (6) 0652=--x x
19.若关于x 的方程 2430x x a +-+=有实数根. (1)求a 的取值范围; (2)若a 为符合条件的最小整数,求此时方程的根.
20一块长和宽分别为40厘米和25厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?
21.如图,一次函数y ax b
=+的图象与反比例函数的图象交于A(-4,2)、B(2,n)两点,且与x轴交于点C。
(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积;
22.某商店经销一种销售成本为每千克40元的水产品。
据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。
针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
23、已知:如图3-9-3所示,在△ABC中,cm
︒
=
AB
B.点P从点A开始沿AB
∠BC
=
90=
7
cm,
5
,
边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果Q
P,
分别从B
P,分别从B
A,同时出发,A,同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果Q
那么几秒后,PQ的长度等于5cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.。