(完整版)高中数学必修五综合测试题 含答案,推荐文档
- 格式:pdf
- 大小:355.56 KB
- 文档页数:26
高一数学必修 5 试题一. 选择题 本大题共 10 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.由a 1 1 , d3确定的等差数列a n,当 a n 298 ,序号 n 等于 ()A. 99B. 100C. 96D. 1012.ABC 中,若 a 1, c2, B60 , ABC 的面( )A .1B .3 D.3223. 在数列 { a n } 中, a 1 =1, a n 1a n 2 , a 51 的()A . 99 B. 49C. 102 D. 1014. 已知数列 3 ,3,15 , ⋯, 3(2n 1) , 那么 9 是数列的( )()第12()第13()第14()第15ABCD5. a 1 11 a n1在等比数列中,, q2 ,, 数 n()232A. 3B. 4C. 5D. 66.△ ABC 中, cosA a, △ ABC 一定是( )cos BbA .等腰三角形B .直角三角形C .等腰直角三角形D .等 三角形7. 定函数 yf ( x) 的 象在下列 中,并且 任意a 1 (0,1) ,由关系式 a n 1f (a n ) 得到的数列 { a n } 足 a n 1a n (n N * ) , 函数的 象是( )yyy y1111o1o1o1xo1xxxABCD8. 在ABC 中 , a 80,b 100, A 45 , 此三角形解的情况是()A. 一解B.两解 C. 一解或两解D. 无解9. 在△ ABC 中,如果 sin A :sin B :sin C 2:3: 4 ,那么 cos C 等于()2211A.B. -C. -D. -333410. 一个等比数列 { a n } 的前 n 和 48,前 2n 和 60, 前 3n和()A 、 63B 、108C 、75D 、 8311. 在△ ABC 中,∠ A = 60° ,a = 6 ,b = 4 , 足条件的△ ABC( )(A) 无解 (B) 有解(C)有两解(D)不能确定12. 数列 { a n } 中, a 11, a n2a n(nN) , 2是 个数列的第几()12101a n二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分。
最新人教版高中数学必修五综合测试题及答案2套模块综合检测(A)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,已知(a +c )(a -c )=b 2+bc ,则A 等于( ) A .30° B .60° C .120°D .150°解析: 由已知得b 2+c 2-a 2=-bc , ∴cos A =-12,∴A =120°.答案: C2.已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ) A .(-∞,-1) B .⎝⎛⎭⎫-1,-23 C .⎝⎛⎭⎫-23,3 D .(3,+∞)解析: A =⎩⎨⎧⎭⎬⎫x ∈R |x >-23,B ={x ∈R |x >3或x <-1}, ∴A ∩B ={x ∈R |x >3}. 答案: D3.等差数列{a n }的公差为1,若a 1,a 2,a 4成等比数列,则a 3=( ) A .1 B .2 C .-3D .3解析: ∵a 1,a 2,a 4成等比数列, ∴a 22=a 1·a 4即(a 1+1)2=a 1·(a 1+3) 解得:a 1=1,∴a 3=a 1+2d =3. 答案: D4.已知t =a +2b ,s =a +b 2+1,则t 和s 的大小关系正确的是( ) A .t ≤s B .t ≥s C .t <sD .t >s 解析: ∵t -s =a +2b -a -b 2-1=-(b -1)2≤0,∴t ≤s . 答案: A5.各项不为零的等差数列{a n }中,有a 27=2(a 3+a 11),数列{b n }是等比数列,且b 7=a 7,则b 6b 8=( )A .2B .4C .8D .16解析: b 6b 8=b 27=a 27,又a 27=2(a 3+a 11)=4a 7,∴a 7=4,∴b 6b 8=16,故选D. 答案: D6.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( )A .4 3B .5C .5 2D .6 2解析: ∵S △ABC =12ac sin B ,∴c =42,由余弦定理b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理2R =bsin B =5 2.(R 为△ABC 外接圆的半径)答案: C7.在等差数列{a n }中,a 1=120,公差d =-4,若前n 项和S n 满足S n <a n (n ∈N *),则n 的最小值是( )A .60B .63C .70D .72 解析: S n <a n ⇔120n +n (n -1)2×(-4)<120+(n -1)×(-4),即n 2-63n +62>0,解得n <1(舍去)或n >62,∴n 的最小值为63. 答案: B8.在R 上定义运算☆,a ☆b =ab +2a +b ,则满足x ☆(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)解析: 根据定义得:x ☆(x -2)=x (x -2)+2x +(x -2)=x 2+x -2<0,解得 -2<x <1,所以实数x 的取值范围为(-2,1),故选B.答案: B9.一艘客船上午9∶30在A 处,测得灯塔S 在它的北偏东30°,之后它以每小时32海里的速度继续沿正北方向匀速航行,上午10∶00到达B 处,此时测得船与灯塔S 相距82海里,则灯塔S 在B 处的( )A .北偏东75°B .东偏南75°C .北偏东75°或东偏南75°D .以上方位都不对解析:根据题意画出示意图,如图,由题意可知AB =32×12=16,BS =82,∠A =30°.在△ABS 中,由正弦定理得 AB sin S =BSsin A, sin S =AB sin A BS =16sin 30°82=22,∴S =45°或135°, ∴B =105°或15°,即灯塔S 在B 处的北偏东75°或东偏南75°. 答案: C10.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44 B .3×44+1 C .45D .45+1解析: 当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1, 即a n +2=4a n +1.∴该数列从第二项开始是以4为公比的等比数列.又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1(n =1),3×4n -2(n ≥2). ∴当n =6时,a 6=3×46-2=3×44.答案: A11.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定,若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .4 2B .3 2C .4D .3解析: 由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,画出可行域如图所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)的坐标代入z =2x +y 得z 的最大值为4.答案: C12.在R 上定义运算⊕:x ⊕y =x2-y ,若关于x 的不等式x ⊕(x +1-a )>0的解集是集合{x |-2≤x ≤2}的子集,则实数a 的取值范围是( )A .[-1,3]B .[-3,1]C .[-3,-1)∪(-1,1]D .[-1,1)∪(1,3]解析: x ⊕(x +1-a )=x 2-x -1+a =-xx -(a +1)>0⇒xx -(a +1)<0,(1)⎩⎪⎨⎪⎧a >-10<x <a +1≤2⇒-1<a ≤1; (2)⎩⎪⎨⎪⎧a <-1-2≤a +1<x <0⇒-3≤a <-1; (3)a =-1时,不等式为x x -0<0,x ∈∅显然成立,故选B.答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=____________. 解析: 由等差数列的性质知a 2+a 4+a 6+a 8=2(a 3+a 7)=2×37=74. 答案: 7414.已知关于x 的不等式ax 2+bx +c <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-2或x >-12,则不等式ax 2-bx +c >0的解集为________.解析: 由ax 2+bx +c <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-2或x >-12得-2,-12为方程ax 2+bx +c =0的两根且a <0,∴⎩⎨⎧-2-12=-b a,-2×⎝⎛⎭⎫-12=c a,即⎩⎪⎨⎪⎧b =52a <0,c =a <0,∴不等式ax 2-bx +c >0等价于2x 2-5x +2<0,解得12<x <2.∴不等式ax 2-bx +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2. 答案: ⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <215.在△ABC 中,已知BC =12,A =60°,B =45°,则AC =________. 解析: 由正弦定理,得AC sin B =BCsin A. 所以AC =BC sin A ·sin B =12sin 60°sin 45°=4 6.答案: 4 616.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则x -y 的取值范围是________.解析: 记z =x -y ,则y =x -z ,所以z 为直线y =x -z 在y 轴上的截距的相反数,画出不等式组表示的可行域如图中△ABC 区域所示.结合图形可知,当直线经过点B (1,1)时,x -y 取得最大值0,当直线经过点C (0,3)时,x -y 取得最小值-3.答案: [-3,0]三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC 中,已知a =23,b =6,A =30°,求B 及S △ABC . 解析: 在△ABC 中,由正弦定理得a sin A =bsin B ,∴sin B =b a sin A =623·12=32.又A =30°,且a <b ,∴B >A . ∴B =60°或120°.①当B =60°时,C =90°,△ABC 为直角三角形, S △ABC =12ab =6 3.②当B =120°时,C =30°,△ABC 为等腰三角形, S △ABC =12ab sin C =3 3.18.(本小题满分12分)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解析: (1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .由a 1=1,a 3=-3可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.19.(本小题满分12分)解关于x 的不等式ax 2-(a +1)x +1<0. 解析: 若a =0,原不等式可化为-x +1<0, 解得x >1;若a <0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0 解得x <1a或x >1;若a >0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)<0, 其解的情况应由1a 与1的大小关系确定,当a =1时,解得x ∈∅; 当a >1时,解得1a <x <1;当0<a <1时,解得1<x <1a.综上所述,当a <0时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,解集为∅;当a >1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 20.(本小题满分12分)已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.求:(1)4x -3y 的最大值和最小值; (2)x 2+y 2的最大值和最小值.解析: (1)不等式组⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,表示的平面区域如下图所示,其中A (4,1),B (-1,-6),C (-3,2).设z =4x -3y ,直线4x -3y =0经过原点(0,0),作一组与4x -3y =0平行的直线l :4x -3y =t ,当l 过C 点时,z 值最小;当l 过B 点时,z 值最大.∴z max =4×(-1)-3×(-6)=14, z min =4×(-3)-3×2=-18.(2)设u =x 2+y 2,则u 为点(x ,y )到原点(0,0)的距离.结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.∴(x 2+y 2)max =(-1)2+(-6)2=37;(x 2+y 2)min =0.21.(本小题满分13分)已知数列{a n }的首项a 1=23,a n +1=2a na n +1,n =1,2,3,…(1)证明:数列⎩⎨⎧⎭⎬⎫1a n-1是等比数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n .解析: (1)证明:∵a n +1=2a na n +1,∴1a n +1=a n +12a n =12+12·1a n ,∴1a n +1-1=12⎝⎛⎭⎫1a n -1, 又a 1=23,∴1a 1-1=12, ∴数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列.(2)由(1)知数列⎩⎨⎧⎭⎬⎫1a n-1是等比数列,设数列⎩⎨⎧⎭⎬⎫1a n-1的前n 项和为T n ,则T n =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=1-⎝⎛⎭⎫12n, ∴S n =T n +n =1-⎝⎛⎭⎫12n +n =n +1-⎝⎛⎭⎫12n . 22.(本小题满分13分)某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解析: 设楼房每平方米的平均综合费用为f (x )元,则 f (x )=(560+48x )+2 160×10 0002 000x=560+48x +10 800x.∵x ≥10,∴48x +10 800x ≥1 440,当且仅当x =15时,等号成立. ∴f (x )≥2 000.因此,当x =15时,f (x )取得最小值f (15)=2 000.答:为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.模块综合检测(B)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba=( ) A .23 B .2 2 C . 3D . 2解析: 由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A , 即sin B (sin 2A +cos 2A )=2sin A . 故sin B =2sin A ,所以ba = 2.答案: D2.等比数列公比为2,且前4项之和为1,则前8项之和为( ) A .15 B .17 C .19D .21解析: 由S 8-S 4S 4=q 4得S 8=17.答案: B3.如果a ,b ,c 满足c <b <a 且ac <0,那么下列选项中不一定成立的是( ) A .cb 2<ab 2 B .c (b -a )>0 C .ab <acD .ac (a -c )<0 解析: 若b =0,则cb 2=ab 2,∴A 不一定成立. 答案: A4.数列{a n }的通项公式为a n =1n +1+n,已知它的前n 项和S n =6,则项数n 等于( )A .6B .7C .48D .49解析: 将通项公式变形得: a n =1n +1+n=n +1-n(n +1+n )(n +1-n )=n +1-n ,则S n =(2-1)+(3-2)+(4-3)+…+(n +1-n ) =n +1-1,由S n =6,则有n +1-1=6,∴n =48. 答案: C5.在△ABC 中,b =a sin C ,c =a cos B ,则△ABC 一定是( ) A .等腰三角形但不是直角三角形B .直角三角形但不是等腰三角形C .等边三角形D .等腰直角三角形解析: 由c =a cos B 得,c =a ×a 2+c 2-b 22ac ,∴a 2=b 2+c 2,∴△ABC 为直角三角形, ∴b =a sin C =a ×ca =c ,∴△ABC 是等腰直角三角形. 答案: D6.不等式2x 2-x -1>0的解集是( ) A .⎝⎛⎭⎫-12,1 B .(1,+∞)C .(-∞,1)∪(2,+∞)D .⎝⎛⎭⎫-∞,-12∪(1,+∞) 解析: ∵Δ=1+8=9>0,∴方程2x 2-x -1=0有两个不相等的实数根, 解得x 1=-12,x 2=1.∴2x 2-x -1>0的解集为⎝⎛⎭⎫-∞,-12∪(1,+∞). 答案: D7.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥0,x -y +1≥0,x +y -3≤0,则z =2x +y 的最大值为( )A .-2B .4C .6D .8解析: 作出可行域,如图阴影部分所示,易求得A (-1,0),B (3,0),C (1,2),由可行域可知,z =2x +y 过点B (3,0)时,z 有最大值,且z max =6.答案: C8.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B .22C .12D .-12解析: 利用余弦定理求解. ∵cos C =a 2+b 2-c 22ab =c 22ab ,又∵a 2+b 2≥2ab ,∴2ab ≤2c 2, ∴cos C ≥12.答案: C9.当点(x ,y )在直线x +3y =2上移动时,z =3x +27y +1的最小值是( ) A .339 B .7 C .1+2 2D .6解析: z =3x +27y +1≥23x ·27y +1=7.当且仅当3x =27y ,即x =1,y =13时,等号成立.故选B.答案: B10.在△ABC 中,b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( )A.152B .15C .2D .3解析: ∵b 2-bc -2c 2=0, ∴(b -2c )(b +c )=0.∵b +c ≠0,∴b -2c =0.∴b =2c , ∴6=c 2+4c 2-2c ·2c ×78,∴c =2,b =4.∴S =12bc sin A =12×2×4×1-4964=152. 答案: A11.某学生用一不准确的天平(两臂不等长)称10 g 药品,他先将5 g 的砝码放在左盘,将药品放在右盘使之平衡;然后又将5 g 的砝码放在右盘,将药品放在左盘使之平衡,则此学生实际所得药品( )A .小于10 gB .大于10 gC .大于等于10 gD .小于等于10 g解析: 设左、右臂长分别为t 1,t 2,第一次称的药品为x 1 g ,第二次称的药品为x 2 g ,则有5t 1=x 1t 2,x 2t 1=5t 2,所以x 1+x 2=5⎝⎛⎭⎫t 1t 2+t 2t 1>5×2=10(g),即大于10 g.答案: B12.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析: 因为(x -a )⊗(x +a )=(x -a )(1-x -a ),又不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,所以(x -a )(1-x -a )<1对任意实数x 恒成立,即x 2-x -a 2+a +1>0对任意实数x 恒成立,所以相应方程的Δ=(-1)2-4(-a 2+a +1)<0,解得-12<a <32.故选C.答案: C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________. 解析: 利用三边长是公比为2的等比数列,可把三边长表示为a ,2a,2a ,再利用余弦定理求解.设三角形的三边长从小到大依次为a ,b ,c , 由题意得b =2a ,c =2a .在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22×a ×2a =-24.答案: -2414.设z =x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则z 的最小值为________.解析: 如图,x +y =6过点A (k ,k ),k =3,z =x +y 在点B 处取得最小值,B 点在直线x +2y =0上,∴B (-6,3), ∴z min =-6+3=-3.答案: -315.已知△ABC 中三边a ,b ,c 成等差数列,a ,b ,c 也成等差数列,则△ABC 的形状为________.解析: 由a ,b ,c 成等差数列得a +c =2b , ① 由a ,b ,c 成等差数列得a +c =2b , ②②2-①得2ac =2b ,即b 2=ac ,①平方得a 2+2ac +c 2=4b 2, 将b 2=ac 代入得a 2+2ac +c 2=4ac , 即(a -c )2=0,∴a =c . 又∵a +c =2b ,∴2a =2b , ∴a =b ,∴a =b =c . 答案: 等边三角形16.已知log 2(x +y )=log 2x +log 2y ,则xy 的取值范围是____________. 解析: 由已知得x +y =xy ,又x >0,y >0, ∴xy =x +y ≥2xy ,∴xy ≥4. 答案: [4,+∞)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及前n 项和T n . 解析: (1)∵{a n }是首项为a 1=19,公差为d =-2的等差数列,∴a n =19-2(n -1)=21-2n ,S n =19n +12n (n -1)×(-2)=20n -n 2.(2)由题意得b n -a n =3n -1,即b n =a n +3n -1,∴b n =3n -1-2n +21,∴T n =S n +(1+3+…+3n -1)=-n 2+20n +3n -12.18.(本小题满分12分)(2012·江西高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3cos(B -C )-1=6cos B cos C .(1)求cos A ;(2)若a =3,△ABC 的面积为22,求b ,c . 解析: (1)由3cos(B -C )-1=6cos B cos C ,得3(cos B cos C -sin B sin C )=-1,即cos(B +C )=-13,从而cos A =-cos(B +C )=13.(2)由于0<A <π,cos A =13,所以sin A =223.又S △ABC =22,即12bc sin A =22,解得bc =6.由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2=13,解方程组⎩⎪⎨⎪⎧ bc =6,b 2+c 2=13,得⎩⎪⎨⎪⎧ b =2,c =3或⎩⎪⎨⎪⎧b =3,c =2. 19.(本小题满分12分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }, (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解析: (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎨⎧1+b =3a ,1×b =2a.解得⎩⎪⎨⎪⎧a =1,b =2.所以a =1,b =2.(2)不等式ax 2-(ac +b )x +bc <0,即x 2-(2+c )x +2c <0, 即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; 当c =2时,不等式(x -2)(x -c )<0的解集为∅.综上,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c }; 当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.20.(本小题满分12分)设S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求a 2a 1的值;(2)若a 5=9,求a n 及S n 的表达式. 解析: (1)设等差数列{a n }的公差是d . ∵S 1,S 2,S 4成等比数列,∴S 22=S 1S 4,即(2a 1+d )2=a 1(4a 1+6d ), 化简得d 2=2a 1d ,注意到d ≠0, ∴d =2a 1.∴a 2a 1=a 1+d a 1=3a 1a 1=3.(2)a 5=a 1+4d =9a 1=9,∴a 1=1,d =2. ∴a n =a 1+(n -1)d =2n -1,S n =n (a 1+a n )2=n 2.21.(本小题满分13分)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解析: (1)依题意,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.在△ABC 中,由余弦定理,得 BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784. 解得BC =28.所以渔船甲的速度为BC2=14海里/时.答:渔船甲的速度为14海里/时.(2)方法一:在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α, 由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC =12×3228=3314.答:sin α的值为3314.方法二:在△ABC 中,因为AB =12,AC =20,BC =28,∠BCA =α,由余弦定理,得cos α=AC 2+BC 2-AB 22AC ×BC ,即cos α=202+282-1222×20×28=1314.因为α为锐角, 所以sin α=1-cos 2α=1-⎝⎛⎭⎫13142=3314.答:sin α的值为3314.22.(本小题满分13分)热心支持教育事业的李先生虽然并不富裕,但每年都要为山区小学捐款.今年打算用2 000元购买单价为50元的桌子和20元的椅子,希望桌椅的数量之和尽可能多,但椅子数不能少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才合适?解析: 设桌子、椅子各买x 张和y 张, 则所买桌椅的总数为z =x +y . 依题意得不等式组⎩⎪⎨⎪⎧x ≤y ,y ≤1.5x ,50x +20y ≤2 000,其中x ,y ∈N *.由⎩⎪⎨⎪⎧ y =x ,50x +20y =2 000,解得⎩⎨⎧x =2007,y =2007.由⎩⎪⎨⎪⎧y =1.5x ,50x +20y =2 000,解得⎩⎪⎨⎪⎧x =25,y =752.设点A 的坐标为⎝⎛⎭⎫2007,2007. 点B 的坐标为⎝⎛⎭⎫25,752, 则前面的不等式组所表示的平面区域是以A ⎝⎛⎭⎫2007,2007,B ⎝⎛⎭⎫25,752,O (0,0)为顶点的△AOB 的边界及其内部(如图中阴影所示).令z =0,得x +y =0,即y =-x .作直线l 0:y =-x .由图形可知,把直线l 0平移至过点B ⎝⎛⎭⎫25,752时,亦即x =25,y =752时,z 取最大值.因为x,y∈N*,所以x=25,y=37时,z取最大值.故买桌子25张,椅子37张较为合适.。
必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。
2019-2020学年高中数学必修五综合测试卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1设△ABC的内角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,且c=2a,则cos B等于()A.14B.34C.√24D.√23答案:B2下列结论正确的是()A.若ac>bc,则a>bB.若a8>b8,则a>bC.若a>b,c<0,则ac<bcD.若√a<√b,则a>b答案:C3等差数列{a n}的前n项和为S n,若a2+a7+a12=30,则S13的值是() A.130 B.65C.70D.75解析:因为a2+a7+a12=(a2+a12)+a7=2a7+a7=3a7=30,所以a7=10.所以S13=13(a1+a13)2=13(a7+a7)2=13a7=130.答案:A4已知锐角△ABC的内角A,B,C的对边分别为a,b,c,若23cos2A+cos 2A=0,a=7,c=6,则b等于()A.10B.9C.8D.5解析:由23cos2A+cos 2A=0,得cos2A=125.∵A∈(0,π2),∴cos A=15.∵cos A=36+b2-492×6b ,∴b=5或b=−135(舍).故选D.答案:D5若在等比数列{a n}中,a4=7,a6=21,则a8等于()A.35B.63C.21√3D.±21√3 答案:B6若在△ABC 中,a=4,b=4√3,A=30°,则角B 的度数等于( ) A.30° B.30°或150° C.60° D.60°或120°答案:D7在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,则角B 的取值范围是( ) A .(0,π3]B.[π3,π] C .(0,π6]D.[π6,π) 答案:A8某旅行社租用A,B 两种型号的客车安排900名客人旅行,A,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,若旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( ) A.31 200元 B.36 000元C.36 800元D.38 400元解析:设需A,B 型车分别为x ,y 辆(x ,y ∈N ),则x ,y 需满足{36x +60y ≥900,x +y ≤21,y -x ≤7,x ∈N ,y ∈N ,设租金为z ,则z=1 600x+2400y ,画出可行域如图中阴影所示,根据线性规划中截距问题,可求得最优解为x=5,y=12,此时z 最小等于36 800.故选C .答案:C9若x>0,y>0,且xy-(x+y )=1,则( )A.x+y ≥2(√2+1)B.xy ≤√2+1C.x+y ≤(√2+1)2D.xy ≥2(√2+1) 解析:∵xy=1+(x+y )≤(x+y 2)2,∴(x+y )2-4(x+y )-4≥0, ∴x+y ≥2(√2+1),当且仅当x=y =√2+1时等号成立. 答案:A10若数列{a n }满足a 1=0,a n+1=a n -√3√3a n +1(n ∈N *),则a 20等于( )A.0B .−√3C.√3D.1解析:由a 1=0,a n+1=n √3√3a +1n ∈N *),得a 2=−√3,a 3=√3,a 4=0,…由此可知数列{a n }是周期数列,周期为3,所以a 20=a 2=−√3. 答案:B11若在R 上定义运算☉:a ☉b=ab+2a+b ,则满足x ☉(x-2)<0的实数x 的取值范围为( ) A.(0,2)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-1,2)解析:由题意,得x (x-2)+2x+(x-2)<0,即x 2+x-2<0,解得-2<x<1. 答案:B12已知集合A={t|t 2-4≤0},对于满足集合A 的所有实数t ,关于x 的不等式x 2+tx-t>2x-1恒成立,则x 的取值范围是( ) A.(-∞,-1)∪(3,+∞) B.(-∞,1)∪(3,+∞) C.(-∞,-1) D.(3,+∞)解析:由题意知A={t|-2≤t ≤2},设f (t )=(x-1)t+x 2-2x+1,由条件知f (t )在区间[-2,2]上恒为正值. 于是有{f (-2)>0,f (2)>0,即{x 2-4x +3>0,x 2-1>0.解得x>3或x<-1. 答案:A二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于 .解析:由题意知每天植树的棵数组成一个以2为首项,2为公比的等比数列, 所以S n =2(1-2n )1-2=2(-1+2n )≥100.所以2n ≥51,n ≥6.答案:614已知点P (x ,y )的坐标满足条件{x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,则|PO|的最小值等于 ,最大值等于 . 答案:√2 √1015在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c.若C=120°,c =√2a ,则a 与b 的大小关系是 .解析:由余弦定理得c 2=a 2+b 2-2ab cos 120°.∵c =√2a,∴2a 2=a 2+b 2+ab ,即a 2=b 2+ab ,a 2-b 2=ab>0.∴a 2>b 2,即a>b.答案:a>b16已知数列{a n }满足a 1=t ,a n+1-a n +2=0(t ∈N *,n ∈N *).记数列{a n }的前n 项和的最大值为f (t ),则f (t )= .答案:{t 2+2t4,t 为偶数,(1+t 2)2,t 为奇数三、解答题(本大题共6小题,共74分.解答时应写出文字说明、证明过程或演算步骤)17(12分)设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 解(1)由a n =a 1+(n-1)d 及a 3=5,a 10=-9,得{a 1+2d =5,a 1+9d =-9,解得{a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n. (2)由(1)知,S n =na 1+n (n -1)2a =10n-n 2.因为S n =-(n-5)2+25,所以当n=5时,S n 取得最大值.18(12分)海面上相距10海里的A,B两船,B船在A船的北偏东45°方向上.两船同时接到指令同时驶向C岛,C岛在B船的南偏东75°方向上,行驶了80分钟后两船同时到达C岛,经测算,A船行驶了10√7海里,求B船的速度.解如图所示,在△ABC中,AB=10,AC=10√7,∠ABC=120°.由余弦定理,得AC2=BA2+BC2-2BA·BC·cos 120°,即700=100+BC2+10BC,得BC=20.设B船速度为v,行驶时间为8060=43(小时),路程为BC=20海里,则有v=2043=15(海里/时),即B船的速度为15海里/时.19(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足2c-ba =cosBcosA.(1)求角A的大小;(2)若a=2√5,求△ABC面积的最大值.解(1)因为2c-ba =cosBcosA,所以(2c-b)cos A=a cos B.由正弦定理,得(2sin C-sin B)cos A=sin A cos B, 整理得2sin C cos A-sin B cos A=sin A cos B.所以2sin C cos A=sin (A+B)=sin C.在△ABC中,0<C<π,所以sin C≠0.所以cos A=12.又0<A<π,故A=π3.(2)由(1)得A=π3,又a=2√5,则cos A=b 2+c2-a22bc=12,整理得b2+c2=bc+20.由基本不等式,得b2+c2≥2bc,则bc+20≥2bc,所以bc≤20,当且仅当b=c时,等号成立,故三角形的面积S=12bcsin A=12bcsinπ3=√34bc≤√34×20=5√3.所以△ABC面积的最大值为5√3.20(12分)已知等差数列{a n}满足a2=0,a6+a8=-10.(1)求数列{a n}的通项公式;(2)求数列{a n2n-1}的前n项和.解(1)设等差数列{a n}的公差为d,由已知条件可得{a 1+d =0,2a 1+12d =-10,解得{a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n. (2)设数列{an2n -1}的前n 项和为S n , 即S n =a 1+a 22+⋯+a n 2n -1,则S 1=a 1=1,S n 2=a 12+a 24+⋯+a n2n . ∵当n>1时,S n 2=a 1+a 2-a 12+⋯+a n -a n -12n -1−a n 2n=1−(12+14+…+12n -1)−2-n 2n=1−(1-12n -1)−2-n 2n=n2n ,∴S n =n2n -1.当n=1时,S 1=1也符合该公式.综上可知,数列{an2n -1}的前n 项和S n =n2n -1.21(12分)电视台为某个广告公司特约播放两套片集,其中片集甲播映时间为20分钟,广告时间为1分钟,收视观众为60万;片集乙播映时间为10分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有6分钟广告,而电视台每周只能为该公司提供不多于86分钟的节目时间.电视台每周应播映两套片集各多少次,才能获得最高的收视率? 解设片集甲播放x 集,片集乙播放y 集,则有{x +y ≥6,21x +11y ≤86,x ≥0,x ∈N ,y ≥0,y ∈N .要使收视率最高,则只要z=60x+20y 最大即可. 由{21x +11y =86,x +y =6,得M (2,4).由图可知,当x=2,y=4时,z=60x+20y 取得最大值200万. 故电视台每周片集甲和片集乙各播映2集和4集,其收视率最高.22(14分)已知各项均不相等的等差数列{a n }的前4项和S 4=14,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式; (2)设T n 为数列{1an a n+1}的前n 项和,若Tn ≤λa n+1对任意n ∈N *恒成立,求实数λ的最小值.解(1)设等差数列{a n }的公差为d ,由已知得{4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ),解得d=1或d=0(舍去),因此a 1=2.故a n =n+1. (2)∵由(1)可知1an a n+1=1(n+1)(n+2)=1n+1−1n+2,∴T n =12−13+13−14+⋯+1n -1−1n+2=n2(n+2). ∵T n ≤λa n+1对任意n ∈N *恒成立,∴n 2(n+2)≤λ(n+2),即λ≥n2(n+2)2对任意n ∈N *恒成立.又n 2(n +2)2=n 2(n 2+4n +4)=12(n +4n+4)≤116,当且仅当n=2时,取“=”.∴λ的最小值为116.。
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是()A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有()A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于()A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322 D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12-(-1)=32. 【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC 的面积为32,则a 的值为( )A .1B .2 C.32 D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3.【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52 D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ,∵x +1x ≥52, ∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n (n -1)2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0. 【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A .189B .186C .180D .192【解析】 由a n +1=2a n ,知{a n }为等比数列, ∴a n =2n . ∴2b n =2n +2n +1, 即b n =3·2n -1,∴S 6=3·1+3·2+…+3·25=189. 【答案】 A10.已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( ) A .T >0 B .T <0 C .T =0 D .T ≥0【解析】 法一 取特殊值,a =2,b =c =-1, 则T =-32<0,排除A ,C ,D ,可知选B.法二 由a +b +c =0,abc >0,知三数中一正两负, 不妨设a >0,b <0,c <0,则T =1a +1b +1c =ab +bc +ca abc =ab +c (b +a )abc=ab -c 2abc .∵ab <0,-c 2<0,abc >0,故T <0,应选B. 【答案】 B11.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =( )A .2 3B .2 C. 2 D .1【解析】 由正弦定理得:a sin A =bsin B , ∵B =2A ,a =1,b =3, ∴1sin A =32sin A cos A .∵A 为三角形的内角,∴sin A ≠0. ∴cos A =32.又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,∴△ABC 为直角三角形. 由勾股定理得c =12+(3)2=2. 【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项【解析】 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4,两式相乘,得a 61q 3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,所以a n 1·q n (n -1)2=64,即(a 21q n -1)n=642,即2n =642,所以n =12.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________. 【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2×(3+2n -1)2=-n (n +1)2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n (n -1)2+n 2=n (n +1)2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n+1n (n +1)2.【答案】 (-1)n +1n (n +1)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·tan B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3ac tan B , 所以cos B =a 2+c 2-b 22ac =32tan B , 即tan B cos B =32,即sin B =32, 所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1; (3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a ;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a <-1,即-2<a <0时,原不等式等价于2a ≤x ≤-1. 综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1};当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4.∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154. ∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎨⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B产品225 t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m ,又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15,则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245 t ,B 产品225 t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。
精品文档高二数学必修1-必修5考试题一、选择题(每小题5分,共40分,在每小题的四个选项中有且只有一个是正确的,请把正确选项填涂在答题卡上。
)1. 对于下列命题:22?x?R,sinx?cosx?1?x?R,?1?sinx?1①,下列判断正确的是,②A. ①假②真 B. ①真②假 C. ①②都假 D. ①②都真THEN 条件IF语句 1 语2. 条件句的一般格式是ELSE语句 2END IF否否满足条件满足条件是是 2 语句语句1 1 语句语句2A. B.否否满足条件满足条件满足条件是是 12 语句语句 21 语句语句D.C.名学生,得到他们在某一天各自课外某校为了了解学生的课外阅读情况,随即调查了503.阅读所用时间的数据,结果用右侧的条形图表示。
)(人人数名学生这一天平均每人的课根据条形图可得这50外阅读时间为20小时小时 B. 0.9 A. 0.6 15 D. 1.5 小时小时C. 1.010里面装有底面半径为10cm,4. 有一圆柱形容器,5,有一块金属五棱锥掉足够的水,水面高为12cm2.0 1.5 1.0 0 0.5 ,若五棱锥进水里全被淹没,结果水面高为15cm)小时时间(?,则五棱锥的底面积是的高为3cm??2 2 2 2 D. 300 cmcmC. 30cmA. 100 B. 100 cm 精品文档.精品文档nn}paa?{3??2a的值为5.已知数列,,且则p为等比数列nn?1n的倍数D.2或3 C.2或3 A.2 B.3的一个充分条件是a∥αbβ表示平面,a、表示直线,则6.若α、 b∥b且 B. aαβ= A. α⊥β且a⊥β?且aβD. α∥βC. a∥b且b∥αx?x2?a?a f(x)+g(x)=和偶函数g(x)满足7.已知奇函数f(x),若g(a)=a, 则f(a)的值为171544 D. C. A.1 B.21,3][?(x)?xxf(x)?[0,1]f内,2是以8. 已知为周期的偶函数,当时,,那么在区间1k?x)?kx?f(x kk 的(其中的实数)有四个不同的实根,则走为不等于关于l的方程取值范围是111,0)?,0)?((?,0)(1,0)(?423 B..D..A C分。
高中数学学习材料马鸣风萧萧*整理制作高中数学必修5测试卷C (含答案)一、选择题:1.在等差数列3,7,11…中,第5项为( ). A .15B .18C .19D .232.数列{}n a 中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列D .首项为1的等比数列3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4B .5C .6D .74.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°, 则c 的值等于( ). A .5B .13C .13D .375.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4B .8C .15D .316.△ABC 中,如果A a tan =B b tan =C ctan ,那么△ABC 是( ). A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形7.如果a >b >0,t >0,设M =b a ,N =tb ta ++,那么( ). A .M >NB .M <NC .M =ND .M 与N 的大小关系随t 的变化而变化8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n =n21D .a n =1+log 2n9.如果a <b <0,那么( ). A .a -b >0B .ac <bcC .a 1>b1D .a 2<b 210.我们用以下程序框图来描述求解一元二次不等式ax 2+bx +c >0(a >0)的过程.令a =2,b =4,若c ∈(0,1),则输出区间的形式为( ).A .MB .NC .PD .∅开始输入a ,b ,c计算△=b 2-4ac判断△≥0?计算ab x ab x 2221∆+-=∆--=结束判断x 1≠x 2?输出区间N =(-∞,x 1)∪(x 2,+∞)输出区间M =(-∞,-a b 2)∪(-ab2,+∞) 输出区间 P (-∞,+∞)是否是否11.等差数列{a n }中,已知a 1=31,a 2+a 5=4,a n =33,则n 的值为( ).A .50B .49C .48D .4712.设集合A ={(x ,y )|x ,y ,1―x ―y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是( ).Ox0.50.5yx0.50.5yx0.50.5y x0.50.5y OO OABCD13.若{a n }是等差数列,首项a 1>0,a 4+a 5>0,a 4·a 5<0,则使前n 项和S n >0成立的最大自然数n 的值为( ).A .4B .5C .7D .814.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ). A .9B .8C .7D .6二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上. 15.已知x 是4和16的等差中项,则x = . 16.一元二次不等式x 2<x +6的解集为 .17.函数f (x )=x (1-x ),x ∈(0,1)的最大值为 .18.在数列{a n }中,其前n 项和S n =3·2n +k ,若数列{a n }是等比数列,则常数k 的值为 .三、解答题:本大题共3小题,共28分. 解答应写出文字说明、证明过程或演算步骤. 19.△ABC 中,BC =7,AB =3,且B Csin sin =53. (1)求AC ; (2)求∠A .20.某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?21.已知等差数列{a n}的前n项的和记为S n.如果a4=-12,a8=-4.(1)求数列{a n}的通项公式;(2)求S n的最小值及其相应的n的值;a,…,构成一个新的数列{b n},(3)从数列{a n}中依次取出a1,a2,a4,a8,…,12n-求{b n}的前n项和.参考答案一、选择题 1.C 2.B 3.B 4.C 5.C 6.B 7.A 8.D9.C10.B11.A12.A13.D14.B二、填空题 15.10. 16.(-2,3). 17.41. 18.-3. 三、解答题19.解:(1)由正弦定理得B AC sin =C AB sin ⇒AC AB =BC sin sin =53⇒AC =335⨯=5.(2)由余弦定理得cos A =AC AB BC AC AB ⋅-+2222=53249259⨯⨯-+=21-,所以∠A =120°.20.解:(1)设水池的底面积为S 1,池壁面积为S 2,则有S 1=38004 =1 600(平方米).池底长方形宽为x 6001米,则S 2=6x +6×x 6001=6(x +x6001).(2)设总造价为y ,则y =150×1 600+120×6(x +x6001)≥240 000+57 600=297 600. 当且仅当x =x6001,即x =40时取等号. 所以x =40时,总造价最低为297 600元.答:当池底设计为边长40米的正方形时,总造价最低,其值为297 600元.21.解:(1)设公差为d ,由题意,⎩⎨⎧ ⇔ ⎩⎨⎧解得⎩⎨⎧所以a n =2n -20.(2)由数列{a n }的通项公式可知,当n ≤9时,a n <0, 当n =10时,a n =0, 当n ≥11时,a n >0.所以当n =9或n =10时,S n 取得最小值为S 9=S 10=-90. (3)记数列{b n }的前n 项和为T n ,由题意可知b n =12-n a =2×2n -1-20=2n -20.所以T n =b 1+b 2+b 3+…+b n=(21-20)+(22-20)+(23-20)+…+(2n -20) =(21+22+23+…+2n )-20n=21221--+n -20n=2n +1-20n -2.a 4=-12 a 8=-4 a 1+3d =-12 a 1+7d =-4d =2a 1=-18。
高中数学必修五综合测试题含答案
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修五综合测试题含答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修五综合测试题含答案的全部内容。
鎌。
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项a n 可能是( ) A .2n B .2n +1 C .2n -1D .2n -1【解析】 取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D. 【答案】 C2.不等式x 2-2x -5>2x 的解集是( ) A .{x |x ≤-1或x ≥5} B .{x |x <-1或x >5} C .{x |1<x <5} D .{x |-1≤x ≤5}【解析】 不等式化为x 2-4x -5>0,所以(x -5)(x +1)>0,所以x <-1或x >5. 【答案】 B3.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 10·a 12等于( )A .16B .32C .64D .256【解析】 ∵{a n }是等比数列且由题意得a 1·a 19=16=a 210(a n >0),∴a 8·a 10·a 12=a 310=64.【答案】 C4.下列不等式一定成立的是( ) A .lg ⎝ ⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R )D.1x2+1>1(x∈R)【解析】5.在△ABC中,角A,B,C的对边分别为a,b,c,ac=3,且a=3b sin A,则△ABC的面积等于()A.12 B.32C.1 D.3 4【解析】∵a=3b sin A,∴由正弦定理得sin A=3sin B sin A,∴sin B=1 3.∵ac=3,∴△ABC的面积S=12ac sin B=12×3×13=12,故选 A.【答案】 A6.等比数列{a n}前n项的积为T n,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是()A.T10B.T13C.T17D.T25【解析】由等比数列的性质得a3a6a18=a6a10a11=a8a9a10=a39,而T17=a179,故T17为常数.【答案】 C7.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3【解析】 由题意:A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3. 【答案】 A8.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?( )A .2B .3C .4D .5【解析】 远望巍巍塔七层,说明该数列共有7项,即n =7.红光点点倍加增,说明该数列是公比为2的等比数列.共灯三百八十一,说明7项之和S 7=381.请问尖头几盏灯,就是求塔顶几盏灯,即求首项a 1. 代入公式S n =a 1(1-q n )1-q ,即381=a 1(1-27)1-2,∴a 1=381127=3. ∴此塔顶有3盏灯. 【答案】 B9.若实数x ,y 满足⎩⎨⎧x -y +1≤0,x >0,则yx 的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)【解析】 实数x ,y 满足⎩⎨⎧x -y +1≤0,x >0的相关区域如图中的阴影部分所示. y x 表示阴影部分内的任意一点与坐标原点(0,0)连线的斜率,由图可知,yx 的取值范围为(1,+∞).【答案】 C10.在△ABC 中,若c =2b cos A ,则此三角形必是( ) A .等腰三角形 B .正三角形 C .直角三角形D .有一角为30°的直角三角形【解析】 由正弦定理得sin C =2cos A sin B , ∴sin (A +B )=2cos A sin B ,即sin A cos B +cos A sin B =2cos A sin B , 即sin A cos B -cos A sin B =0, 所以sin (A -B )=0. 又因为-π<A -B <π, 所以A -B =0, 即A =B . 【答案】 A11.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2 【解析】 ∵x >1, ∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2 ≥23+2. 【答案】 A12.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且tan B =2-3a 2-b 2+c 2,BC →·BA→=12,则tan B 等于( ) A.32 B.3-1 C .2D .2- 3【解析】 由BC →·BA→=12,得ac cos B =12,∴2ac cos B =1.又由余弦定理,得b 2=a 2+c 2-2ac cos B =a 2+c 2-1, ∴a 2-b 2+c 2=1, ∴tan B =2-31=2- 3.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知点P (1,-2)及其关于原点的对称点均在不等式2x +by +1>0表示的平面区域内,则b 的取值范围是______. 【导学号:05920089】【解析】 点P (1,-2)关于原点的对称点为点P ′(-1,2). 由题意知⎩⎨⎧2×1-2b +1>0,-2+2b +1>0,解得12<b <32. 【答案】 ⎝ ⎛⎭⎪⎫12,3214.(2015·江苏高考)设数列{}a n 满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.【解析】 由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1, ∴a n =n 2+n2(n ≥2). ∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *). ∴1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1. ∴S 10=2×⎝ ⎛⎭⎪⎫11-12+12-13+…+110-111=2×⎝ ⎛⎭⎪⎫1-111=2011.【答案】 201115.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.【解析】 ∵a sin A =b sin B =csin C =2R ,a =2, 又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c , ∴a 2-b 2=c 2-bc , ∴b 2+c 2-a 2=bc .∴b 2+c 2-a 22bc =bc 2bc =12=cos A , ∴A =60°.∵在△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (“=”当且仅当b =c 时取得), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3.【答案】 316.若1a <1b <0,已知下列不等式: ①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab >2; ⑤a 2>b 2;⑥2a >2b .其中正确的不等式的序号为______. 【解析】 ∵1a <1b <0, ∴b <a <0,故③错;又b <a <0,可得|a |<|b |,a 2<b 2, 故②⑤错,可证①④⑥正确. 【答案】 ①④⑥三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的取值范围;(2)问前几项的和最大,并说明理由. 【解】 (1)∵a 3=12,∴a 1=12-2d , ∵S 12>0,S 13<0, ∴⎩⎨⎧12a 1+66d >0,13a 1+78d <0, 即⎩⎨⎧24+7d >0,3+d <0, ∴-247<d <-3. (2)∵S 12>0,S 13<0, ∴⎩⎨⎧ a 1+a 12>0,a 1+a 13<0, ∴⎩⎨⎧a 6+a 7>0,a 7<0,∴a 6>0, 又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.18.(本小题满分12分)已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值. 【解】 ∵⎩⎨⎧α+β=-a ,αβ=2b ,∴⎩⎪⎨⎪⎧a =-(α+β),b =αβ2,∵0≤α≤1,1≤β≤2, ∴1≤α+β≤3,0≤αβ≤2. ∴⎩⎨⎧-3≤a ≤-1,0≤b ≤1,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如下图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.取B (-1,0),C (-3,1), 则k AB =32,k AC =12,∴12≤b -3a -1≤32.故b -3a -1的最大值是32,最小值是12. 19.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2b -c )cos A -a cos C =0.(1)求角A 的大小;(2)若a =3,试求当△ABC 的面积取最大值时,△ABC 的形状. 【导学号:05920090】【解】 (1)∵(2b -c )cos A -a cos C =0,由余弦定理得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab =0, 整理得b 2+c 2-a 2=bc , ∴cos A =b 2+c 2-a 22bc =12, ∵0<A <π, ∴A =π3.(2)由(1)得b 2+c 2-bc =3及b 2+c 2≥2bc 得bc ≤3. 当且仅当b =c =3时取等号. ∴S △ABC =12bc sin A ≤12×3×32=334. 从而当△ABC 的面积最大时,a =b =c = 3.∴当△ABC 的面积取最大值时△ABC 为等边三角形.20.(本小题满分12分)已知函数y =ax 2+2ax +1的定义域为R . (1)求a 的取值范围;(2)解关于x 的不等式x 2-x -a 2+a <0.【解】 (1)∵函数y =ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立. ①当a =0时,1≥0,不等式恒成立; ②当a ≠0时,则⎩⎨⎧a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上可知,a 的取值范围是[0,1].(2)由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0. ∵0≤a ≤1, ∴①当1-a >a ,即0≤a <12时, a <x <1-a ;②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解;③当1-a <a ,即12<a ≤1时, 1-a <x <a .综上,当0≤a <12时,原不等式的解集为(a,1-a ); 当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为(1-a ,a ).21.(本小题满分12分)若数列{a n }满足a 2n +1-a 2n =d ,其中d 为常数,则称数列{a n }为等方差数列.已知等方差数列{a n }满足a n >0,a 1=1,a 5=3.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n的前n 项和.【解】 (1)由a 21=1,a 25=9, 得a 25-a 21=4d ,∴d =2.a 2n =1+(n -1)×2=2n -1, ∵a n >0, ∴a n =2n -1.数列{a n }的通项公式为a n =2n -1. (2)a 2n ⎝ ⎛⎭⎪⎫12n =(2n -1)12n , 设S n =1·12+3·122+5·123+…+(2n -1)·12n ,① 12S n =1·122+3·123+5·124+…+(2n -1)· 12n +1,② ①-②,得12S n =12+2⎝ ⎛⎭⎪⎫122+123+…+12n -(2n -1)·12n +1 =12+2·14⎝ ⎛⎭⎪⎫1-12n -11-12-(2n -1)·12n +1, 即S n =3-2n +32n ,即数列⎩⎨⎧⎭⎬⎫a 2n ⎝ ⎛⎭⎪⎫12n 的前n 项和为3-2n +32n .22.(本小题满分12分)如图1所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60°的C 处,12时20分时测得该轮船在海岛北偏西60°的B 处,12时40分该轮船到达位于海岛正西方且距海岛5千米的E 港口,如果轮船始终匀速直线航行,则船速是多少?(结果保留根号)图1【解】 轮船从点C 到点B 用时80分钟,从点B 到点E 用时20分钟,而船始终匀速航行,由此可见,BC =4EB .设EB =x ,则BC =4x ,由已知得∠BAE =30°,在△AEC 中,由正弦定理得EC sin ∠EAC=AE sin C , 即sin C =AE sin ∠EAC EC=5sin 150°5x =12x , 在△ABC 中,由正弦定理得BC sin ∠BAC=AB sin C ,即AB=BC sin Csin 120°=4x×12xsin 120°=43=433.在△ABE中,由余弦定理得BE2=AE2+AB2-2AE·AB cos 30°=25+163-2×5×433×32=313,所以BE=313(千米).故轮船的速度为v=313÷2060=93(千米/时).。
第一章 解三角形测试一 正弦定理和余弦定理Ⅰ 学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ 基础训练题一、选择题1.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60°(B)30°(C)60°或120°(D)30°或150°2.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,cos C =-41,则c 等于( ) (A)2(B)3 (C)4 (D)53.在△ABC 中,已知32sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)512 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3(B)1∶3∶2(C)1∶4∶9(D)1∶2∶3二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若2cos B cos C =1-cos A ,则△ABC 形状是________三角形.9.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,B =60°,则c =________. 10.在△ABC 中,若tan A =2,B =45°,BC =5,则 AC =________.三、解答题11.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =4,C =60°,试解△ABC . 12.在△ABC 中,已知AB =3,BC =4,AC =13.(1)求角B 的大小;(2)若D 是BC 的中点,求中线AD 的长.13.如图,△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),求角A 的大小.14.在△ABC 中,已知BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A+B )=1.(1)求角C 的度数; (2)求AB 的长; (3)求△ABC 的面积.测试二 解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 等于( ) (A)6π (B)3π (C)32π (D)65π2.在△ABC 中,给出下列关系式: ①sin(A +B )=sin C②cos(A +B )=cos C ③2cos 2sinCB A =+ 其中正确的个数是( ) (A)0 (B)1(C)2 (D)33.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c .若a =3,sin A =32,sin(A +C )=43,则b 等于( ) (A)4(B)38(C)6(D)827 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,sin C =32,则此三角形的面积是( ) (A)8 (B)6 (C)4 (D)35.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,则此三角形的形状是( ) (A)直角三角形 (B)正三角形 (C)腰和底边不等的等腰三角形 (D)等腰直角三角形 二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,B =45°,则角A =________.7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,c =19,则角C =________.8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b =3,c =4,cos A =53,则此三角形的面积为________.9.已知△ABC 的顶点A (1,0),B (0,2),C (4,4),则cos A =________.10.已知△ABC 的三个内角A ,B ,C 满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________. 三、解答题11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =3,b =4,C =60°.(1)求c ; (2)求sin B .12.设向量a ,b 满足a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),若BD ⊥OA 于D .(1)求高线BD 的长; (2)求△OAB 的面积.14.在△ABC 中,若sin 2A +sin 2B >sin 2C ,求证:C 为锐角.(提示:利用正弦定理R CcB b A a 2sin sin sin ===,其中R 为△ABC 外接圆半径) Ⅱ 拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX 、OY 上的A 、B 两点,| OA |=3km ,| OB |=1km ,两人同时都以4km/h 的速度行走,甲沿方向,乙沿OY 方向.问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)?(2)何时两人距离最近?16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且ca bC B +-=2cos cos . (1)求角B 的值;(2)若b =13,a +c =4,求△ABC 的面积.第二章 数列测试三 数列Ⅰ 学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数.2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( ) (A)a n =4n (B)a n =4n (C)a n =94(10n-1)(D)a n =4×11n2.在有一定规律的数列0,3,8,15,24,x ,48,63,……中,x 的值是( ) (A)30 (B)35 (C)36 (D)42 3.数列{a n }满足:a 1=1,a n =a n -1+3n ,则a 4等于( ) (A)4 (B)13 (C)28 (D)43 4.156是下列哪个数列中的一项( ) (A){n 2+1} (B){n 2-1} (C){n 2+n } (D){n 2+n -1} 5.若数列{a n }的通项公式为a n =5-3n ,则数列{a n }是( ) (A)递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对 二、填空题6.数列的前5项如下,请写出各数列的一个通项公式:(1)n a ,,31,52,21,32,1 =________;(2)0,1,0,1,0,…,a n =________.7.一个数列的通项公式是a n =122+n n .(1)它的前五项依次是________; (2)0.98是其中的第________项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则a 4=________. 9.数列{a n }的通项公式为)12(3211-++++=n a n (n ∈N *),则a 3=________.10.数列{a n }的通项公式为a n =2n 2-15n +3,则它的最小项是第________项. 三、解答题11.已知数列{a n }的通项公式为a n =14-3n .(1)写出数列{a n }的前6项; (2)当n ≥5时,证明a n <0.12.在数列{a n }中,已知a n =312-+n n (n ∈N *).(1)写出a 10,a n +1,2n a ;(2)7932是否是此数列中的项?若是,是第几项? 13.已知函数xx x f 1)(-=,设a n =f (n )(n ∈N +). (1)写出数列{a n }的前4项;(2)数列{a n }是递增数列还是递减数列?为什么?测试四 等差数列Ⅰ 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题. 2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=a n -2,则a 100等于( ) (A)98 (B)-195 (C)-201 (D)-1982.数列{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2008,那么n 等于( ) (A)667 (B)668 (C)669 (D)670 3.在等差数列{a n }中,若a 7+a 9=16,a 4=1,则a 12的值是( ) (A)15 (B)30 (C)31 (D)644.在a 和b (a ≠b )之间插入n 个数,使它们与a ,b 组成等差数列,则该数列的公差为( )(A)n a b - (B)1+-n a b (C)1++n a b (D)2+-n ab 5.设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( ) (A)S 4<S 5 (B)S 4=S 5 (C)S 6<S 5 (D)S 6=S 5 二、填空题6.在等差数列{a n }中,a 2与a 6的等差中项是________.7.在等差数列{a n }中,已知a 1+a 2=5,a 3+a 4=9,那么a 5+a 6=________. 8.设等差数列{a n }的前n 项和是S n ,若S 17=102,则a 9=________.9.如果一个数列的前n 项和S n =3n 2+2n ,那么它的第n 项a n =________.10.在数列{a n }中,若a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),设{a n }的前n 项和是S n ,则S 10=________. 三、解答题11.已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.求数列{a n }的通项公式.12.等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .13.数列{a n }是等差数列,且a 1=50,d =-0.6.(1)从第几项开始a n <0;(2)写出数列的前n 项和公式S n ,并求S n 的最大值.Ⅲ 拓展训练题14.记数列{a n }的前n 项和为S n ,若3a n +1=3a n +2(n ∈N *),a 1+a 3+a 5+…+a 99=90,求S 100.测试五 等比数列Ⅰ 学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题. 2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=2a n ,则a 4等于( )(A)83 (B)24 (C)48 (D)542.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5等于( ) (A)33 (B)72 (C)84 (D)189 3.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于( )(A)4(B)23 (C)916 (D)3 4.在等比数列{a n }中,若a 2=9,a 5=243,则{a n }的前四项和为( ) (A)81 (B)120 (C)168 (D)1925.若数列{a n }满足a n =a 1q n -1(q >1),给出以下四个结论: ①{a n }是等比数列; ②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列; ④{a n }可能是递减数列. 其中正确的结论是( ) (A)①③ (B)①④ (C)②③ (D)②④ 二、填空题6.在等比数列{a n }中,a 1,a 10是方程3x 2+7x -9=0的两根,则a 4a 7=________. 7.在等比数列{a n }中,已知a 1+a 2=3,a 3+a 4=6,那么a 5+a 6=________. 8.在等比数列{a n }中,若a 5=9,q =21,则{a n }的前5项和为________. 9.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q =________. 三、解答题11.已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前n 项和为S n .(1)求数列{a n }的通项公式; (2)若S n =242,求n .12.在等比数列{a n }中,若a 2a 6=36,a 3+a 5=15,求公比q .13.已知实数a ,b ,c 成等差数列,a +1,b +1,c +4成等比数列,且a +b +c =15,求a ,b ,c .Ⅲ 拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列.a ij 表示位于第i 行第j 列的数,其中a 24=81,a 42=1,a 54=5.(2)求a ij 的计算公式.测试六 数列求和Ⅰ 学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1.已知等比数列的公比为2,且前4项的和为1,那么前8项的和等于( ) (A)15 (B)17 (C)19 (D)21 2.若数列{a n }是公差为21的等差数列,它的前100项和为145,则a 1+a 3+a 5+…+a 99的值为( ) (A)60 (B)72.5 (C)85 (D)1203.数列{a n }的通项公式a n =(-1)n -1·2n (n ∈N *),设其前n 项和为S n ,则S 100等于( ) (A)100 (B)-100 (C)200 (D)-200 4.数列⎭⎬⎫⎩⎨⎧+-)12)(12(1n n 的前n 项和为( )(A)12+n n (B)122+n n (C)24+n n (D)12+n n5.设数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2=a n +3(n =1,2,3,…),则S 100等于( ) (A)7000 (B)7250 (C)7500 (D)14950 二、填空题 6.nn +++++++++11341231121 =________.7.数列{n +n21}的前n 项和为________. 8.数列{a n }满足:a 1=1,a n +1=2a n ,则a 21+a 22+…+a 2n =________. 9.设n ∈N *,a ∈R ,则1+a +a 2+…+a n =________. 10.n n 21813412211⨯++⨯+⨯+⨯=________. 三、解答题11.在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前n 项和S n .12.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数n 都有f (1)=n 2成立.(1)求数列{a n }的通项a n ;(2)求13221111++++n n a a a a a a .13.在数列{a n }中,a 1=1,当n ≥2时,a n =12141211-++++n ,求数列的前n 项和S n .Ⅲ 拓展训练题14.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和公式.测试七 数列综合问题Ⅰ 基础训练题一、选择题1.等差数列{a n }中,a 1=1,公差d ≠0,如果a 1,a 2,a 5成等比数列,那么d 等于( ) (A)3 (B)2 (C)-2 (D)2或-2 2.等比数列{a n }中,a n >0,且a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5等于( ) (A)5 (B)10 (C)15 (D)20 3.如果a 1,a 2,a 3,…,a 8为各项都是正数的等差数列,公差d ≠0,则( ) (A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5 (C)a 1+a 8>a 4+a 5 (D)a 1a 8=a 4a 54.一给定函数y =f (x )的图象在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1>a n (n ∈N *),则该函数的图象是()5.已知数列{a n }满足a 1=0,1331+-=+n n n a a a (n ∈N *),则a 20等于( )(A)0 (B)-3 (C)3(D)23 二、填空题6.设数列{a n }的首项a 1=41,且⎪⎪⎩⎪⎪⎨⎧+=+.,,41,211为奇数为偶数n a n a a n nn 则a 2=________,a 3=________.7.已知等差数列{a n }的公差为2,前20项和等于150,那么a 2+a 4+a 6+…+a 20=________. 8.某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则a n =________.10.在数列{a n }和{b n }中,a 1=2,且对任意正整数n 等式3a n +1-a n =0成立,若b n 是a n 与a n +1的等差中项,则{b n }的前n 项和为________. 三、解答题11.数列{a n }的前n 项和记为S n ,已知a n =5S n -3(n ∈N *).(1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求a 1+a 3+…+a 2n -1的和.12.已知函数f (x )=422+x (x >0),设a 1=1,a 21+n ·f (a n )=2(n ∈N *),求数列{a n }的通项公式.13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的范围;(2)指出S 1,S 2,…,S 12中哪个值最大,并说明理由.Ⅲ 拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m . (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八 数列全章综合练习Ⅰ 基础训练题一、选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( ) (A)16 (B)20 (C)24 (D)36 2.在50和350间所有末位数是1的整数和( ) (A)5880 (B)5539 (C)5208 (D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( ) (A)0 (B)1 (C)2 (D)不能确定 4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( ) (A)-2 (B)2 (C)-4 (D)45.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( ) (A)4012 (B)4013 (C)4014 (D)4015 二、填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________. 7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________. 8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a a a a ++++=________.10.设数列{a n }是首项为1的正数数列,且(n +1)a 21+n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________. 三、解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 满足条件S n =3a n +2.(1)求证:数列{a n }成等比数列; (2)求通项公式a n .14.某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1)写出该渔船前四年每年所需的费用(不包括购买费用);(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ 拓展训练题15.已知函数f (x )=412-x (x <-2),数列{a n }满足a 1=1,a n =f (-11+n a )(n ∈N *).(1)求a n ;(2)设b n =a 21+n +a 22+n +…+a 212+n ,是否存在最小正整数m ,使对任意n ∈N *有b n <25m成立?若存在,求出m 的值,若不存在,请说明理由.16.已知f 是直角坐标系平面xOy 到自身的一个映射,点P 在映射f 下的象为点Q ,记作Q=f (P ).设P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点P n (x n ,y n )(n ∈N *)都在这个圆内或圆上,那么称这个圆为点P n (x n ,y n )的一个收敛圆.特别地,当P 1=f (P 1)时,则称点P 1为映射f 下的不动点.若点P (x ,y )在映射f 下的象为点Q (-x +1,21y ). (1)求映射f 下不动点的坐标;(2)若P 1的坐标为(2,2),求证:点P n (x n ,y n )(n ∈N *)存在一个半径为2的收敛圆.第三章 不等式测试九 不等式的概念与性质Ⅰ 学习目标1.了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小.2.理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题1.设a ,b ,c ∈R ,则下列命题为真命题的是( ) (A)a >b ⇒a -c >b -c (B)a >b ⇒ac >bc (C)a >b ⇒a 2>b 2 (D)a >b ⇒ac 2>bc 2 2.若-1<α<β<1,则α-β 的取值范围是( ) (A)(-2,2) (B)(-2,-1) (C)(-1,0) (D)(-2,0) 3.设a >2,b >2,则ab 与a +b 的大小关系是( ) (A)ab >a +b (B)ab <a +b (C)ab =a +b (D)不能确定4.使不等式a >b 和ba 11>同时成立的条件是( ) (A)a >b >0 (B)a >0>b (C)b >a >0 (D)b >0>a 5.设1<x <10,则下列不等关系正确的是( ) (A)lg 2x >lg x 2>lg(lg x ) (B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x ) (D)lg x 2>lg(lg x )>lg 2x 二、填空题6.已知a <b <0,c <0,在下列空白处填上适当不等号或等号: (1)(a -2)c ________(b -2)c ; (2)a c ________bc; (3)b -a ________|a |-|b |. 7.已知a <0,-1<b <0,那么a 、ab 、ab 2按从小到大排列为________.8.已知60<a <84,28<b <33,则a -b 的取值范围是________;ba的取值范围是________. 9.已知a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③cbc a >;④a -c >b -c .以其中一个论断作条件,另一个论断作结论,写出你认为正确的两个命题是________⇒________;________⇒________.(在“⇒”的两侧填上论断序号).10.设a >0,0<b <1,则P =23+a b 与)2)(1(++=a a bQ 的大小关系是________.三、解答题11.若a >b >0,m >0,判断a b 与ma mb ++的大小关系并加以证明.12.设a >0,b >0,且a ≠b ,b a q a b ba p +=+=,22.证明:p >q .注:解题时可参考公式x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知a >0,且a ≠1,设M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较a 5和b 5的大小.测试十 均值不等式Ⅰ 学习目标1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.Ⅱ 基础训练题一、选择题1.已知正数a ,b 满足a +b =1,则ab ( )(A)有最小值41 (B)有最小值21 (C)有最大值41 (D)有最大值21 2.若a >0,b >0,且a ≠b ,则( ) (A)2222b a ab ba +<<+ (B)2222b a ba ab +<+< (C)2222ba b a ab +<+<(D)2222ba ab b a +<<+ 3.若矩形的面积为a 2(a >0),则其周长的最小值为( )(A)a (B)2a (C)3a(D)4a4.设a ,b ∈R ,且2a +b -2=0,则4a +2b 的最小值是( ) (A)22(B)4(C)24(D)85.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( ) (A)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (B)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (C)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 (D)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 二、填空题6.若x >0,则变量xx 9+的最小值是________;取到最小值时,x =________. 7.函数y =142+x x(x >0)的最大值是________;取到最大值时,x =________. 8.已知a <0,则316-+a a 的最大值是________. 9.函数f (x )=2log 2(x +2)-log 2x 的最小值是________.10.已知a ,b ,c ∈R ,a +b +c =3,且a ,b ,c 成等比数列,则b 的取值范围是________. 三、解答题 11.四个互不相等的正数a ,b ,c ,d 成等比数列,判断2da +和bc 的大小关系并加以证明.12.已知a >0,a ≠1,t >0,试比较21log a t 与21log +t a 的大小.Ⅲ 拓展训练题13.若正数x ,y 满足x +y =1,且不等式a y x ≤+恒成立,求a 的取值范围. 14.(1)用函数单调性的定义讨论函数f (x )=x +xa(a >0)在(0,+∞)上的单调性; (2)设函数f (x )=x +xa(a >0)在(0,2]上的最小值为g (a ),求g (a )的解析式. 测试十一 一元二次不等式及其解法Ⅰ 学习目标1.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系. 2.会解简单的一元二次不等式.Ⅱ 基础训练题一、选择题1.不等式5x +4>-x 2的解集是( ) (A){x |x >-1,或x <-4} (B){x |-4<x <-1} (C){x |x >4,或x <1}(D){x |1<x <4}2.不等式-x 2+x -2>0的解集是( ) (A){x |x >1,或x <-2}(B){x |-2<x <1} (C)R(D)∅3.不等式x 2>a 2(a <0)的解集为( ) (A){x |x >±a }(B){x |-a <x <a } (C){x |x >-a ,或x <a }(D){x |x >a ,或x <-a } 4.已知不等式ax 2+bx +c >0的解集为}231|{<<-x x ,则不等式cx 2+bx +a <0的解集是( )(A){x |-3<x <21} (B){x |x <-3,或x >21} (C){x -2<x <31}(D){x |x <-2,或x >31}5.若函数y =px 2-px -1(p ∈R )的图象永远在x 轴的下方,则p 的取值范围是( ) (A)(-∞,0) (B)(-4,0] (C)(-∞,-4) (D)[-4,0) 二、填空题6.不等式x 2+x -12<0的解集是________. 7.不等式05213≤+-x x 的解集是________.8.不等式|x 2-1|<1的解集是________. 9.不等式0<x 2-3x <4的解集是________. 10.已知关于x 的不等式x 2-(a +a 1)x +1<0的解集为非空集合{x |a <x <a1},则实数a 的取值范围是________.三、解答题11.求不等式x 2-2ax -3a 2<0(a ∈R )的解集.12.k 在什么范围内取值时,方程组⎩⎨⎧=+-=-+0430222k y x x y x 有两组不同的实数解?Ⅲ 拓展训练题13.已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1)求实数a 的取值范围,使C ⊇(A ∩B );(2)求实数a 的取值范围,使C ⊇(U A )∩(U B ).14.设a ∈R ,解关于x 的不等式ax 2-2x +1<0.测试十二 不等式的实际应用Ⅰ 学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ 基础训练题一、选择题 1.函数241xy -=的定义域是( )(A){x |-2<x <2}(B){x |-2≤x ≤2} (C){x |x >2,或x <-2}(D){x |x ≥2,或x ≤-2}2.某村办服装厂生产某种风衣,月销售量x (件)与售价p (元/件)的关系为p =300-2x ,生产x 件的成本r =500+30x (元),为使月获利不少于8600元,则月产量x 满足( ) (A)55≤x ≤60 (B)60≤x ≤65 (C)65≤x ≤70 (D)70≤x ≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112万元,那么r 的取值范围为( ) (A)2≤r ≤10 (B)8≤r ≤10 (C)2≤r ≤8 (D)0≤r ≤84.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( ) (A)2∈M ,0∈M (B)2∉M ,0∉M (C)2∈M ,0∉M (D)2∉M ,0∈M 二、填空题5.已知矩形的周长为36cm ,则其面积的最大值为________.6.不等式2x 2+ax +2>0的解集是R ,则实数a 的取值范围是________. 7.已知函数f (x )=x |x -2|,则不等式f (x )<3的解集为________.8.若不等式|x +1|≥kx 对任意x ∈R 均成立,则k 的取值范围是________. 三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h 的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m ,乙车的刹车距离略超过10m .已知甲乙两种车型的刹车距离s (km)与车速x (km/h)之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.问交通事故的主要责任方是谁?Ⅲ 拓展训练题11.当x ∈[-1,3]时,不等式-x 2+2x +a >0恒成立,求实数a 的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm 的空白,上下留有都为6cm 的空白,中间排版面积为2400cm 2.如何选择纸张的尺寸,才能使纸的用量最小?测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题1.已知点A (2,0),B (-1,3)及直线l :x -2y =0,那么( ) (A)A ,B 都在l 上方 (B)A ,B 都在l 下方 (C)A 在l 上方,B 在l 下方 (D)A 在l 下方,B 在l 上方 2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤+≥≥2,0,0y x y x 所表示的平面区域的面积为( )(A)1 (B)2 (C)3 (D)43.三条直线y =x ,y =-x ,y =2围成一个三角形区域,表示该区域的不等式组是( )(A)⎪⎩⎪⎨⎧≤-≥≥.2,,y x y x y(B)⎪⎩⎪⎨⎧≤-≤≤.2,,y x y x y(C)⎪⎩⎪⎨⎧≤-≥≤.2,,y x y x y(D)⎪⎩⎪⎨⎧≤-≤≥.2,,y x y x y4.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-,3,0,05x y x y x 则z =2x +4y 的最小值是( )(A)-6 (B)-10 (C)5 (D)105.某电脑用户计划使用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( ) (A)5种 (B)6种 (C)7种 (D)8种 二、填空题6.在平面直角坐标系中,不等式组⎩⎨⎧<>00y x 所表示的平面区域内的点位于第________象限.7.若不等式|2x +y +m |<3表示的平面区域包含原点和点(-1,1),则m 的取值范围是________. 8.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,033,3,1y x y x 那么z =x -y 的取值范围是________.9.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,022,2,1y x y x 那么x y 的取值范围是________.10.方程|x |+|y |≤1所确定的曲线围成封闭图形的面积是________. 三、解答题11.画出下列不等式(组)表示的平面区域:(1)3x +2y +6>0 (2)⎪⎩⎪⎨⎧≥+--≥≤.01,2,1y x y x12.某实验室需购某种化工原料106kg ,现在市场上该原料有两种包装,一种是每袋35kg ,价格为140元;另一种是每袋24kg ,价格为120元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13.商店现有75公斤奶糖和120公斤硬糖,准备混合在一起装成每袋1公斤出售,有两种混合办法:第一种每袋装250克奶糖和750克硬糖,每袋可盈利0.5元;第二种每袋装500克奶糖和500克硬糖,每袋可盈利0.9元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向A ,B 两镇运送大米,已知甲库可调出100吨,乙库可调出80吨,而A 镇需大米70吨,B 镇需大米110吨,两个粮库到两镇的路程和运费如下表:问:(1)这两个粮库各运往A 、B 两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题1.设a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( ) (A)ac 2>bc 2(B)ba 11< (C)a -c >b -c (D)|a |>|b |2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≥+-≤-+2,042,04y y x y x 表示的平面区域的面积是( )(A)23 (B)3 (C)4 (D)6 3.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m ,则这个矩形的面积最大值是( ) (A)50m 2 (B)100m 2 (C)200m 2 (D)250m 2 4.设函数f (x )=222x x x +-,若对x >0恒有xf (x )+a >0成立,则实数a 的取值范围是( )(A)a <1-22(B)a <22-1(C)a >22-1(D)a >1-22 5.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0,则( ) (A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题6.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,ba 的取值范围是________. 7.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________.8.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 9.若函数f (x )=1222--⋅+aax x的定义域为R ,则a 的取值范围为________.10.三个同学对问题“关于x 的不等式x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数a的取值范围”提出各自的解题思路. 甲说:“只须不等式左边的最小值不小于右边的最大值.”乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于x 的函数,作出函数图象.” 参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是________. 三、解答题11.已知全集U =R ,集合A ={x | |x -1|<6},B ={x |128--x x >0}. (1)求A ∩B ; (2)求(U A )∪B .12.某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题13.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与ij a a 两数中至少有一个属于A .(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由; (2)证明:a 1=1,且n nna a a a a a a =++++++---1121121 .测试十五 必修5模块自我检测题一、选择题1.函数42-=x y 的定义域是( )(A)(-2,2) (B)(-∞,-2)∪(2,+∞) (C)[-2,2] (D)(-∞,-2]∪[2,+∞) 2.设a >b >0,则下列不等式中一定成立的是( ) (A)a -b <0 (B)0<ba<1 (C)ab <2ba +(D)ab >a +b3.设不等式组⎪⎩⎪⎨⎧≥-≥≤0,0,1y x y x 所表示的平面区域是W ,则下列各点中,在区域W 内的点是( )(A))31,21((B))31,21(-(C))31,21(-- (D))31,21(-4.设等比数列{a n }的前n 项和为S n ,则下列不等式中一定成立的是( ) (A)a 1+a 3>0 (B)a 1a 3>0 (C)S 1+S 3<0 (D)S 1S 3<05.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( ) (A)1∶3∶2(B)1∶2∶3(C)2∶3∶1(D)3∶2∶16.已知等差数列{a n }的前20项和S 20=340,则a 6+a 9+a 11+a 16等于( ) (A)31 (B)34 (C)68 (D)70 7.已知正数x 、y 满足x +y =4,则log 2x +log 2y 的最大值是( ) (A)-4 (B)4 (C)-2 (D)28.如图,在限速为90km/h 的公路AB 旁有一测速站P ,已知点P 距测速区起点A 的距离为0.08 km ,距测速区终点B 的距离为0.05 km ,且∠APB =60°.现测得某辆汽车从A 点行驶到B 点所用的时间为3s ,则此车的速度介于()(A)60~70km/h (B)70~80km/h (C)80~90km/h (D)90~100km/h 二、填空题9.不等式x (x -1)<2的解集为________.10.在△ABC 中,三个内角A ,B ,C 成等差数列,则cos(A +C )的值为________. 11.已知{a n }是公差为-2的等差数列,其前5项的和S 5=0,那么a 1等于________.12.在△ABC 中,BC =1,角C =120°,cos A =32,则AB =________. 13.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤-+≤-+≥≥030420,0y x y x y x ,所表示的平面区域的面积是________;变量z =x +3y 的最大值是________.14.如图,n 2(n ≥4)个正数排成n 行n 列方阵,符号a ij (1≤i ≤n ,1≤j ≤n ,i ,j ∈N )表示位于第i 行第j 列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q .若a 11=21,a 24=1,a 32=41,则q =________;a ij =________.三、解答题15.已知函数f (x )=x 2+ax +6.(1)当a =5时,解不等式f (x )<0;(2)若不等式f (x )>0的解集为R ,求实数a 的取值范围.16.已知{a n }是等差数列,a 2=5,a 5=14.(1)求{a n }的通项公式;(2)设{a n }的前n 项和S n =155,求n 的值.17.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,A ,B 是锐角,c =10,且34c o s c o s ==a b B A . (1)证明角C =90°;(2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配给该厂的煤至多56吨,供电至多45千瓦,问该厂如何安排生产,19.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos A =31.(1)求A CB 2cos 2sin 2++的值; (2)若a =3,求bc 的最大值.20.数列{a n }的前n 项和是S n ,a 1=5,且a n =S n -1(n =2,3,4,…).(1)求数列{a n }的通项公式;(2)求证:⋅<++++531111321n a a a a参考答案第一章 解三角形测试一 正弦定理和余弦定理一、选择题1.B 2.C 3.B 4.D 5.B 提示:4.由正弦定理,得sin C =23,所以C =60°或C =120°, 当C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形. 5.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°,由正弦定理CcB b A a sin sin sin ===k , 得a =k ·sin30°=21k ,b =k ·sin60°=23k ,c =k ·sin90°=k ,所以a ∶b ∶c =1∶3∶2. 二、填空题6.362 7.30° 8.等腰三角形 9.2373+ 10.425 提示:8.∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1, ∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即B =C . 9.利用余弦定理b 2=a 2+c 2-2ac cos B . 10.由tan A =2,得52sin =A ,根据正弦定理,得ABC B AC sin sin =,得AC =425. 三、解答题11.c =23,A =30°,B =90°. 12.(1)60°;(2)AD =7. 13.如右图,由两点间距离公式,得OA =29)02()05(22=-+-,同理得232,145==AB OB .由余弦定理,得cos A =222222=⨯⨯-+AB OA OB AB OA , ∴A =45°.14.(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°.(2)由题意,得a +b =23,ab =2,又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C=12-4-4×(21-)=10. 所以AB =10. (3)S △ABC =21ab sin C =21·2·23=23.测试二 解三角形全章综合练习1.B 2.C 3.D 4.C 5.B 提示:5.化简(a +b +c )(b +c -a )=3bc ,得b 2+c 2-a 2=bc , 由余弦定理,得cos A =212222=-+bc a c b ,所以∠A =60°.因为sin A =2sin B cos C ,A +B +C =180°, 所以sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C . 所以sin(B -C )=0,故B =C . 故△ABC 是正三角形. 二、填空题6.30° 7.120° 8.524 9.55 10.3三、解答题11.(1)由余弦定理,得c =13;(2)由正弦定理,得sin B =13392. 12.(1)由a ·b =|a |·|b |·cos 〈a ,b 〉,得〈a ,b 〉=60°;(2)由向量减法几何意义,知|a |,|b |,|a -b |可以组成三角形,所以|a -b |2=|a |2+|b |2-2|a |·|b |·cos 〈a ,b 〉=7,故|a -b |=7.13.(1)如右图,由两点间距离公式,得29)02()05(22=-+-=OA , 同理得232,145==AB OB . 由余弦定理,得,222cos 222=⨯⨯-+=AB OA OB AB OA A所以A =45°.故BD =AB ×sin A =229.(2)S △OAB =21·OA ·BD =21·29·229=29. 14.由正弦定理R CcB b A a 2sin sin sin ===,得C Rc B R b A R a sin 2,sin 2,sin 2===. 因为sin 2A +sin 2B >sin 2C ,所以222)2()2()2(R cR b R a >+, 即a 2+b 2>c 2. 所以cos C =abc b a 2222-+>0, 由C ∈(0,π),得角C 为锐角.15.(1)设t 小时后甲、乙分别到达P 、Q 点,如图,则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以t =43h 时,P 与O 重合. 故当t ∈[0,43]时, |PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°; 当t >43h 时,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°. 故得|PQ |=724482+-t t (t ≥0).(2)当t =h 4148224=⨯--时,两人距离最近,最近距离为2km . 16.(1)由正弦定理R CcB b A a 2sin sin sin ===, 得a =2R sin A ,b =2R sin B ,c =2R sinC . 所以等式c a b C B +-=2cos cos 可化为CR A R BR C B sin 2sin 22sin 2cos cos +⋅-=, 即CA BC B sin sin 2sin cos cos +-=, 2sin A cos B +sin C cos B =-cos C ·sin B ,故2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为A +B +C =π,所以sin A =sin(B +C ), 故cos B =-21, 所以B =120°.(2)由余弦定理,得b 2=13=a 2+c 2-2ac ×cos120°, 即a 2+c 2+ac =13 又a +c =4, 解得⎩⎨⎧==31c a ,或⎩⎨⎧==13c a .所以S △ABC =21ac sin B =21×1×3×23=433.第二章 数列测试三 数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)12+=n a n (或其他符合要求的答案) (2)2)1(1n n a -+=(或其他符合要求的答案)7.(1)2625,1716,109,54,21 (2)7 8.67 9.151 10.4提示:9.注意a n 的分母是1+2+3+4+5=15.10.将数列{a n }的通项a n 看成函数f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前6项依次是11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当n ≥5时,a n =14-3n <0.12.(1)31,313,31092421102-+=++==+n n a n n a a n n ;(2)7932是该数列的第15项. 13.(1)因为a n =n -n1,所以a 1=0,a 2=23,a 3=38,a 4=415;(2)因为a n +1-a n =[(n +1)11+-n ]-(n -n1)=1+)1(1+n n又因为n ∈N +,所以a n +1-a n >0,即a n +1>a n .所以数列{a n }是递增数列.测试四 等差数列一、选择题1.B 2.D 3.A 4.B 5.B 二、填空题6.a 4 7.13 8.6 9.6n -1 10.35 提示:10.方法一:求出前10项,再求和即可;方法二:当n 为奇数时,由题意,得a n +2-a n =0,所以a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当n 为偶数时,由题意,得a n +2-a n =2,即a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *). 所以数列{a 2m }是等差数列.故S 10=5a 1+5a 2+2)15(5-⨯×2=35. 三、解答题11.设等差数列{a n }的公差是d ,依题意得⎪⎩⎪⎨⎧=⨯+=+.242344,7211d a d a 解得⎩⎨⎧==.2,31d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. 12.(1)设等差数列{a n }的公差是d ,依题意得⎩⎨⎧=+=+.5019,30911d a d a 解得⎩⎨⎧==.2,121d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +10.(2)数列{a n }的前n 项和S n =n ×12+2)1(-⨯n n ×2=n 2+11n , ∴S n =n 2+11n =242,解得n =11,或n =-22(舍).13.(1)通项a n =a 1+(n -1)d =50+(n -1)×(-0.6)=-0.6n +50.6.解不等式-0.6n +50.6<0,得n >84.3. 因为n ∈N *,所以从第85项开始a n <0.(2)S n =na 1+2)1(-n n d =50n +2)1(-n n ×(-0.6)=-0.3n 2+50.3n .由(1)知:数列{a n }的前84项为正值,从第85项起为负值, 所以(S n )max =S 84=-0.3×842+50.3×84=2108.4.。