2015年高中数学综合训练5
- 格式:docx
- 大小:439.30 KB
- 文档页数:4
周三检测题2015/1/211.设z =10i 3+i,则z 的共轭复数为 ( ) A .-1+3i B .-1-3i C .1+3i D .1-3i2. “-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的 ( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为( ) A .1B .1或3C .0D .1或0 4.由曲线y =2y x y =-及轴所围成的图形的面积为 ( ) A. 103 B.4 C. 163 D.65.若双曲线x 2a -y 2b =1(a >0,b >0)和椭圆x 2m +y 2n=1(m >n >0)有共同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|=( )A .m 2-a 2 B.m - a C.12(m -a ) D .m -a 6.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增.若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )A .[1,2]B .10,2⎛⎤ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2] 7.执行如图所示的程序框图,若输入的x 的值为1,则输出的n 的值为____.8.已知实数,x y 满足⎪⎩⎪⎨⎧≥≤≥-010y x y x 且目标函数by ax z +=2 )0,0(>>b a 的最大值是1,则ab的最大值为9.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为10.在平面直角坐标系xOy 中,设椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2c ,以点O 为圆心,a 为半径作圆M .若过点P ⎝⎛⎭⎫a 2c ,0作圆M 的两条切线互相垂直,则该椭圆的离心率为________.11 . ABC ∆中,角,,A B C 所对的边分别为,,a b c 且22sin cos 212A B C ++=. (1)求角C 的大小;(2)若向量(3,)m a b =,向量(,)3b n a =-,且m n ⊥,()()16m n m n +⋅-=,求,,a bc 的值.12.如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ;(2)求二面角P —BD —A 的大小.13.在等差数列{a n }中,a 1+a 3=-8,a 2+a 4=-14.(1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为c 的等比数列,求数列{b n }的前n 项和S n .14.已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l 与椭圆C 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆C 的方程; (2)求△PAB 的面积.周三检测题2015/1/211-6 DBD CDC7. 3 8.81 9. 3 10. 22 11.解:(1)∵22sin cos 212A B C ++= ∴2cos 212sin cos()cos 2A B C A B C +=-=+=-, ∴22cos cos 10C C +-=,∴1cos 2C =或cos 1C =- (0,),C π∈∴3C π= (2)∵⊥ ∴22303b a -=,即229b a = 又16)()(=-⋅+,∴1698822=+b a ,即2229b a +=② 由①②可得221,9a b ==,∴1,3a b ==又2222cos 7,c a b ab C =+-=∴c =1,3,a b c ===12.(1)证明 如图,建立坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP →=(0,0,3),AC →=(23,6,0),BD →=(-23,2,0).∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC .又∵P A ∩AC =A ,∴BD ⊥面P AC .(2)解 设平面ABD 的法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3),∴⎩⎨⎧ -23x +2y =0,-23x +3z =0解得⎩⎪⎨⎪⎧y =3x ,z =233x . 令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m·n |m||n |=12. ∴二面角P —BD —A 的大小为60°.13.解:(1)设数列{a n }的公差为d ,∵a 1+a 3=-8,a 2+a 4=-14,∴⎩⎪⎨⎪⎧2a 1+2d =-8,2a 1+4d =-14,解得a 1=-1,d =-3.∴数列{a n }的通项公式为a n =a 1+(n -1)d =-1-3(n -1)=-3n +2.(2)由数列{a n +b n }是首项为1,公比为c 的等比数列,得a n +b n =c n -1,即-3n +2+b n =c n -1,∴b n =3n -2+c n -1,∴S n =[1+4+7+…+(3n -2)]+(1+c +c 2+…+c n -1)=n (3n -1)2+(1+c +c 2+…+c n -1). ∴当c =1时,S n =n (3n -1)2+n =3n 2+n 2;当c ≠1时,S n =n (3n -1)2+1-c n 1-c =n (3n -1)2+c n -1c -1.综上,数列{b n }的前n 项和S n =⎩⎪⎨⎪⎧ 3n 2+n 2, c =1,n (3n -1)2+c n-1c -1,c ≠1.14.解 (1)由已知得c =22,c a =63.解得a =23,又b 2=a 2-c 2=4.所以椭圆C 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m x 212+y24=1,得4x 2+6mx +3m 2-12=0. ①设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2) (x 1<x 2),AB 中点为E (x 0,y 0), 则x 0=x 1+x 22=-3m4,y 0=x 0+m =m4;因为AB 是等腰△PAB 的底边,所以PE ⊥AB .所以PE 的斜率k =2-m4-3+3m 4=-1.解得m =2.此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0.所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322,所以△PAB 的面积S =12|AB |·d =92.。
2015学年度第二学期高三综合练习数学(理科)2015.5第一部分(选择题共40 分)一、选择题(共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合,集合,则=().B.C.D.2.执行如图所示的程序框图,则输出的n的值是().A.7 B.10 C.66 D.1663.设为虚数单位,,“复数是纯虚数”是“”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.已知平面上三点A,B,C,满足,则=().A.48 B.-48 C.100 D.-1005.已知函数,若对任意的实数x,总有,则的最小值是().A.2 B.4 C.D.26.已知双曲线与抛物线有一个公共的焦点F,且两曲线的一个交点为P.若,则双曲线的渐近线方程为().7.已知函数,若对任意,都有成立,则实数m的取值范围是().8.如图,将一张边长为1的正方形纸ABCD折叠,使得点B始终落在边AD上,则折起部分面积的最小值为().第Ⅱ卷(非选择题共110 分)二、填空题:本小题共6 小题,每小题5 分,共30 分.9.展开式中含项的系数是__________.10.已知圆C的圆心在直线x-y=0上,且圆C与两条直线x+y=0和x+y-12=0都相切,则圆C的标准方程是__________.11.如图,已知圆B的半径为5,直线AMN与直线ADC为圆B的两条割线,且割线AMN过圆心B.若AM=2,,则AD=__________.12.某四棱锥的三视图如图所示,则该四棱锥的侧面积为__________.13.已知点在函数的图像上,则数列的通项公式为__________;设O为坐标原点,点,则,中,面积的最大值是__________.14.设集合,集合A中所有元素的个数为__________;集合A 中满足条件“”的元素个数为__________.三、解答题:本大题共6 小题,共80 分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题共13分)在梯形ABCD中,(Ⅰ)求AC的长;(Ⅱ)求梯形ABCD的高.某学科测试中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如下表:(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?(Ⅱ)若在(Ⅰ)问中被抽出的答卷中,A,B,C三题答卷得优的份数都是2,从被抽出的A,B,C三题答卷中再各抽出1份,求这3份答卷中恰有1份得优的概率;(Ⅲ)测试后的统计数据显示,B题的答卷得优的有100份,若以频率作为概率,在(Ⅰ)问中被抽出的选择B题作答的答卷中,记其中得优的份数为X,求X的分布列及其数学期望EX.如图,在直角梯形ABCD中,.直角梯形ABEF可以通过直角梯形ABCD以直线AB为轴旋转得到,且平面平面ABCD.(Ⅰ)求证:;(Ⅱ)求直线BD和平面BCE所成角的正弦值;(Ⅲ)设H为BD的中点,M,N分别为线段FD,AD上的点(都不与点D重合).若直线平面MNH,求MH的长.18.(本小题共13分)已知点M为椭圆的右顶点,点A,B是椭圆C上不同的两点(均异于点M),且满足直线MA与直线MB斜率之积为14.(Ⅰ)求椭圆C的离心率及焦点坐标;(Ⅱ)试判断直线AB是否过定点:若是,求出定点坐标;若否,说明理由.19.(本小题共14分)已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)若在区间(1,2)上存在不相等的实数成立,求的取值范围;(Ⅲ)若函数有两个不同的极值点,,求证:.20.(本小题共13分)已知数列,是正整数1,2,3,,n的一个全排列.若对每个都有或3,则称为H数列.(Ⅰ)写出满足的所有H数列;(Ⅱ)写出一个满足的数列的通项公式;(Ⅲ)在H数列中,记.若数列是公差为d的等差数列,求证:或.参考答案及评分标准高三数学(理科)一、选择题:题号(1)(2)(3)(4)(5)(6)(7)(8)答案 A B B C A C D B二、填空题:题号(9)(10)(11)(12)(13)(14)答案三、解答题:15.(本小题共13 分)解:(Ⅰ)在中,因为,所以.由正弦定理得:,即.(Ⅱ)在中,由余弦定理得:,整理得,解得(舍负).过点作于,则为梯形的高.因为,,所以.在直角中,.即梯形的高为.16.(本小题共13 分)解:(Ⅰ)由题意可得:题 A B C答卷数180 300 230抽出的答卷数 3 5 2应分别从题的答卷中抽出份,份.(Ⅱ)记事件:被抽出的三种答卷中分别再任取出份,这份答卷中恰有份得优,可知只能题答案为优,依题意.(Ⅲ)由题意可知,题答案得优的概率为,显然被抽出的题的答案中得优的份数的可能取值为,且.;;;;;.随机变量的分布列为:所以.17.(本小题共14分)证明:(Ⅰ)由已知得,.因为平面平面,且平面平面,所以平面,由于平面,所以.(Ⅱ)由(1)知平面所以,.由已知,所以两两垂直.以为原点建立空间直角坐标系(如图).因为,则,,,,所以,,设平面的一个法向量.所以,即.令,则.设直线与平面所成角为,因为,所以.所以直线和平面所成角的正弦值为.(Ⅲ)在为原点的空间直角坐标系中,,,,,.设,即.,则,,.若平面,则.即..解得.则,.18.(本小题共13分)解:(Ⅰ)椭圆的方程可化为,则,,.故离心率为,焦点坐标为,.(Ⅱ)由题意,直线的斜率存在,可设直线的方程为,,,则,.由得.判别式.所以,,因为直线与直线的斜率之积为,所以,所以.化简得,所以,化简得,即或.当时,直线方程为,过定点.代入判别式大于零中,解得.当时,直线的方程为,过定点,不符合题意.故直线过定点.19.(本小题共14分)解:(Ⅰ)当时,,.由,解得,.当时,,单调递增;当时,,单调递减;当时,,单调递增.所以的单调增区间为,单调减区间为.(Ⅱ)依题意即求使函数在上不为单调函数的的取值范围.,设,则,.因为在上为增函数.当,即当时,函数在上有且只有一个零点,设为,当时,,即,为减函数;当时,,即,为增函数,满足在上不为单调函数.当时,,,所以在上成立(因在上为增函数),所以在上成立,即在上为增函数,不合题意.同理时,可判断在为减函数,不合题意.综上.(Ⅲ).因为函数有两个不同的零点,即有两个不同的零点,即方程的判别式,解得.由,解得,.此时,.随着变化,和的变化情况如下:+ +极大值极小值所以是的极大值点,是的极小值点,所以是极大值,是极小值所以因为,所以,所以.20.(本小题共13分)解:(Ⅰ)满足条件的数列有两个:.(Ⅱ)由(1)知数列满足,把各项分别加后,所得各数依次排在后,因为,所得数列显然满足或,,即得数列.其中,.如此下去即可得到一个满足的数列为:(其中)(写出此通项也可以(其中))(Ⅲ)由题意知,,且.有解:①,,,则,这与是矛盾的.②时,与①类似可得不成立.③时,,则不可能成立.④时,若或,则或.若或,则,类似于③可知不成立.④时,若同号,则,由上面的讨论可知不可能;若或,则或;⑤时,若异号,则,不行;若同号,则,同样由前面的讨论可知与矛盾.综上,只能为或,且(2)中的数列是的情形,将(2)中的数列倒过来就是,所以为或.。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.23sin()6π-=( )(A )2- (B )12-(C )12(D )2【答案】C 【解析】试题分析:根据题意23231sin sin 4sin 6662ππππ⎛⎫⎛⎫-=-== ⎪⎪⎝⎭⎝⎭,所以答案为C. 考点:1.诱导公式;2.常见角的三角函数值.2.设4log a =π,14log b =π,4c =π,则a ,b ,c 的大小关系是( )(A ) b c a >> (B )a c b >> (C ) a b c >> (D )b a c >> 【答案】D 【解析】试题分析:根据对数函数的性质知:4414log 1,log 0,1a b c πππ=<=<=>,所以c a b >>,答案为D.考点:1.对数函数的单调性;2.对数比较大小.3.已知{}n a 为各项都是正数的等比数列,若484a a ⋅=,则567a a a ⋅⋅=( )(A )4 (B )8 (C )16 (D )64 【答案】B 【解析】试题分析:由于数列{}n a 是正各项都是正数的等比数列,所以根据等比数列的性质可知:248664,2a a a a ==∴=,356768a a a a ==,所以答案为B.考点:1.等比数列的性质;2.等比数列的求值.4.甲、乙两名同学8次数学测验成绩如茎叶图所示,12,x x 分别表示甲、乙两名同学8次数学测验成绩的平均数,12,s s 分别表示甲、乙两名同学8次数学测验成绩的标准差,则有( ) (A )12x x >,12s s < (B )12x x =,12s s < (C )12x x =,12s s = (D )12x x <,12s s >【答案】B 【解析】试题分析:根据题意甲,乙的平均数分别为:185x =和285x =,方差分别为:()()()()()()()()22222222211[79857885868585858585848591859285]8s =-+-+-+-+-+-+-+-=1758=;()()22221[778578858s =-+-()()()()()2222283858585858587859285+-+-+-+-+-+()22349385]8+-=;所以12x x =,12s s <,答案为B. 考点:1.茎叶图;2.平均值和方差.5.已知p ,q 是简单命题,那么“p q ∧是真命题”是“p ⌝是真命题”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】D 【解析】试题分析:若p q ∧是真命题,则p 为真命题,且q 为真,而p ⌝为假命题,所以“p q ∧是真命题”是p ⌝为真命题的既不充分也不必要条件,所以答案为D. 考点:1.充要条件;2.含有逻辑联结词的命题的真假性.6.若实数y x ,满足不等式组330101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,,,则2||z x y =+的取值范围是( )7 83 5 5 7 2 38 9 4 5 5 6 1 2 9 7 8乙甲(A )[1,3]- (B )[1,11] (C )]3,1[ (D )]11,1[- 【答案】D 【解析】试题分析:画出可行域,当6,1x y ==-时,z 取得最大值max 11z =;当时,z 取得最小值min 1z =-.答案为:D.考点:1.线性规划;2.最优解问题.7.定义在R 上的函数()f x 满足)()6(x f x f =+.当)1,3[--∈x 时,2)2()(+-=x x f ,当)3,1[-∈x 时,x x f =)(,则(1)(2)(3)(2015)f f f f ++++=( )(A )336 (B )355 (C )1676 (D )2015 【答案】A 【解析】试题分析:根据)()6(x f x f =+可知:()f x 是周期为6的周期函数,且()()()()()()()()1234561210101f f f f f f +++++=++-++-+=, ()()20156335513351336f f =⨯+=⨯+=,所以答案为A.考点:1.函数的周期性;2.利用函数的周期性求函数值.8.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012a a a ,其中{0,1}i a ∈(0,1,2i =),传输信息为00121h a a a h ,001h a a =⊕,102h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如原信息为111,则传输信息为01111.传播信息在传输过程中受到干扰可能导致接收信息出错,则下列信息一定有误的是( )(A )11010 (B )01100 (C )10111 (D )00011 【答案】C 【解析】试题分析:根据信息时的规则,中间三位是需要传输的信息,前后为生产信息. A.11010传输信息001102101,101,110h a a h h a =⊕=⊕==⊕=⊕=,正确; B.01100传输信息001102110,110,000h a a h h a =⊕=⊕==⊕=⊕=,正确; C.10111传输信息001102011,011,h 110h a a h a =⊕=⊕==⊕=⊕=,错误;D.00011传输信息,001102000,011h a a h h a =⊕=⊕==⊕=⊕=正确; 考点:1.创新题;2.推理.第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)9.若1)nx的二项展开式中各项的二项式系数的和是64,则n = ,展开式中的常数项为 .(用数字作答) 【答案】6,15考点:1.二项式系数和;2.二项式的同通项公式.10.已知正数,x y 满足x y xy +=,那么x y +的最小值为 . 【答案】4 【解析】试题分析:因为:0,0x y >>,由均值不等式得:22x y x y xy +⎛⎫+=≤ ⎪⎝⎭,令x y t +=,则240,4t t t -≥≥.考点:1.均值不等式求最值;2.还原法解不等式.11.若直线12(32x t t y t =-+⎧⎨=-⎩,为参数)与曲线4cos (sin x a y a θθθ=+⎧⎨=⎩,为参数,0a >)有且只有一个公共点,则a = .【解析】试题分析:将参数方程1232x ty t =-+⎧⎨=-⎩化为一般方程得:20x y +-=参数方程4cos sin x a y a θθ=+⎧⎨=⎩化为一般方程得:()2224x y a -+=(p ,q)若直线与圆有一个公共点,则圆心到直线的距离为a:d a ===考点:1.直线的参数方程化普通方程;2.圆的参数方程化普通方程;3.直线和圆的位置关系.12.若双曲线22221(0,0)x y a b a b-=>>截抛物线24y x =的准线所得线段长为b ,则a = .【解析】试题分析:抛物线的准线方程为1x =-,又直线1x =-截双曲线的弦长为b ,则有222141b a b -=,解得:5a =. 考点:1.抛物线的定义;2.双曲线的标准方程.13.已知非零向量,a b 满足||1=b ,a 与-b a 的夹角为120,则||a的取值范围是 . 【答案】⎛⎝⎦【解析】试题分析: 如图在ABC ∆中,若b a -与a 的夹角为120︒,则60B ∠=︒,又1b =,由正弦定理1sin 60sin a A =︒,则23sin ,0120,0sin 1a A A A =<<︒<<,所以:230,a ⎛∈ ⎝⎦.考点:1.向量的线性运算;2.三角形的正弦定理;3.三角函数值域.14.如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”. 给出下列四个命题:① 若0p q ==,则“距离坐标”为(0,0)的点有且仅有1个.② 若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个. ③ 若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个. ④ 若p q =,则点M 的轨迹是一条过O 点的直线. 其中所有正确命题的序号为 . 【答案】①②③考点:1.平面点和直线的位置关系;2.分类讨论思想.三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)15.已知函数2sin 22sin ()sin x xf x x-=.(Ⅰ)求()f x 的定义域及其最大值; (Ⅱ)求()f x 在(0,π)上的单调递增区间.【答案】(Ⅰ)()f x 的定义域为{|}x x k k ∈≠π,∈R Z ;最大值为(Ⅱ)()f x 在(0,π)上的单调递增区间为3[,4ππ).【解析】试题分析:(Ⅰ)若原函数有意义,需满足分母不为零即sin 0x ≠,进而求得原函数的定义域,同时将原函数利用倍角公式化为一角一函数,进而求得其最值;(Ⅱ)利用换元法求得()f x 的单调增区间,同时注意其定义域{|}x x k k ∈≠π,∈R Z ,进而求得其单调递增区间. 试题解析:(Ⅰ)由sin 0x ≠,得x k k ≠π(∈)Z .所以()f x 的定义域为{|}x x k k ∈≠π,∈R Z . …………………2分因为2sin 22sin ()sin x xf x x -=,2cos 2sin x x =-)4x π=+, …………………6分所以()f x的最大值为 …………………7分 (Ⅱ)函数cos y x =的单调递增区间为[22k k π+π,π+2π](k ∈Z )由224k x k ππ+π≤+≤π+2π,x k k ≠π(∈)Z ,且(0,x ∈π),所以()f x 在(0,π)上的单调递增区间为3[,4ππ). ……13分考点:1.三角函数的定义域及最值;2.三角函数的单调递增区间.16.某校高一年级开设A ,B ,C ,D ,E 五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A 课程,不选B 课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(Ⅰ)求甲同学选中C 课程且乙同学未选中C 课程的概率;(Ⅱ)用X 表示甲、乙、丙选中C 课程的人数之和,求X 的分布列和数学期望.【答案】(Ⅰ)415;(Ⅱ)X 为分布列为:420331814028()0123757575757515E X =⨯+⨯+⨯+⨯==.【解析】试题分析:(Ⅰ)首先求得甲同学选中C 课程的概率和乙同学选中C 课程的概率,进而求得甲选中而乙未选中的概率为415;(Ⅱ)丙同学选中C 课程的概率为35,进而得到X 的可能取值为:0,1,2,3,进而求得各自的概率,得到其分布列和期望.试题解析:(Ⅰ)设事件A 为“甲同学选中C 课程”,事件B 为“乙同学选中C 课程”.则1223C 2()C 3P A ==,2435C 3()C 5P B ==.因为事件A 与B 相互独立,所以甲同学选中C 课程且乙同学未选中C 课程的概率为224()()()()[1()]3515P AB P A P B P A P B ==-=⨯=. …………………4分(Ⅱ)设事件C 为“丙同学选中C 课程”.则2435C 3()C 5P C ==.X 的可能取值为:0,1,2,3.1224(0)()35575P X P ABC ===⨯⨯=. (1)()()()P X P ABC P ABC P ABC ==++2221321232035535535575=⨯⨯+⨯⨯+⨯⨯=.(2)()()()P X P ABC P ABC P ABC ==++2322231333335535535575=⨯⨯+⨯⨯+⨯⨯=.23318(3)()35575P X P ABC ===⨯⨯=. X 为分布列为:EFA()0123757575757515E X =⨯+⨯+⨯+⨯==.………13分考点:1.相互独立事件的概率;2.事件的分布列和期望.17.如图,三棱柱ABC DEF -的侧面BEFC 是边长为1的正方形,侧面BEFC ⊥侧面ADEB ,4AB =,60DEB ∠=,G 是DE 的中点.(Ⅰ)求证:CE ∥平面AGF ; (Ⅱ)求证:GB ⊥平面BEFC ;(Ⅲ)在线段BC 上是否存在一点P ,使二面角P GE B --为45,若存在,求BP 的长;若不存在,说明理由.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)存在,BP =.【解析】试题分析:(Ⅰ)要证明CE ∥平面AGF ,需证明HG ∥CE (其中H 为CD 的中点,G 为DE 的中点);(Ⅱ)根据勾股定理求得222BG BE GE +=,所以GB BE ⊥,利用面面垂直的判定定理得到GB ⊥平面BEFC ,所以;(Ⅲ)根据题意建立空间直角坐标系,进而求得平面BGE 的法向量(0,0,1)=m ,平面PGE 的法向量,进而利用公式及二面角P GE B --为45.求得2BP =.试题解析:(Ⅰ)证明:连接CD 与AF 相交于H ,则H 为CD 的中点,连接HG .因为G 为DE 的中点,所以HG ∥CE .因为CE ⊄平面AGF ,HG ⊂平面AGF ,所以CE ∥平面AGF . ………4分(Ⅱ)证明:1BE =,2GE =,在△GEB 中,60GEB ∠=,BG .因为222BG BE GE +=, 所以GB BE ⊥.因为侧面BEFC ⊥侧面ADEB ,侧面BEFC侧面ADEB BE =,GB ⊂平面ADEB ,所以GB ⊥平面BEFC . ………8分(Ⅲ)解:,,BG BE BC 两两互相垂直,建立空间直角坐标系B xyz -.假设在线段BC 上存在一点P ,使二面角P GE B --为45. 平面BGE 的法向量(0,0,1)=m ,设(0,0,),[0,1]P λλ∈.G (0,1,0)E .所以()GP λ=,(,0)GE =.设平面PGE 的法向量为(,,)x y z =n ,则0,0.GP GE ⎧⋅=⎪⎨⋅=⎪⎩n n所以0,0.z y λ⎧+=⎪⎨+=⎪⎩A令1z =,得y λ=,x =所以PGE的法向量为,1)λ=n .因为1⋅=m n ,所以112=,解得[]0,1λ=,故BP =. 因此在线段BC 上存在一点P ,使二面角P GE B --为45,且2BP =. ………14分考点:1.线面平行的判定定理;2.面面垂直的性质定理;3.空间向量. 18.已知函数()exf x x a -=+⋅.(Ⅰ)当2e a =时,求()f x 在区间[1,3]上的最小值; (Ⅱ)求证:存在实数0[3,3]x ∈-,有0()f x a >.【答案】(Ⅰ)当2=x 时,)(x f 有最小值为3;(Ⅱ)证明见解析. 【解析】试题分析:(Ⅰ)利用求导求得2'()1e xf x -=-,进而得到()f x 的单调性求得其最小值;(Ⅱ)“存在实数0[3,3]x ∈-,有a x f >)(”等价于()f x 的最大值大于a .对原函数()f x 求导,进而对a 分情况,33330,,,0a a e e a e a e --≤≥<<<≤,得到对任意实数a 都存在]3,3[-∈x 使a x f >)(成立.试题解析:(Ⅰ)当2e a =时,2()exf x x -=+,]3,1[∈x ;因为2'()1e xf x -=-,由0)(='x f ,2=x .则x ,)(x f ',)(x f 关系如下:所以当2=x 时,)(x f 有最小值为3. ………5分 (Ⅱ)“存在实数0[3,3]x ∈-,有a x f >)(”等价于()f x 的最大值大于a .因为'()1e xf x a -=-,所以当0≤a 时,]3,3[-∈x ,0)('>x f ,)(x f 在)3,3(-上单调递增, 所以()f x 的最大值为(3)(0)f f a >=. 所以当0≤a 时命题成立.当0>a 时,由0)(='x f 得a x ln =. 则x ∈R 时,x ,)(x f ',)(x f 关系如下:考点:1.利用求导判断单调性;2.分类讨论思想.19.已知椭圆C 的中心在原点O ,焦点在x,且椭圆C 上的点到两个焦点的距离之和为4. (Ⅰ)求椭圆C 的方程;(Ⅱ)设A 为椭圆C 的左顶点,过点A 的直线l 与椭圆交于点M ,与y 轴交于点N ,过原点与l 平行的直线与椭圆交于点P .证明:2||||2||AM AN OP ⋅=.【答案】(Ⅰ)2214x y +=;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)根据题意,4e a ==,得到,,a b c 的方程,进而求得椭圆C 的方程;(Ⅱ)设直线AM 的方程为:y kx =,同时联立椭圆方程,由韦达定理进而求得222284(,)1414k k M k k -++,得到228(1)||||14k AM AN k +=+,同理得到222882||14k OP k +=+,进而结论得到证明.试题解析:(Ⅰ)设椭圆C 的标准方程为22221(0)x y a b a b +=>>,由题意知222,24,a b c c aa ⎧=+⎪⎪=⎨⎪=⎪⎩解得2a =,1b =.所以椭圆C 的标准方程为2214x y +=.……………………………5分(Ⅱ)设直线AM 的方程为:(2)y k x =+,则(0,2)N k .由 22(2)44,y k x x y =+⎧⎨+=⎩,得2222(1+4)161640k x k x k ++-=(*).设(2,0)A -,11(,)M x y ,则2-,1x 是方程(*)的两个根,所以2122814k x k -=+. 所以222284(,)1414k k M k k -++.||AM =214k ==+.||AN ==228(1)||||14k AM AN k +==+.设直线OP 的方程为:y kx =.由 2244,y kx x y =⎧⎨+=⎩,得22(14)40k x +-=. 设00(,)P x y ,则202414x k =+,2202414k y k =+. 所以22244||14k OP k +=+,222882||14k OP k +=+. 所以2||||2||AM AN OP ⋅=. ……………13分考点:1.椭圆的标准方程;2.韦达定理.20.已知数列{}n a 的前n 项和为n S ,且满足1(3)a a a =≠,n n n S a 31+=+,设n n n S b 3-=,n *∈N .(Ⅰ)求证:数列{}n b 是等比数列;(Ⅱ)若1n n a a +≥,n *∈N ,求实数a 的最小值; (Ⅲ)当4=a 时,给出一个新数列{}n e ,其中3,1,, 2.n n n e b n =⎧=⎨≥⎩设这个新数列的前n 项和为n C ,若n C 可以写成p t (,t p *∈N 且1,1>>p t )的形式,则称n C 为“指数型和”.问{}n C 中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.【答案】(Ⅰ) 12)3(-⨯-=n n a b ;(Ⅱ) a 的最小值为9-;(Ⅲ)没有“指数型和”.【解析】试题分析:(Ⅰ)根据题意将原条件化简,得到12n n b b +=,进而利用等比数列的定义,证明数列{}n b 是等比数列;(Ⅱ)根据(Ⅰ)的结论,利用1,2,n n n a S S n n *-=-≥∈N ,得到数列{}n a 的通项公式,进而得到关于a 的不等式,求得a 的最小值;(Ⅲ)根据(Ⅱ)得到12-=n n b ,再对p 按奇偶性进行分类讨论,进而得到结论.试题解析:(Ⅰ) 因为111132332n n n n n n n b S S b ++++=-=+-=,n *∈N ,且3≠a , 所以{}n b 是首项为3a -,公比为2等比数列.所以12)3(-⨯-=n n a b . ………4分 (Ⅱ) 由(Ⅰ)可得12)3(3-⨯-=-n n n a S ,1,2,n n n a S S n n *-=-≥∈N .12,123(3)2,2n n n a n a a n --=⎧=⎨⨯+-⨯≥⎩因为n n a a ≥+1,所以9-≥a ,且3≠a .所以a 的最小值为9-. ………9分(Ⅲ)由(Ⅰ)当4=a 时,12-=n n b当2≥n 时,13242n nC -=++++12+=n ,31=C ,所以对正整数n 都有12+=n nC .由12+=n p t ,n p t 21=-,(,t p *∈N 且1,1>>p t ),t 只能是不小于3的奇数.① 当p 为偶数时,np p pt t t 2)1)(1(122=-+=-,因为12+pt 和12-p t 都是大于1的正整数,所以存在正整数h g ,,使得gp t212=+,h p t 212=-,222=-h g ,2)12(2=--hg h ,所以22=h 且112=--h g 2,1==⇒g h ,相应的3=n ,即有233=C ,3C 为“指数型和”;② 当p 为奇数时,)1)(1(112-++++-=-p p t t t t t ,由于121-++++p t t t 是p 个奇数之和,仍为奇数,又1-t 为正偶数,所以np t t t t 2)1)(1(12=++++-- 不成立,此时没有“指数型和”. ………14分考点:1.等比数列的定义;2.通项公式;3.分类讨论思想.。
2015届高三数学综合检测试题5姓名 得分一、选择题:(本大题共10道小题,每小题5分,共50分。
每小题只有一个正确答案)1.设集合{}1,1,2,3A =-,{B x y ==,则A B 为( )A .{}1,1,2,3-B .{}1,2,3C .{}2,3D .[1,)+∞2. 某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( )A .14, 13B .13, 12C .14, 12D .12, 14 3.在△ABC 中,已知a =5 2 , c = 10, A = 30°, 则∠B 为( )A . 105°B . 60°C .15°D . 105°或15° 4. 函数()(xxf x e e e -=-为自然对数的底数)在定义域内是( )A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.既不是奇函数也不是偶函数 5. 有一个几何体的三视图及其尺寸如图所示(单位:cm ),则该几何体的表面积...为( ) A .212cm π B. 215cm π C. 224c m π D. 236cm π 6.已知点(a ,2b )在直线x+y=3上移动,则2a +4b 的最小值是( ) A .8 B .6 C . 23 D .24 7. 函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )8. 已知O 是坐标原点,点)2,1(A ,若点),(y x M 为平面区域210100x y x y x -+≥⎧⎪++≥⎨⎪≤⎩上的一个动点 ,则⋅的最小值是( )A .0B . 12- C .-2 D . -39.已知函数22,0(),()()11,02x x f x g x f x x x x x ->⎧⎪==-⎨-++≤⎪⎩则函数的零点的个数是( ) A .0个 B .1 个 C .2 个 D .3个10. 已知直线l 的倾斜角为π43,直线l 1经过点l l a B A 与且1),1,(),2,3(-垂直,直线l 2:b a l by x +=++平行,则与直线1012等于( )甲乙0129655418355728 1二、填空题(本大题共5道小题,每小题5分,共25分.)11.若2lg (x -2y )=lg x +lg y ,则xy的值为________; 12.若关于x 的不等式210ax ax +-<解集为R, 则a 的取值范围是______ __;13.已知数列﹛n a ﹜为等比数列,且2113725a a a +=, 则212a a 的值为________;14.阅读右边程序框图,输出的结果S 的值为________;(本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.)16.(12分)已知函数()sin()f x A x ωϕ=+,x ∈R (其中ππ0,0,22A ωϕ>>-<<),其部分图像如图所示.(1)求函数()f x 的解析式; (2)已知横坐标分别为1-、1、5的三点M 、N 、P 都在函数()f x 的图像上,求sin MNP ∠的值.17.(12分)某校在高三年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人)(1)求x ,y 的值; (2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.18. (12分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥面ABCD ,PA AB =,点E 是PD 的中点.(1)求证:PB //平面ACE ; (2)若四面体E ACD -的体积为23,求AB 的长.19.(13分)已知数列{}n a 的前n 项和223,()n S n n n N *=++∈ (1)求通项n a ; (2)求和=n T 14332211111+++++n n a a a a a a a a .20. (13分)研究表明:学生的接受能力依赖于老师持续讲课所用的时间。
1.[2014·洛阳统考]等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为( )A .2B .3 C.12D.13解析:因为a n =a 1q n -1,又4S 2=S 1+3S 3,所以4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2),解得{a n }的公比q =13.故选D.答案:D2. [2014·湖北模拟]已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( ) A. 1+ 2 B. 1- 2 C. 3+2 2D. 3-2 2解析:设等比数列{a n }的公比为q (q >0),则由题意得a 3=a 1+2a 2,即a 1q 2=a 1+2a 1q ,q2-2q -1=0,解得q =1± 2.又q >0,所以q =1+2,所以a 9+a 10a 7+a 8=q 2a 7+a 8a 7+a 8=q 2=(1+2)2=3+22,选C.答案:C3. [2014·河北教学质量监测]已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *).若b n +1=(n -λ)(1a n+1)(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围为( )A. λ>2B. λ>3C. λ<2D. λ<3解析:由已知可得1a n +1=2a n+1,1a n +1+1=2(1a n +1),1a 1+1=2≠0,则1a n+1=2n ,b n +1=2n(n-λ),b n =2n -1(n -1-λ)(n ≥2,n ∈N *),b 1=-λ也适合上式,故b n =2n -1(n -1-λ)(n ∈N *).由b n +1>b n ,得2n(n -λ)>2n -1(n -1-λ),即λ<n +1恒成立,而n +1的最小值为2,故实数λ的取值范围为λ<2.答案:C4. [2013·江西高考]某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:S n =-2n1-2=2n +1-2≥100,得n ≥6.答案:65. [2013·重庆高考]已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8=________.解析:因为{a n}为等差数列,且a1,a2,a5成等比数列,所以a1(a1+4d)=(a1+d)2,解得d=2a1=2,所以S8=64.答案:64。
2014-2015年高一数学必修五试题一、选择题(本大题共10小题,每小题5分,共50分).1.已知集合2{(1)37,},A x x x x R =-<+∈0,1x B x x ⎧⎫=≤⎨⎬+⎩⎭则A B ⋂= ( )A .[]1,0-B .()1,0-C .(]1,0-D .[)1,0-2.在ABC ∆中,若2,60a b B ︒===,则此三角形( )A .无解B .有一解C .有两解D .解的个数无法确定 3.在数列{}n a 中,1121,,2nn n a a a a +==+则该数列的第5项为( ) A .12 B .25 C .13 D .23 4.如图所示,表示阴影部分的二元一次不等式组是( )A .202400x y x y x --<⎧⎪+->⎨⎪≥⎩B .20240x y x y x --<⎧⎪+-<⎨⎪≥⎩C .202400x y x y x -->⎧⎪+-<⎨⎪≥⎩D .202400x y x y x -->⎧⎪+->⎨⎪≥⎩5.等比数列{}n a 的前项和为n S ,已知123,2,3S S S A .3-B .13-C .3D .136.设01b a <<<,则下列不等式不成立的是( )A .222ba<< B .11220log log a b << C .21ab b << D .21ab a <<7.在ABC ∆中,角A 、B 、C 所对的边分别为a b c 、、,若角3C π>,sin 2sin a C b A =,则下列结论正确的有 ( )个①一定是锐角三角形;②一定是等腰三角形;③可能是等腰直角三角形;④可能是等边三角形 A .1 B .2 C .3 D .48.已知等差数列{}n a ,{}n b 的前n 项和分别为,n n S T ,且9593n n S n T n +=+,则使得n na b 为整数的正整数的个数是( )A .5B .4C .3D .29.若数列{}n a 满足:132a =,112(2,3,4,)221n n a n a -=-=+,且有一个形如sin()n a A n ωϕ=+的通项公式,其中,,A ωϕ均为实数,且0ω>,则此通项公式n a 可以为( )A .32sin 236n a n ππ⎛⎫=- ⎪⎝⎭B .2233n a n ππ⎛⎫=+ ⎪⎝⎭C .325sin 236n a n ππ⎛⎫=-+ ⎪⎝⎭D .233n a n ππ⎛⎫=- ⎪⎝⎭10.定义在R 上的函数()y f x =是减函数,且对任意的a R ∈,都有()()0f a f a -+=,若x y 、满足不等式22(2)(2)0f x x f y y -+-≤,则当14x ≤≤时,2x y -的最小值为( )A .4-B .1-C .0D .8二、填空题(本大题共5小题,每小题5分,共25分) 11.《莱因徳纸草书》是世界上最古老的数学著作之一。
2014—2015学年高一数学必修五综合试卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.不等式0121≤+-x x 的解集为( ) A .⎝⎛⎭⎫-∞,-12∪[1,+∞) B .⎣⎡⎦⎤-12,1 C .⎝⎛⎦⎤-∞,-12∪[1,+∞) D .⎝⎛⎦⎤-12,1 2.若0<<b a ,则下列不等式不能成立的是 ( )A .ba 11> B .ba 22> C .b a >D .ba )21()21(>3.不等式16)21(1281≤<x 的整数解的个数为 ( )A .10B .11C .12D .134.等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为( ) A .297B .144C .99D .665.若数列{}n a 满足关系:111n na a +=+,51=a ,则5a =( ). A .32B .85C .53D .1386.ABC ∆中,已知︒=135B ,︒=15C ,5=a ,则最大边长为 ( ) A .25 B .34 C .35 D .247.在锐角三角形△ABC 中,4||=,1||=,△ABC 的面积为3,则∙的值为( ) A .2 B .-2 C .4 D .-48.若c b a ,,满足c b a >>,且0<⋅c a ,则下列选项中不一定成立的是( )A .ac ab >B .ac bc >C .0)(<-c a acD .22ab c b <9.当]21,0(∈x 时,若不等式012≥++ax x 恒成立,则a 的最小值为( )A .25- B .2- C .1- D .3-10.数列{}n a 满足21=a ,1111+-=++n n n a a a ,其前n 项积为n T ,则=2014T ( )A .61 B .61- C .6 D .6- 11.已知0,0>>y x ,且112=+yx ,若m m y x 222+>+恒成立,则实数m 的取值范围是( ) A .(-∞,-2]∪[4,+∞) B .(-2,4) C .(-∞,-4]∪[2,+∞) D .(-4,2) 12.设数列{}n a 的前n 项和为n S ,令nS S S T nn +++=21,称n T 为数列n a a a ,,,21 的“理想数”,已知数列50021,,,a a a 的“理想数”为2004,那么数列12,50021,,,a a a 的“理想数”为( )A .2012B .2013C .2014D .2015第Ⅱ卷(非选择题 共90分)二、填空题(本大题共有4 题,每题5分,共20分)13.在ABC ∆中,已知B A tan ,tan 是x 的方程01)1(2=+++x p x 的两个根,则=∠C ________.14.在ABC ∆中, 60,3,8===A c b ,则此三角形的外接圆的面积为 .15.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≤+--≤8201223y x y x x y ,则x y 的最大值是 _.16.已知n S 是等差数列{}n a 的前n 项和,且576S S S >>,给出下列五个命题: ①0<d ;②012>S ;③012<S ;④数列{}n S 中的最大项为11S ;⑤||||76a a >. 其中正确的命题有 。
2015年全国大联考高考数学五模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z满足z=(i为虚数单位),则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(5分)集合M={x|1<x+1≤3},N={x|x2﹣2x﹣3>0},则(∁R M)∩(∁R N)等于() A.(﹣1,3)B.(﹣1,0)∪(2,3)C.(﹣1,0]∪[2,3) D.[﹣1,0]∪(2,3]3.(5分)某市场调查员在同一天对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x(元)和销售量y(件)之间的一组数据如下表所示:价格x(元)9 9.5 10 10.5 11销售量y(件) 11 a 8 6 5由散点图可知,销售量y与价格x之间有较好的线性相关关系,且回归直线方程是=﹣3。
2x+4a,则实数a等于()A.7 B.8.5 C.9 D.104.(5分)已知随机变量X服从正态分布N(2,σ2),P(X≤3)=0。
72,则P(1<X<3)等于()A.0.28 B.0。
44 C.0。
56 D.0。
845.(5分)在(1﹣x)3(1+x)8的展开式中,含x2项的系数是()A.6 B.﹣6 C.7 D.﹣76.(5分)给出下列三个类比结论.①“(ab)n=a n b n”类比推理出“(a+b)n=a n+b n;②已知直线a,b,c,若a∥b,b∥c,则a∥c.类比推理出:已知向量a,b,c,若a∥b,b∥c,则a∥c;③同一平面内,直线a,b,c,若a⊥b,b⊥c,则a∥c.类比推理出:空间中,已知平面α,β,γ,若α⊥β,β⊥γ,则α∥γ.其中结论正确的个数是()A.0 B.1 C.2 D.37.(5分)要从8名教师中选派4人去参加一个研讨会,其中教师甲是领队必须去,而乙、丙两位教师不能同去,则不同的选派方法有()A.18种B.24种C.30种D.48种8.(5分)某程序框图如图所示,该程序运行后输出的值是()A.6 B.7 C.8 D.99.(5分)(2014•福建模拟)将一个质点随机投放在关于x,y的不等式组所构成的三角形区域内,则该质点到此三角形的三个顶点的距离均不小于1的概率是()A.B.C.D.10.(5分)已知2a=3b=6c,k∈Z,不等式>k恒成立,则整数k的最大值为()A.6 B.5 C.3 D.411.(5分)(2014•海淀区一模)已知A(1,0),点B在曲线G:y=ln(x+1)上,若线段AB与曲线M:y=相交且交点恰为线段AB的中点,则称B为曲线G关于曲线M的一个关联点.记曲线G关于曲线M的关联点的个数为a,则()A.a=0 B.a=1 C.a=2 D.a>212.(5分)(2014•长春四模)设,则对任意正整数m,n(m>n),都成立的是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中的横线上. 13.(5分)已知i是虚数单位,则|+|=.14.(5分)(2015•江苏模拟)某高校在某年的自主招生考试成绩中随机抽取50名学生的笔试成绩,绘制成频率分布直方图如图所示,若要从成绩在[85,90),[90,95),[95,100]三组内的学生中,用分层抽样的方法抽取12人参加面试,则成绩在[90,100]内的学生应抽取的人数为.15.(5分)某市有A、B两所示范高中响应政府号召,对该市甲、乙两个教育落后地区开展支教活动.经上级研究决定:向甲地派出3名A校教师和2名B校教师,向乙地派出3名A 校教师和3名B校教师.由于客观原因,需从拟派往甲、乙两地的教师中各自任选一名互换支教地区,则互换后A校教师派往甲地区人数不少于3名的概率为.16.(5分)已知双曲线(a>0,b>0)的左右焦点分别为F1,F2,过F1作圆:x2+y2=的切线,切点为E,延长F1E交双曲线右支于点P,若|OP|=|F1F2|(O为坐标原点),则双曲线的离心率为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2014春•玉田县期中)已知点P n(a n,b n)满足a n+1=a n•b n+1,b n+1=(n∈N*)且点P1的坐标为(1,﹣1).(1)求过点P1,P2的直线l的方程;(2)试用数学归纳法证明:对于n∈N*,点P n都在(1)中的直线l上.18.(12分)(2015•濮阳一模)某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:API [0,50](50,100](100,150](150,200](200,250](250,300]>300空气质量优良轻微污染轻度污染中度污染中度重污染重度污染天数 4 13 18 30 9 11 15(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为:S=,试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:P(K2≥k0)0。
2015年华南师大附中高三综合测试数学(理科)2015.5本试卷共4页,21小题, 满分150分. 考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.第一部分 选择题(40分)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 为虚数单位,若复数()()2282i z m m m =+-+-是纯虚数,则实数m =:A .2B .4-或2C .2或4-D . 4- 2.已知命题p :∃α∈R ,cos (π-α) = cos α;命题q : ∀x ∈R ,x 2 + 1 > 0. 则下面结论正确的是:A. p ∨q 是真命题B. p ∧q 是假命题C. ¬ q 是真命题D. p 是假命题3.若 x 、y 满足约束条件 ⎩⎪⎨⎪⎧ 2x + 2y ≥1x ≥y 2x -y ≤1且向量 a = (3,2),b = (x ,y ),则 a ·b 的取值范围是: A. [54,4]B. [72,5]C. [54,5]D. [72,4]4. 同时具有性质“①最小正周期是π,②图象关于直线3π=x 对称;③在]3,6[ππ-上是增函数”的一个函数是:A .)62sin(π+=x yB .)32cos(π+=x y C . )62cos(π-=x yD . )62sin(π-=x y5. 函数f (x )=|log 2(x +1)| 的图象大致是:6. 已知点 F 是抛物线 y 2 = 4x 的焦点,M 、N 是该抛物线上两点,| MF | + | NF | =6,则 MN 中点的横坐标为: A. 32 B. 2C. 52D. 37. 设函数)(x f y =在R 上有定义,对于任一给定的正数p ,定义函数⎩⎨⎧>≤=p x f p px f x f x f p )(,)(),()(,则称函数)(x f p 为)(x f 的“p 界函数”若给定函数2,12)(2=--=p x x x f ,则下列结论不.成立的是: A. [](0)[(0)]p p f f f f = B. [](1)[(1)]p p f f f f = C. [][(2)](2)p p f f f f = D. [][(3)](3)p p f f f f =8. 若直角坐标平面内两相异点A 、B 两点满足:① 点A 、B 都在函数 f (x ) 的图象上;② 点A 、B 关于原点对称,则点对 (A ,B ) 是函数 f (x ) 的一个“姊妹点对”. 点对 (A ,B ) 与 (B ,A ) 可看作是同一个“姊妹点对”. 已知函数 f (x ) = ⎩⎪⎨⎪⎧ x 2 + 2x ,x < 0 x + 1e x ,x ≥0 ,则 f (x ) 的“姊妹点对”有: A. 0 个 B. 1 个 C. 2 个 D. 3 个第二部分 非选择题(110分)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 不等式12x x -<的解集为 *** . 10.2612)x x-(的展开式的常数项是 *** (用数字作答).11. 图一是一个算法的流程图,则最后输出的S 是 *** .12.某三棱锥的三视图如图二所示,正视图、侧视图均为直角三角形,则该三棱锥的四个面中,面积最大的面的面积是 *** .13. 数字“2015”中,各位数字相加和为8,称该数为“如意四位数”,则用数字0,1,2,3,4,5组成的无重复数字且大于2015的“如意四位数”有 *** 个.(二)选做题(14~15题,考生只能从中选做一题)14 . (坐标系与参数方程选做题)设曲线C 的参数方程为4cos 14sin x a y θθ=+⎧⎨=+⎩(θ是参数,0>a ),直线l 的极坐标方程为3cos 4sin 5ρθρθ+=,若曲线C与直线l 只有一个公共点,则实数a 的值是 *** .15. (几何证明选做题)如图,⊙O 上一点C 在直径AB 上的射影为D ,且4CD =,8BD =,则⊙O 的半径等于*** .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本题满分12分)已知,,a b c 分别是ABC ∆的角,,A B C 所对的边,且2c =,3C π=。
2015年高一数学强化训练(5)20150821一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. (2013年高考山东卷(文))已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B = ð,{1,2}B =,则U A B = ð( )A .{3}B .{4}C .{3,4}D .∅【答案】A2. (2013年高考辽宁卷(文))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为() A .3455⎛⎫ ⎪⎝⎭,- B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,【答案】A3. (2013年高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A .1169B .367C .36 D【答案】B4. (2013年高考天津卷(文))已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =( ) A .12-B .1C .2D .12【答案】C5. (2013年高考重庆卷(文))已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =(8 7 79 4 0 1 0 9 1x) A .5-B .1-C .3D .4【答案】C6. (2013年高考课标Ⅰ卷(文))执行右面的程序框图,如果输入的[1,3]t ∈-,则输出的S 属于() A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-【答案】A7. (2013年高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发生的概率为.21,则ADAB=____( )A .12B .14 C D 【答案】D8. (2013年高考课标Ⅰ卷(文))函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为【答案】C;9. (2013年高考浙江卷(文))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3【答案】B10.(2013年高考陕西卷(文))已知点M(a,b)在圆221:O x y+=外, 则直线ax + by = 1与圆O 的位置关系是()A.相切B.相交C.相离D.不确定【答案】B11.(2013年高考湖北卷(文))将函数sin()y x x x+∈R的图象向左平移(0)m m>个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.π12B.π6C.π3D.5π6【答案】B12. (2013年高考湖北卷(文))x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )A .奇函数B .偶函数C .增函数D .周期函数【答案】D二、填空题:本大题共4小题,每小题5分,满分20分.13. (2013年高考课标Ⅱ卷(文))已知正方形ABCD 的边长为2,E 为CD 的 中点,则AE BD ⋅=________.【答案】 214. (2013年高考湖北卷(文))已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________. 【答案】415. (2013年高考课标Ⅰ卷(文))已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.【答案】92π; 16. (2013年高考安徽(文))定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________.【答案】(1)()2x x f x +=-三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(本小题满分12分)(2013年高考山东卷(文))设函数2()sin cos (0)f x x x x ωωωω=->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π,(Ⅰ)求ω的值(Ⅱ)求()f x 在区间3[,]2ππ上的最大值和最小值 【答案】18. (本小题满分共12分) (2013年高考课标Ⅱ卷(文))经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t 该农产品.以X(单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率.【答案】19. (本小题满分12分)(2013年高考广东卷(文))从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.【答案】(1)重量在[)90,95的频率200.450==;(2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541515=⨯=+; (3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,)x a x b x c a b a c b c 6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==;20. (本小题满分12分)(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD 中,PA⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G 为线段PC 上的点.(Ⅰ)证明:BD⊥面PAC ;(Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值; (Ⅲ)若G 满足PC⊥面BGD,求PGGC的值.【答案】解:证明:(Ⅰ)由已知得三角形ABC是等腰三角形,且底角等于30°,且6030AB CB AD CD ABD CBD ABD CBD BAC BD DB =⎫⎪=⇒∆≅∆⇒∠=∠=∠=⎬⎪=⎭ 且,所以;、BD AC ⊥,又因为PA ABCD BD PA BD PAC BD AC ⊥⇒⊥⎫⇒⊥⎬⊥⎭;(Ⅱ)设AC BD O = ,由(1)知DO PAC ⊥,连接GO ,所以DG 与面APC 所成的角是DGO ∠,由已知及(1)知:1,2BO AO CO DO =====, [来源:学&科&网Z&X&X&K]12tan 2OD GO PA DGO GO ==⇒∠===,所以DG 与面APC 所(Ⅲ)由已知得到:PC ===,因为P C B G D P ⊥∴⊥,在PDC ∆中,PD CD PC ====,设223107)2PG PG x CG x x x PG x GC GC =∴=-∴-=-∴====21. (本小题满分12分)已知以点C (t ,2t )(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. (1)证明 ∵圆C 过原点O ,∴OC 2=t 2+4t 2.设圆C 的方程是(x -t )2+(y -2t )2=t 2+4t 2,令x =0,得y 1=0,y 2=4t ;令y =0,得x 1=0,x 2=2t , ∴S △OAB =12OA ·OB =12×|4t |×|2t |=4,即△OAB 的面积为定值.(2)解 ∵OM =ON ,CM =CN ,∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =15<5, 圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =95> 5. 圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去.∴圆C 的方程为(x -2)2+(y -1)2=5.22. (本小题满分12分)(2013年高考安徽(文))设函数22()(1)f x ax a x =-+,其中0a >,区间{}|()0I x f x =>.(Ⅰ)求I 的长度(注:区间(,)αβ的长度定义为βα-;(Ⅱ)给定常数()0,1k ∈,当11k a k -≤≤+时,求I 长度的最小值.【答案】解:(1)令2()-10f x x a a x ⎡⎤=+=⎣⎦()解得 10x = 221ax a =+ 2|01a I x x a ⎧⎫∴=<<⎨⎬+⎩⎭ I ∴的长度212-1a x x a=+ (2) ()0,1k ∈ 则0112k a k <-≤≤+< 由 (1)21aI a=+2221'0(1)a I a -=>+,则01a << 故I 关于a 在(1,1)k -上单调递增,在(1,1)k +上单调递减.()1221-1-2211-k kI k kk ==+++ 22111kI k +=++()min21-22kI k k =++。
2015年高中数学综合训练(5)
2015/4/9
1.在6(1)x x +的展开式中,含3x 项的系数为
A .30
B .20
C .15
D .10
2.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点
A .向左平行移动12个单位长度
B .向右平行移动12
个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度
3.若0a b >>,0c d <<,则一定有
A .
a b c d > B .a b c d
< C .a b d c > D .a b d c < 4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有
A .192种
B .216种
C .240种
D .288种
5.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =
A .2-
B .1-
C .1
D .2
6.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
设点P 在线段
1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是
A .
B .
C .
D . 7.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。
现有下列命题:
①()()f x f x -=-;②22(
)2()1
x f f x x =+;③|()|2||f x x ≥。
其中的所有正确命题的序号是
A .①②③
B .②③
C .①③
D .①②
8.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是
A .2
B .3
C D
B C 9.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,
242,10,(),
01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = 。
10.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46m ,则河流的宽度BC 约等于 m 。
(用四舍五入法将结果精确到个位。
参考数据:sin 670.92≈,cos 670.39≈,sin 370.60≈,cos370.80≈
1.73≈)
11.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 。
12.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。
例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈。
现有如下命题:
①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,
()f a b =”
; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;
③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1
x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈。
其中的真命题有 。
(写出所有真命题的序号)
13.已知函数()sin(3)4f x x π
=+。
(1)求()f x 的单调递增区间;
(2)若α是第二象限角,4()cos()cos 2354
f α
παα=+,求cos sin αα-的值。
14. 一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分)。
设每次击鼓出现音乐的概率为12
,且各次击鼓出现音乐相互独立。
(1)设每盘游戏获得的分数为X ,求X 的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了。
请运用概率统计的相关知识分析分数减少的原因。
15. 三棱锥A BCD -及其侧视图、俯视图如图所示。
设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN NP ⊥。
(1)证明:P 为线段BC 的中点;
(2)求二面角A NP M --的余弦值。
16. 设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。
C
A B D M N P
(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ;
(2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-
,求数列{
}n n
a b 的前n 项和n T 。
17. 已知椭圆C :22
221x y a b
+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形。
(1)求椭圆C 的标准方程;
(2)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q 。
(i )证明:OT 平分线段PQ (其中O 为坐标原点);
(ii )当
||||TF PQ 最小时,求点T 的坐标。