山西省新绛县二中2017-2018学年高一上学期期末考试数学试卷(扫描版)
- 格式:doc
- 大小:1.61 MB
- 文档页数:4
新绛县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是()A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到2. 某三棱锥的三视图如图所示,该三棱锥的体积是( )A . 2B .4C .D .3438【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.3. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3) 4. 已知集合M={x|x 2<1},N={x|x >0},则M ∩N=()A .∅B .{x|x >0}C .{x|x <1}D .{x|0<x <1}可.5. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=()A .2B .4C .D .6.已知α∈(0,π),且sinα+cosα=,则tanα=()A.B.C.D.7.执行如图的程序框图,则输出S的值为()A.2016B.2C.D.﹣18.若偶函数y=f(x),x∈R,满足f(x+2)=﹣f(x),且x∈[0,2]时,f(x)=1﹣x,则方程f(x)=log8|x|在[﹣10,10]内的根的个数为()A.12B.10C.9D.89.设全集U=M∪N=﹛1,2,3,4,5﹜,M∩∁U N=﹛2,4﹜,则N=()A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}10.=()A.﹣i B.iC.1+i D.1﹣i11.已知f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,则f(x)g(x)>0的解集为()A.(﹣,﹣a2)∪(a2,)B.(﹣,a2)∪(﹣a2,)C.(﹣,﹣a2)∪(a2,b)D.(﹣b,﹣a2)∪(a2,)12.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是()A.B.C.D.二、填空题13.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 . 14.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)15.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程+=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为 .16.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .17.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .18.如图,在棱长为的正方体中,点分别是棱的中点,是侧1111D ABC A B C D -,E F 1,BC CC P 面内一点,若平行于平面,则线段长度的取值范围是_________.11BCC B 1AP AEF 1A P三、解答题19.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点.(1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.20.已知p :2x 2﹣3x+1≤0,q :x 2﹣(2a+1)x+a (a+1)≤0(1)若a=,且p ∧q 为真,求实数x 的取值范围.(2)若p 是q 的充分不必要条件,求实数a 的取值范围. 21.(本小题满分12分)某校高二奥赛班名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生N 数有21人.(1)求总人数和分数在110-115分的人数;N (2)现准备从分数在110-115的名学生(女生占)中任选3人,求其中恰好含有一名女生的概率;13(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩进行分析,下面是该生7次考试的成绩.y 数学888311792108100112物理949110896104101106已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理y 成绩大约是多少?附:对于一组数据,……,其回归线的斜率和截距的最小二乘估计分11(,)u v 22(,)u v (,)n n u v v u αβ=+别为:,.^121()()()niii nii u u v v u u β==--=-∑∑^^a v u β=-22.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该[10,60]旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分[10,20),[20,30),[30,40),[40,50),[50,60]别记为,其频率分布直方图如下图所示.,,,,A B C DE(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;(Ⅱ)该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中,,C D E 6随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率.C 23.已知函数f (x )=xlnx ,求函数f (x )的最小值.24.对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足:①f (x )在[m ,n]内是单调函数;②当定义域是[m ,n]时,f (x )的值域也是[m ,n].则称[m ,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f (x )=x 2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a ∈R ,a ≠0)有“和谐区间”[m ,n],当a 变化时,求出n ﹣m 的最大值. 新绛县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.2.【答案】B3.【答案】B【解析】解:∵集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则a>3,故选:B.【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.4.【答案】D【解析】解:由已知M={x|﹣1<x<1},N={x|x>0},则M∩N={x|0<x<1},故选D.【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,5.【答案】C【解析】解:由于q=2,∴∴;故选:C.6.【答案】D【解析】解:将sinα+cosα=①两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=﹣<0,∵0<α<π,∴<α<π,∴sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②解得:sinα=,cosα=﹣,则tanα=﹣.故选:D.7.【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k<2016,s=﹣1,k=1满足条件k<2016,s=,k=2满足条件k<2016,s=2.k=3满足条件k<2016,s=﹣1,k=4满足条件k<2016,s=,k=5…观察规律可知,s的取值以3为周期,由2015=3*671+2,有满足条件k<2016,s=2,k=2016不满足条件k<2016,退出循环,输出s的值为2.故选:B.【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查.8.【答案】D【解析】解:∵函数y=f(x)为偶函数,且满足f(x+2)=﹣f(x),∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),∴偶函数y=f(x)为周期为4的函数,由x∈[0,2]时,f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,故选:D.9.【答案】B【解析】解:∵全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,∴集合M,N对应的韦恩图为所以N={1,3,5}故选B10.【答案】B【解析】解:===i.故选:B.【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.11.【答案】A【解析】解:∵f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,∴f(x)<0的解集为(﹣b,﹣a2),g(x)<0的解集为(﹣,﹣),则不等式f(x)g(x)>0等价为或,即a2<x<或﹣<x<﹣a2,故不等式的解集为(﹣,﹣a2)∪(a2,),故选:A.【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)<0和g(x)<0的解集是解决本题的关键.12.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.二、填空题13.【答案】 (﹣1,﹣]∪[,) .【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(﹣1,﹣]∪[,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.14.【答案】 (4) 【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.15.【答案】 [,] .【解析】解:由m2﹣7am+12a2<0(a>0),则3a<m<4a即命题p:3a<m<4a,实数m满足方程+=1表示的焦点在y轴上的椭圆,则,,解得1<m<2,若p是q的充分不必要条件,则,解得,故答案为[,].【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p,q 的等价条件是解决本题的关键.16.【答案】 ﹣6 .【解析】解:由约束条件,得可行域如图,使目标函数z=2x﹣3y取得最小值的最优解为A(3,4),∴目标函数z=2x﹣3y的最小值为z=2×3﹣3×4=﹣6.故答案为:﹣6.17.【答案】 .【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,∴由斜截式可得直线l的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.18.【答案】【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.三、解答题或;(2)1m=.19.【答案】(1){}<<≤a a a125【解析】(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题.若p 为真命题,为假命题,则2115a a a a ≤⎧⇒<⎨<>⎩或.………………………………5分若为真命题,p 为假命题,则22515a a a >⎧⇒<≤⎨≤≤⎩.……………………………………6分于是,实数的取值范围为{}125a a a <<≤或.……………………………………7分考点:1、不等式;2、函数的极值点;3、命题的真假;4、充要条件.20.【答案】【解析】解:p:,q:a≤x≤a+1;∴(1)若a=,则q:;∵p∧q为真,∴p,q都为真;∴,∴;∴实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;∴,∴;∴实数a的取值范围为.【点评】考查解一元二次不等式,p∧q真假和p,q真假的关系,以及充分不必要条件的概念. 21.【答案】(1),;(2);(3).60N =6n =815P =115【解析】试题解析:(1)分数在100-110内的学生的频率为,所以该班总人数为,1(0.040.03)50.35P =+⨯=21600.35N ==分数在110-115内的学生的频率为,分数在110-11521(0.010.040.050.040.030.01)50.1P =-+++++⨯=内的人数.600.16n =⨯=(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为,女生为,从61234,,,A A A A 12,B B 名学生中选出3人的基本事件为:,,,,,,,12(,)A A 13(,)A A 14(,)A A 11(,)A B 12(,)A B 23(,)A A 24(,)A A ,,,,,,,共15个.21(,)A B 22(,)A B 34(,)A A 31(,)A B 32(,)A B 41(,)A B 42(,)A B 12(,)B B 其中恰 好含有一名女生的基本事件为,,,,,,11(,)A B 12(,)A B 22(,)A B 21(,)A B 31(,)A B 32(,)A B ,,共8个,所以所求的概率为.41(,)A B 42(,)A B 815P =(3);12171788121001007x --+-++=+=;69844161001007y --+-+++=+=由于与之间具有线性相关关系,根据回归系数公式得到y ,,^4970.5994b ==^1000.510050a =-⨯=∴线性回归方程为,0.550y x =+∴当时,.1130x =115y =考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,一定要将题目中所给数据与公式中的相对应,再进一步求解.在求解过程中,由,a b ,,a b c 于的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为 ,a b 常数项为这与一次函数的习惯表示不同.,b22.【答案】【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.23.【答案】【解析】解:函数的定义域为(0,+∞)求导函数,可得f′(x)=1+lnx令f′(x)=1+lnx=0,可得∴0<x<时,f′(x)<0,x>时,f′(x)>0∴时,函数取得极小值,也是函数的最小值∴f(x)min===﹣.【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题.24.【答案】【解析】解:(1)∵y=x2在区间[0,1]上单调递增.又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值。
新绛县高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列各组表示同一函数的是( )A .y=与y=()2B .y=lgx 2与y=2lgxC .y=1+与y=1+D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )2. 已知函数()e sin x f x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用. 3. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.4. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 25. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A .1+B .4-C .5-D .3+6. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部7. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 8. 不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1}9. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =+的零点个数为( )A .1B .2C .3D .410.已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D .11.已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )A .p ⌝是真命题B .q ⌝是真命题C .p q ∨是真命题D .()()p q ⌝∨⌝是真命题 12.如图,程序框图的运算结果为( )A .6B .24C .20D .120二、填空题13.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称;③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0). 正确命题的个数是 .14.【泰州中学2018届高三10月月考】设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是15.已知函数f (x )=x m 过点(2,),则m= .16.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ; ②若AC ⊥BD ,则四边形EFGH 是 .17.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .18.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .三、解答题19.(本小题满分12分)如图四棱柱ABCD -A 1B 1C 1D 1的底面为菱形,AA 1⊥底面ABCD ,M 为A 1A 的中点,AB =BD =2,且△BMC 1为等腰三角形.(1)求证:BD ⊥MC 1;(2)求四棱柱ABCD -A 1B 1C 1D 1的体积.20.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.21.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.22.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.23.已知数列{a n}是各项均为正数的等比数列,满足a3=8,a3﹣a2﹣2a1=0.(Ⅰ)求数列{a n}的通项公式(Ⅱ)记b n=log2a n,求数列{a n•b n}的前n项和S n.24.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.新绛县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:A .y=|x|,定义域为R ,y=()2=x ,定义域为{x|x ≥0},定义域不同,不能表示同一函数.B .y=lgx 2,的定义域为{x|x ≠0},y=2lgx 的定义域为{x|x >0},所以两个函数的定义域不同,所以不能表示同一函数.C .两个函数的定义域都为{x|x ≠0},对应法则相同,能表示同一函数.D .两个函数的定义域不同,不能表示同一函数.故选:C .【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.2. 【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c o s 0xh x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上所述:k 的取值范围为(,1]-∞,故选B .3. 【答案】C 【解析】考点:几何体的结构特征. 4. 【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R ,R=,S=4πR 2=12π故选B5. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m --=,解得4a =,所以212AF m ⎛⎫=- ⎪ ⎪⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方] 6. 【答案】C【解析】解:按照结构图的表示一目了然, 就是总工程师、专家办公室和开发部. 读结构图的顺序是按照从上到下,从左到右的顺序.故选C .【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读.7. 【答案】A 【解析】考点:1、集合的表示方法;2、集合的补集及交集. 8. 【答案】B【解析】解:∵x (x ﹣1)<2, ∴x 2﹣x ﹣2<0,即(x ﹣2)(x+1)<0, ∴﹣1<x <2,即不等式的解集为{x|﹣1<x <2}. 故选:B9. 【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.10.【答案】D【解析】解:∵ =(1,1,0),=(﹣1,0,2),∴k +=k (1,1,0)+(﹣1,0,2)=(k ﹣1,k ,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k +与2﹣互相垂直,∴3(k ﹣1)+2k ﹣4=0,解得:k=.故选:D .【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.11.【答案】C 【解析】]试题分析:由p q ∧为真命题得,p q 都是真命题.所以p ⌝是假命题;q ⌝是假命题;p q ∨是真命题;()()p q ⌝∨⌝是假命题.故选C.考点:命题真假判断. 12.【答案】 B【解析】解:∵循环体中S=S ×n 可知程序的功能是: 计算并输出循环变量n 的累乘值,∵循环变量n 的初值为1,终值为4,累乘器S 的初值为1, 故输出S=1×2×3×4=24, 故选:B .【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.二、填空题13.【答案】 3个 .【解析】解:∵定义在(﹣∞,+∞)上的偶函数f (x ),∴f (x )=f (﹣x );∵f (x+1)=﹣f (x ),∴f (x+1)=﹣f (x ),∴f (x+2)=﹣f (x+1)=f (x ),f (﹣x+1)=﹣f (x ) 即f (x+2)=f (x ),f (﹣x+1)=f (x+1),周期为2,对称轴为x=1 所以①②⑤正确, 故答案为:3个14.【答案】【解析】试题分析:设,由题设可知存在唯一的整数0x ,使得在直线的下方.因为,故当时,,函数单调递减;当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案3,12e ⎡⎫⎪⎢⎣⎭. 考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得. 15.【答案】 ﹣1 .【解析】解:将(2,)代入函数f (x )得: =2m ,解得:m=﹣1; 故答案为:﹣1.【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.16.【答案】 菱形 ; 矩形 .【解析】解:如图所示:①∵EF ∥AC ,GH ∥AC 且EF=AC ,GH=AC∴四边形EFGH 是平行四边形又∵AC=BD ∴EF=FG∴四边形EFGH 是菱形.②由①知四边形EFGH 是平行四边形 又∵AC ⊥BD , ∴EF ⊥FG∴四边形EFGH 是矩形. 故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.17.【答案】()0,2x π∃∈,sin 1≥【解析】试题分析:“(0,)2x π∀∈,sin 1x <”的否定是()0,2x π∃∈,sin 1≥ 考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.18.【答案】 [1,)∪(9,25] .【解析】解:∵集合,得 (ax ﹣5)(x 2﹣a )<0,当a=0时,显然不成立, 当a >0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.三、解答题19.【答案】【解析】解:(1)证明:如图,连接AC,设AC与BD的交点为E,∵四边形ABCD为菱形,∴BD⊥AC,又AA1⊥平面ABCD,BD⊂平面ABCD,∴A1A⊥BD;又A1A∩AC=A,∴BD⊥平面A1ACC1,又MC1⊂平面A1ACC1,∴BD⊥MC1.(2)∵AB=BD=2,且四边形ABCD是菱形,∴AC=2AE=2AB2-BE2=23,又△BMC1为等腰三角形,且M为A1A的中点,∴BM是最短边,即C1B=C1M.则有BC2+C1C2=AC2+A1M2,即4+C 1C 2=12+(C 1C 2)2,解得C 1C =463,所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C=12AC ×BD ×C 1C =12×23×2×463=8 2. 即四棱柱ABCD -A 1B 1C 1D 1的体积为8 2. 20.【答案】(1)1,14b c ==;(2)答案见解析;(3)当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点. 【解析】试题分析:(1)由题意得到关于实数b ,c 的方程组,求解方程组可得1,14b c ==; (3)函数()g x 的导函数()()2132444g x x a x a ⎛⎫=+--+ ⎪⎝⎭',结合导函数的性质可得当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.试题解析:(1)由题意()()01{ 440f c f b c =+=-+=,解得1{ 41b c ==;(2)由(1)可知()()324f x x a x =+--1414a x ⎛⎫++ ⎪⎝⎭, ∴()()2132444f x x a x a ⎛⎫=+--+⎪⎝⎭'; 假设存在0x 满足题意,则()()2000132444f x x a x a ⎛⎫=+--+⎪⎝⎭'是一个与a 无关的定值, 即()2000124384x a x x -+--是一个与a 无关的定值, 则0240x -=,即02x =,平行直线的斜率为()1724k f ==-'; (3)()()()324g x f x a x a x =+=+-1414a x a ⎛⎫-+++ ⎪⎝⎭,∴()()2132444g x x a x a ⎛⎫=+--+⎪⎝⎭', 其中()21441244a a ⎛⎫∆=-++= ⎪⎝⎭()224166742510a a a ++=++>,设()0g x '=两根为1x 和()212x x x <,考察()g x 在R 上的单调性,如下表1°当0a >时,()010g a =+>,()40g a =>,而()152302g a =--<, ∴()g x 在()0,2和()2,4上各有一个零点,即()g x 在()0,4有两个零点; 2°当0a =时,()010g =>,()40g a ==,而()15202g =-<, ∴()g x 仅在()0,2上有一个零点,即()g x 在()0,4有一个零点;3°当0a <时,()40g a =<,且13024g a ⎛⎫=->⎪⎝⎭, ①当1a <-时,()010g a =+<,则()g x 在10,2⎛⎫ ⎪⎝⎭和1,42⎛⎫⎪⎝⎭上各有一个零点,即()g x 在()0,4有两个零点;②当10a -≤<时,()010g a =+≥,则()g x 仅在1,42⎛⎫⎪⎝⎭上有一个零点, 即()g x 在()0,4有一个零点;综上:当1a <-或0a >时,()g x 在()0,4有两个零点; 当10a -≤≤时,()g x 在()0,4有一个零点.点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得. 21.【答案】【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义 【试题解析】(Ⅰ)函数定义域为,又,所求切线方程为,即(Ⅱ)函数在上恰有两个不同的零点,等价于在上恰有两个不同的实根 等价于在上恰有两个不同的实根,令则当时,,在递减;当时,,在递增.故,又.,,即22.【答案】(1)2()243f x x x =-+;(2)102a <<;(3)1m <-.试题解析:(1)由已知,设2()(1)1f x a x =-+,由(0)3f =,得2a =,故2()243f x x x =-+.(2)要使函数不单调,则211a a <<+,则102a <<. (3)由已知,即2243221x x x m -+>++,化简得2310x x m -+->,设2()31g x x x m =-+-,则只要min ()0g x >, 而min ()(1)1g x g m ==--,得1m <-. 考点:二次函数图象与性质.【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为()()()20f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为()()()()120f x a x x x x a =--≠.23.【答案】【解析】解:(Ⅰ)设数列{a n }的公比为q , 由a n >0可得q >0,且a 3﹣a 2﹣2a 1=0, 化简得q 2﹣q ﹣2=0,解得q=2或q=﹣1(舍),∵a 3=a 1•q 2=4a 1=8,∴a 1=2,∴数列{a n }是以首项和公比均为2的等比数列,∴a n =2n;(Ⅱ)由(I )知b n =log 2a n ==n ,∴a n b n =n •2n,∴S n =1×21+2×22+3×23+…+(n ﹣1)×2n ﹣1+n ×2n,2S n =1×22+2×23+…+(n ﹣2)×2n ﹣1+(n ﹣1)×2n +n ×2n+1,两式相减,得﹣S n =21+22+23+…+2n ﹣1+2n ﹣n ×2n+1,∴﹣S n =﹣n ×2n+1,∴S n =2+(n ﹣1)2n+1.【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题.24.【答案】【解析】解:(1)f (x )=log 3(1+x )﹣log 3(1﹣x )为奇函数. 理由:1+x >0且1﹣x >0,得定义域为(﹣1,1),(2分) 又f (﹣x )=log 3(1﹣x )﹣log 3(1+x )=﹣f (x ), 则f (x )是奇函数.(2)g(x)=log=2log3,(5分)又﹣1<x<1,k>0,(6分)由f(x)≥g(x)得log3≥log3,即≥,(8分)即k2≥1﹣x2,(9分)x∈[,]时,1﹣x2最小值为,(10分)则k2≥,(11分)又k>0,则k≥,即k的取值范围是(﹣∞,].【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.。
太原市 2017~2018 学年第一学期高一年级期末考试数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一项是符合题 目要求的.)1.程序框图中的处理框“ ”的功能是( )A. 表示一个算法的输入信息B. 赋值、计算C. 表示一个算法结束D.连接程序框2.已知变量 x 和 y 满足关系式 y = 0.2x - 0.1,且变量 y 和 z 负相关,则下列结论正确的是( ) A .变量 x 不 y 正相关, x 不 z 负相关 B .变量 x 不 y 正相关, x 不 z 正相关C .变量 x 不 y 负相关, x 不 z 正相关D .变量 x 不 y 负相关, x 不 z 负相关 3.不二进制数1011( 2) 相等的十进制数是( )A. 21B. 13C.11 D . 104. 为评估一种农作物的产量,选了 n 块地作为试验区。
这 n 块地的亩产量分别为 x 1 , x 2 ⋯, x n ,下面给出的指标中可以用来作为评估这种作物亩产量稳定程度的是( )A. x 1 , x 2 ⋯, x n 的中位数 B . x 1 , x 2 ⋯, x n 的平均数C . x 1 , x 2 ⋯, x n 的最大值D . x 1 , x 2 ⋯, x n 的标准差5.已知输入的 x = -2 ,运行后面的程序之后得到的 y = ( )A.4B.-4C.-5D.-66.利用下面随机数表从编号为 01,02,03,...,23,24 的总体中抽取 6 个个体,若选定从第一行第三列的数 字 0 开始,由左向右依次抽取,则抽取的第 4 个个体编号为( )63 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 29 A.1978 64 56 07 82B.1052 42 07 44 38 C.1215 51 00 13 4299 66 02 79 54D.077.从装有 2 个白球和 2 个黑球的口袋内随机抽取 2 个球,下列事件是互斥而丌对立的事件的是( )A.至少有 1 个白球,都是白球B.至少有 1 个白球,至少有 1 个黑球C.至少有 1 个白球,都是黑球D.恰有 1 个白球, 恰有 2 个白球8.用秦九韶算法求多项式 f (x ) = x 7+ 2x 6+ 3x 5+ 4x 4+ 5x 3+ 6x 2+ 7x + 8 ,当 x = -2 时的值的过程中,v 3 = ( )A.-2B.3C.1D.49.为了研究某班学生的脚长 x (单位:厘米)和身高 y (单位:厘米)的关系,从该班随机抽取 10 名学 生 , 根 据 测 量 数 据 的 散 点 图 可 以 看 出 y 不 x 之 间 具 有 线 性 相 关 关 系 , 设 其 回 归 直 线 的 方 程 为10yˆ = b ˆx + a ˆ ,已知 ∑ x i i =110= 225, ∑ y i i =1= 1600, b ˆ = 4 ,该班某学生的脚长为 24,据此估计其身高为A. 160B. 163C. 166D. 17010.现有 5 个气球,其颜色分别是红、黄、蓝、绿、紫(仅颜色丌同),若从这 5 个气球中随机抽取 2个,则取出的这两个气球中含有红的气球的概率为3 22 1 A.B.C.D.5 3 5 311.从某校高一年级期中测评中随机抽取100 名学生的成绩(单位:分),整理得到如下频率分布直方图,则这100 名学生成绩的中位数的估计值是( )A. 75B.222 3C. 78D.235 312.执行如下图所示的程序框图,若输出的 s = 1 ,则输入的 t的所有取值的和为( )A. 72 B. 32 C. 214 D. 132二、填空题(本大题共 4 小题,每小题 3 分,共 12 分.)1 3 . 42 不 315 的 最 大 公 约 数 为 .14 . 某 工 厂 生 产 甲 、 乙 、 丙 三 种 丌 同 型 号 的 产 品 , 产 品 分 别 为 3 0 0 , 6 0 0 . 4 5 0 件 , 为 检 验产 品 的 质 量 问 题 , 现 用 分 层 抽 样 的 方 法 从 以 上 所 以 产 品 中 抽 取 90 件 进 行 检 验 , 则 应 该 从 丙 种 型 号 的 产 品 中 抽 取 的 件 数 为.1 5 . 随 着 研 发 资 金 的 持 续 投 入 , 某 公 司 的 收 入 逐 年 增 长 , 下 表 是 该 公 司 近 四 年 的 息 收 入请况:该 公 司 财 会 人 员 对 上 述 数 据 进 行 了 处 理 , 令 t = x- 2012 , z = y - 5 , 得 到 下 表 :已知变量 t 不 x 之 闻 具 有 线 性 相 关 关 系 , 据 此 预 测 该 公 司 2018 年 的 总 收 入 为.n∑ (x i - x )(y i - y )n∑ x i y i - nxy附: bˆ = i =1 = ni =1 n, a ˆ = y - b ˆx ∑ (x i - x )i =1 ∑ x i i =1- nx 21 6 . 执 行 如 下 图 所 示 的 程 序 框 圈 , 若 输 入 的 t ∈ [- 2,2], 则输出的s ∈ [- 2,0]的概率为.三、解答题(本大题共5 小题,共52 分.解答应写出文字说明、证明过程或演算步骤)17(本小题满分10 分)17.已知辗转相除法的算法步骤如下:第一步:给定两个正数m ,n ;第二步:计算m 除以n 所得的余数r ;第三步:m =n ,n =r ;第四步:若r =0,则m ,n 的最大公约数等亍m ;否则,迒回第二步.请根据上述算法将右边程序框图补充完整18(本小题满分10 分)某车间共有12 名工人,从中随机抽取6 名,如图是他们某日加工零件个数的茎叶图(其中茎为十位数,叶为个位数).(1)若日加工零件个数大亍样本平均值的工人为优秀工人,根据茎叶图能推断出该车间12 名工人中优秀工人人数.(2)现从这6 名工人中任取2 名,求至少有1 名优秀工人的概率。
2017-2018学年山西省运城市新绛县高一(上)期末数学试卷一、选择题(本题包括12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)下列语句正确的是()A.A=B=A+A B.M=2*N C.INPUTs=I D.PRINTt=2 2.(5分)抛掷一枚质地均匀的硬币,如果连续抛掷200次,那么第199次出现正面朝上的概率是()A.B.C.D.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=﹣B.y=﹣x|x|C.y=﹣ln|x|D.y=﹣x4.(5分)某砖厂为了检测生产出砖块的质量,从砖块流转均匀的生产线上每间隔5分钟抽取一块砖进行检测,这种抽样方法是()A.系统抽样法B.抽签法C.随机数表法D.分层抽样法5.(5分)已知函数f(x)=,若f(2a)=f(﹣),则实数a的值为()A.B.C.3D.26.(5分)甲、乙两位运动员都参加了10场比赛,他们所有比赛得分用如图所示的茎叶图表示,则甲、乙两位运动员得分的中位数分别为()A.18,11B.18,12C.19,l1D.19,127.(5分)已知某射击运动员每次击中目标的概率都是0.7.现采用随机模拟的方法估计该运动员射击4次,至少击中2次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1,2表示没有击中目标,3,4.,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:据此估计,该射击运动员射击4次至少击中2次的概率为()A.0.8B.0.85C.0.9D.0.958.(5分)294和910的最大公约数为()A.2B.7C.14D.289.(5分)记,分别为事件A,B的对立事件,如果事件A,B互斥,那么()A.A∪B是必然事件B.∪B是必然事件C.是必然事件D.与一定互斥10.(5分)已知样本5,x,8,11,y的平均数是8,方差是,则xy=()A.45B.54C.60D.7211.(5分)运行如图所示的程序框图,输出的S=()A.1009B.﹣1008C.1007D.﹣1009 12.(5分)已知函数f(x)=﹣x2+2x+4+log3,若x1∈(1,3),x2∈(3,+∞),则()A.f(x1)>0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)<0,f(x2)<0D.f(x1)>0,f(x2)>0二、填空题(本题包括4个小题,每小题5分,共20分)13.(5分)某学校有女教师84人,男教师x人,若用分层抽样的方法从该校的全体教师中抽取一个容量为21的样本,其中男教师7人,则x=.14.(5分)执行如图所示的程序框图,如果输出S=23,那么在判断框中应填入的整数为.15.(5分)已知m∈[3,4],n∈[2.5,3.5],则关于x的方程x2+x+=0有解的概率为.16.(5分)定义min{a,b}=,max{a,b}=,函数f(x)=min{|x+2|,|x﹣m|},min{﹣2,m}≤x≤max{﹣2,m}的值域是[0,3],则m=三、解答题(本题包括6个小题,共70分)解答应写出文字说明、证明过程或演算步骤17.(10分)某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)若执行该程序框图,输出的结果为9,求输入的实数x的值.18.(12分)某车间的一台机床生产出一批零件,现从中抽取8件,将其编为X1,X2,…X8,测量其长度(单位:cm).得到表中数据:其中长度在区间[1.48,1.52]内的零件为一等品.(1)从上述8个零件中,随机抽取一个,求这个零件为一等品的概率.(2)从一等品零件中,随机抽取3个.①用零件的编号列出所有可能的抽取结果;②求这3个零件长度相等的概率.19.(12分)利民中学为了了解该校高一年级学生的数学成绩,从高一年级期中考试成绩中抽出100名学生的成绩,由成绩得到如下的频率分布直方图.根据以上频率分布直方图,回答下列问题:(1)求这100名学生成绩的及格率;(大于等于60分为及格)(2)试比较这100名学生的平均成绩和中位数的大小.(精确到0.1)20.(12分)已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=.(1)用定义证明:f(x)在(﹣1,1)上是增函数;(2)若实数m满足f(m﹣1)+f(1﹣2m)<0,求m的取值范围.21.(12分)某地区某中草药材的销售量与年份有关,下表是近五年的部分统计数据:(1)利用所给数据求年销售量y与年份x之间的回归直线方程;(2)利用(1)中所求出的直线方程预测该地2018年的中草药的销售量.参考公式:22.(12分)已知函数f(x)=x2﹣mx+2.(1)若f(x)在区间(﹣∞,1]上有最小值为﹣1,求实数m的值;(2)若m≥4时,对任意的,总有,求实数m的取值范围.2017-2018学年山西省运城市新绛县高一(上)期末数学试卷参考答案与试题解析一、选择题(本题包括12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的1.【解答】解:对于A,赋值语句没有连续赋值功能,错误;对于B,M=2*N表示将变量N的值乘以2后,用M表示,故B正确;对于C,输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式,故C 错误;对于D,输出语句PRINT t=2,后面应写成“t=“,2,故D错误;故选:B.2.【解答】解:∵抛掷一枚质地均匀的硬币,连续抛掷200次,由等可能事件概率的性质得每次出现正面的概率都是,∴第199次出现正面朝上的概率是:.故选:C.3.【解答】解:根据题意,依次分析选项:对于A,y=﹣,是奇函数,不符合题意;对于B,y=﹣x|x|=,是奇函数,不符合题意;对于C,y=﹣lnx=,既是偶函数又在区间(0,+∞)上单调递减,符合题意;对于D,y=﹣x,是奇函数,不符合题意;故选:C.4.【解答】解:由题意知,从砖块流转均匀的生产线上每间隔5分钟抽取一块砖进行检测,是一个具有相同间隔的抽样,并且总体的个数比较多,∴是系统抽样法,故选:A.5.【解答】解:根据题意,函数f(x)=,则有a>0且a≠1,若f(2a)=f(﹣),则有log a2a=(﹣)2,解可得:a=2故选:D.6.【解答】解:由茎叶图得:甲运动员得分的中位数是:=18,乙运动员得分的中位数是:=12.故选:B.7.【解答】解:根据题意,该射击运动员射击4次,故以每4个随机数为一组,代表射击4次的结果,其中表示至少击中2次的有:5727、0293、7140、9857、0347、4373、8636、9647、1417、4698、0371、6233、2616、8045、3661、9597、7424、6710、4281,共19组,则该射击运动员射击4次至少击中2次的概率P==0.95,故选:D.8.【解答】解:910=294×3+28,294=28×10+14,28=14×2,∴294和910的最大公约数为14,故选:C.9.【解答】解:∵记,分别为事件A,B的对立事件,事件A,B互斥,∴作出维恩图如下:由维恩图得到:是必然事件.故选:C.10.【解答】解:∵样本5,x,8,11,y的平均数是8,方差是,∴,解得x=10,y=6或x=6,y=10,∴xy=60.故选:C.11.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=1﹣2+3﹣4+…+2017﹣2018的值,由于S=1﹣2+3﹣4+…+2017﹣2018=(1+3+...+2017)﹣(2+4+ (2018)=﹣=﹣1009.故选:D.12.【解答】解:函数f(x)=﹣x2+2x+4+log3=﹣x2+2x+4﹣log3x,分别令g(x)=﹣x2+2x+4=﹣(x﹣1)2+5,h(x)=log3x,(x>0).画出图象,可得:1<x<3时,g(x)>h(x);x=3时,g(3)=h(3);3<x时,g(x)<h(x).∵x1∈(1,3),x2∈(3,+∞),则(∴f(x1)>0,f(x2)<0.故选:A.二、填空题(本题包括4个小题,每小题5分,共20分)13.【解答】解:某学校有女教师84人,男教师x人,用分层抽样的方法从该校的全体教师中抽取一个容量为21的样本,其中男教师7人,则=,解得x=42.故答案为:42.14.【解答】解:模拟程序的运行,可得S=0,i=1i=2满足条件i为偶数,S=4,满足判断框内的条件,执行循环体,i=3,不满足条件i为偶数,S=7满足判断框内的条件,执行循环体,i=4,满足条件i为偶数,S=8满足判断框内的条件,执行循环体,i=5,不满足条件i为偶数,S=11满足判断框内的条件,执行循环体,i=6,满足条件i为偶数,S=12满足判断框内的条件,执行循环体,i=7,不满足条件i为偶数,S=15满足判断框内的条件,执行循环体,i=8,满足条件i为偶数,S=16满足判断框内的条件,执行循环体,i=9,不满足条件i为偶数,S=19满足判断框内的条件,执行循环体,i=10,满足条件i为偶数,S=20满足判断框内的条件,执行循环体,i=11,不满足条件i为偶数,S=23此时,由题意,应该不满足判断框内的条件,退出循环,输出S的值为23.故判断框内的条件为i<11.故答案为:11.15.【解答】解:m∈[3,4],n∈[2.5,3.5],关于x的方程x2+x+=0有解,∴△=m﹣4×=m﹣n≥0,∴,画出图形如图所示,则阴影部分的面积为1﹣××=,∴所求的概率为P==.故答案为:.16.【解答】解:若m=﹣2,则f(x)=min{|x+2|,|x+2|}=|x+2|,(x=﹣2),函数的值域不是[0,3];若m<﹣2,作出函数f(x)=min{|x+2|,|x﹣m|}的图象如图,由函数min{﹣2,m}≤x≤max{﹣2,m},即m<x<﹣2,联立,解得y=﹣,由函数的值域是[0,3],得,即m=﹣8;若m>﹣2,作出函数f(x)=min{|x+2|,|x﹣m|}的图象如图,由函数min{﹣2,m}≤x≤max{﹣2,m},即﹣2<x<m,联立,解得y=,由函数的值域是[0,3],得,即m=4.综上,m=﹣8或4.故答案为:﹣8或4.三、解答题(本题包括6个小题,共70分)解答应写出文字说明、证明过程或演算步骤17.【解答】解:(1)程序框图给出的函数的解析式为:.(2)若执行该程序框图,输出的结果为9,则:当x<1时,2﹣x=9,x=﹣7;当x≥1时,2x+1=9,x=3,所以x=﹣7或3.18.【解答】解:(1)由所给数据知一等品零件共有5个,记“从8个零件中,随机抽取一个为一等品”为事件A,则P(A)=.(2)①一等品零件的编号为X1,X3,X4,X6,X8,从这5个一等品零件中随机抽取3个,所有的可能结果有:{X1,X3,X4},{X1,X3,X6},{X1,X3,X8},{X1,X4,X6},{X1,X4,X8},{X1,X6,X8},{X3,X4,X6},{X3,X4,X8},{X3,X6,X8},{X4,X6,X8}.②记“从一等品零件中,随机抽取3个,这3个零件长度相等”为事件B,则事件B包含的基本事件有:{X3,X4,X6},{X3,X4,X8},{X3,X6,X8},{X4,X6,X8},共4个,∴这3个零件长度相等的概率p=.19.【解答】解:(1)由频率分布直方图得:不及格率为0.004×10+0.006×10=0.1,故及格率为1﹣0.1=0.9.(2)这100名学生的平均成绩为:45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.024×10)+95×(0.016×10)=76.2.∵0.004×10+0.006×10+0.02×10=0.3,0.004×10+0.006×10+0.02×10+0.03×10=0.6∴中位数应位于第四个小矩形内.设其底边为x,高为0.03.∴令0.03x=0.2得x≈6.7,故中位数约为70+6.7=76.7.故而中位数大于平均数.20.【解答】解:(1)∵函数f(x)=是定义在(﹣1,1)上的奇函数,∴f(0)==0,得a=0,此时f(x)=,又f()=,即f()===,得4b+1=5,得b=1,则f(x)=,设﹣1<x1<x2<1,则f(x1)﹣f(x2)=﹣=,∵﹣1<x1<x2<1,∴x1﹣x2<0,x1x2<1,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),则函数f(x)在(﹣1,1)上是增函数.(2)由f(m﹣1)+f(1﹣2m)<0得f(m﹣1)<﹣f(1﹣2m)=f(2m﹣1),∵函数f(x)在(﹣1,1)上是增函数,∴,得,得0<m<1,即不等式的解集为(0,1).21.【解答】解:(1)对题目中表内的数据处理如下:计算,,∴===0.05;=﹣=115﹣0.05×2012=14.4;根据上述计算结果,可求得题中的回归直线方程为=0.05x+14.4;(2)利用(1)中所求的方程,可预测2018年的该种中草药的销售量为=0.05×2018+14.4=115.3(吨).22.【解答】解:(1)函数f(x)=x2﹣mx+2,其图象的对称轴方程为.当m≤2时,,;当m>2时,f(x)在区间(﹣∞,1]上单调递减,,∴m =4.综上可知,或m=4.(2),且,∴f(x)max=f(1)=3﹣m,.∵对任意的x1,,总有.∴,得m≥5.故实数m的取值范围是[5,+∞).。
2017-2018学年山西省运城市新绛县高二(上)期末数学试卷(文科)一、选择题(本题包括12个小题,每小题5分,共60分)1.(5分)直线x+y+1=0的倾斜角为()A.30°B.45°C.120°D.135°2.(5分)已知命题q:∃x0∈R,x02>0,则命题q的否定为()A.∀x∈R,x2≤0B.∀x∈R,x2>0C.∃x∈R,x2≤0D.∃x∈R,x2<0 3.(5分)已知双曲线的一条渐近线方程为y=x,其焦点在x轴上,虚轴长为2,则该双曲线的焦距为()A.1B.2C.2D.44.(5分)若函数f(x)=a sin x+f′(0)x+3x,则a等于()A.﹣3B.3C.﹣2D.25.(5分)“m>0,n>0”是“方程mx2+ny2=1”表示椭圆的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知函数f(x)=x2+x﹣2lnx,则f(x)的单调增区间是()A.(0,+∞)B.(1,+∞)C.(2,+∞)D.(e,+∞)7.(5分)已知圆(x﹣1)2+y2=1与圆(x﹣2)2+(y﹣1)2=r2(r>0)无公切线,则r 的取值范围为()A.(0,1)B.(,+∞)C.(0,)D.(,+∞)8.(5分)已知p:>1,q:对于任意的x∈R,mx2+2mx+1>0恒成立,p成立是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.(5分)设E,F分别是正方体ABCD﹣A1B1C1D1的棱DC上两点,且AB=2,EF=1,给出下列四个命题:①三棱锥D1﹣B1EF的体积为定值;②异面直线D1B1与EF所成的角为45°;③D1B1⊥平面B1EF;④直线D1B1与平面B1EF所成的角为60°.其中正确的命题为()A.①②④B.②③C.①②D.①④10.(5分)P为双曲线C:=1(a,b>0)右支上一点,F1,F2分别为C的左、右焦点,|PF1|=2|PF2|,PF1⊥PF2,则C的离心率为()A.B.C.D.11.(5分)抛物线C:y=x2与直线y=2x相交于A,B两点,P(x,y)为C上的动点,且满足2x﹣y≥0,则△P AB面积的最大值为()A.1B.C.2D.212.(5分)已知关于x的方程x2e x+t﹣a=0,x∈[﹣1,1],若对任意的t∈[1,3],该方程总存在唯一的实数解,则实数a的取值范围是()A.(2,e+1]B.(,e+1]C.[1+,e]D.(1,e]二、填空题(本题包括4个小题,每小题5分,共20分)13.(5分)曲线y=2﹣e x在点(0,1)处的切线方程是.14.(5分)若函数f(x)=x2﹣alnx在区间[1,2]上递增,则实数a的取值范围是.15.(5分)如图,网格中小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体外接球的表面积为.16.(5分)已知抛物线C:y2=x与直线相交于A,B两点,则(O为坐标原点)的最小值为.三、解答题(本题包括6个小题,共70分)解答应写出文字说明、证明过程或演算步骤。
新绛县二中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >82. 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A .i ≤21B .i ≤11C .i ≥21D .i ≥113. 若如图程序执行的结果是10,则输入的x 的值是()A .0B .10C .﹣10D .10或﹣104. 已知向量,(),且,点在圆上,则(,2)a m = (1,)b n =- 0n >0a b ⋅= (,)P m n 225x y +=( )|2|a b +=A B .C .D .5. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .6. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .7. 已知函数,函数满足以下三点条件:①定义域为;②对任意,有⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f )(x g R R x ∈;③当时,则函数在区间上零1()(2)2g x g x =+]1,1[-∈x ()g x )()(x g x f y -=]4,4[-点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.8. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)9. 将函数f (x )=sin2x 的图象向右平移个单位,得到函数y=g (x )的图象,则它的一个对称中心是()A .B .C .D .10.函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( )A .向左平移个单位得到B .向右平移个单位得到C .向左平移个单位得到D .向左右平移个单位得到11.已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件12.一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.二、填空题13.正六棱台的两底面边长分别为1cm,2cm,高是1cm,它的侧面积为 .14.运行如图所示的程序框图后,输出的结果是 15.已知x是400和1600的等差中项,则x= .16.设函数则______;若,,则的大小关系是______.17.多面体的三视图如图所示,则该多面体体积为(单位cm) .18.复数z=(i虚数单位)在复平面上对应的点到原点的距离为 .三、解答题19.在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥AC.(Ⅰ)求证:AB⊥SC;(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;(Ⅲ)若SA=AB=2,AC=4,求二面角A﹣FD﹣G的余弦值.20.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集;(2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.21.【南师附中2017届高三模拟二】已知函数.()()323131,02f x x a x ax a =+--+>(1)试讨论的单调性;()()0f x x ≥(2)证明:对于正数,存在正数,使得当时,有;a p []0,x p ∈()11f x -≤≤(3)设(1)中的的最大值为,求得最大值.p ()g a ()g a 22.已知正项数列{a n }的前n 项的和为S n ,满足4S n =(a n +1)2.(Ⅰ)求数列{a n }通项公式;(Ⅱ)设数列{b n }满足b n =(n ∈N *),求证:b 1+b 2+…+b n <.23.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.24.已知全集U=R,函数y=+的定义域为A,B={y|y=2x,1≤x≤2},求:(1)集合A,B;(2)(∁U A)∩B.新绛县二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值2.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.3.【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x<0,时﹣x=10,解得:x=﹣10当x≥0,时x=10,解得:x=10故选:D.4.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.5.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C6.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=()A.{5} B.{2,4} C.{2,4,5,6} D.{1,2,3,4,5,7}2.(5分)下列函数中,既是奇函数又是周期函数的是()A.y=sin x B.y=cos x C.y=ln x D.y=x33.(5分)已知平面向量=(1,﹣2),=(2,m),且∥,则m=()A.1 B.﹣1 C.4 D.﹣44.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.5.(5分)下列各组向量中,可以作为基底的是()A., B.,C.,D.,6.(5分)已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.(5分)已知cosα+cosβ=,则cos(α﹣β)=()A.B.﹣C.D.18.(5分)已知非零向量,满足||=4||,且⊥(2+),则与的夹角为()A.B.C.D.9.(5分)函数y=log0.4(﹣x2+3x+4)的值域是()A.(0,﹣2] B.[﹣2,+∞)C.(﹣∞,﹣2] D.[2,+∞)10.(5分)把函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.11.(5分)已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在(﹣∞,0)上的最小值为()A.﹣5 B.﹣1 C.﹣3 D.512.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2017)B.(1,2018)C.[2,2018] D.(2,2018)二、填空题13.(5分)已知tanα=3,则的值.14.(5分)已知,则的值为.15.(5分)已知将函数的图象向左平移个单位长度后得到y=g(x)的图象,则g(x)在上的值域为.16.(5分)下列命题中,正确的是.①已知,,是平面内三个非零向量,则()=();②已知=(sin),=(1,),其中,则;③若,则(1﹣tanα)(1﹣tanβ)的值为2;④O是△ABC所在平面上一定点,动点P满足:,λ∈(0,+∞),则直线AP一定通过△ABC的内心.三、解答题17.(10分)已知=(4,3),=(5,﹣12).(Ⅰ)求||的值;(Ⅱ)求与的夹角的余弦值.18.(12分)已知α,β都是锐角,,.(Ⅰ)求sinβ的值;(Ⅱ)求的值.19.(12分)已知函数f(x)=cos4x﹣2sin x cos x﹣sin4x.(1)求f(x)的最小正周期;(2)当时,求f(x)的最小值以及取得最小值时x的集合.20.(12分)定义在R上的函数f(x)满足f(x)+f(﹣x)=0.当x>0时,f(x)=﹣4x+8×2x+1.(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[﹣3,﹣1]时,求f(x)的最大值和最小值.21.(12分)已知向量=(),=(cos),记f(x)=.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若,求的值;(Ⅲ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)﹣k在上有零点,求实数k的取值范围.22.(12分)已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0(1)求证:f(x)是奇函数;(2)若,试求f(x)在区间[﹣2,6]上的最值;(3)是否存在m,使f(2()2﹣4)+f(4m﹣2())>0对任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.【参考答案】一、选择题1.B【解析】∵全集U={1,2,3,4,5,6,7},B={1,3,5,7},∴C U B={2,4,6},又A={2,4,5},则A∩(C U B)={2,4}.故选B.2.A【解析】y=sin x为奇函数,且以2π为最小正周期的函数;y=cos x为偶函数,且以2π为最小正周期的函数;y=ln x的定义域为(0,+∞),不关于原点对称,没有奇偶性;y=x3为奇函数,不为周期函数.故选A.3.D【解析】∵∥,∴m+4=0,解得m=﹣4.故选:D.4.A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ),又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z),∵,∴取k=0,得φ=﹣,故选:A.5.B【解析】对于A,,,是两个共线向量,故不可作为基底.对于B,,是两个不共线向量,故可作为基底.对于C,,,是两个共线向量,故不可作为基底..对于D,,,是两个共线向量,故不可作为基底.故选:B.6.B【解析】a=sin80°∈(0,1),=2,<0,则b>a>c.故选:B.7.B【解析】已知两等式平方得:(cosα+cosβ)2=cos2α+cos2β+2cosαcosβ=,(sinα+sinβ)2=sin2α+sin2β+2sinαsinβ=,∴2+2(cosαcosβ+sinαsinβ)=,即cosαcosβ+sinαsinβ=﹣,则cos(α﹣β)=cosαcosβ+sinαsinβ=﹣.故选B.8.C【解析】由已知非零向量,满足||=4||,且⊥(2+),可得•(2+)=2+=0,设与的夹角为θ,则有2+||•4||•cosθ=0,即cosθ=﹣,又因为θ∈[0,π],所以θ=,故选:C.9.B【解析】;∴有;所以根据对数函数log0.4x的图象即可得到:=﹣2;∴原函数的值域为[﹣2,+∞).故选B.10.A【解析】图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.11.B【解析】令F(x)=h(x)﹣2=af(x)+bg(x),则F(x)为奇函数.∵x∈(0,+∞)时,h(x)≤5,∴x∈(0,+∞)时,F(x)=h(x)﹣2≤3.又x∈(﹣∞,0)时,﹣x∈(0,+∞),∴F(﹣x)≤3⇔﹣F(x)≤3⇔F(x)≥﹣3.∴h(x)≥﹣3+2=﹣1,故选B.12.D【解析】作出函数的图象,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2017x=1,解得x=2017,即x=2017,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2017,因此可得2<a+b+c<2018,即a+b+c∈(2,2018).故选:D.二、填空题13.【解析】===,故答案为:.14.﹣1【解析】∵,∴f()==,f()=f()﹣1=cos﹣1=﹣=﹣,∴==﹣1.故答案为:﹣1.15.[﹣1,]【解析】将函数=sin2x+﹣=sin(2x+)的图象,向左平移个单位长度后得到y=g(x)=sin(2x++)=﹣sin2x的图象,在上,2x∈[﹣],sin2x∈[﹣,1],∴﹣sin(2x)∈[﹣1,],故g(x)在上的值域为[﹣1,],故答案为:[﹣1,].16.②③④【解析】①已知,,是平面内三个非零向量,则()•=•()不正确,由于()•与共线,•()与共线,而,不一定共线,故①不正确;②已知=(sin),=(1,),其中,则•=sinθ+=sinθ+|sinθ|=sinθ﹣sinθ=0,则,故②正确;③若,则(1﹣tanα)(1﹣tanβ)=1﹣tanα﹣tanβ+tanαtanβ=1﹣tan(α+β)(1﹣tanαtanβ)+tanαtanβ=1﹣(﹣1)(1﹣tanαtanβ)+tanαtanβ=2,故③正确;④∵,λ∈(0,+∞),设=,=,=+λ(+),﹣=λ(+),∴=λ(+),由向量加法的平行四边形法则可知,以,为邻边的平行四边形为菱形,而菱形的对角线平分对角∴直线AP即为A的平分线所在的直线,即一定通过△ABC的内心,故④正确.故答案为:②③④.三、解答题17.解:(Ⅰ)根据题意,=(4,3),=(5,﹣12).则+=(9,﹣9),则|+|==9,(Ⅱ)=(4,3),=(5,﹣12).则•=4×5+3×(﹣12)=﹣16,||=5,||=13,则cosθ==﹣.18.解:(Ⅰ)∵α,β都是锐角,且,.∴cos,sin(α+β)=,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=;(Ⅱ)=cos2β=1﹣2sin2β=1﹣2×.19.解:f(x)=cos2x﹣2sin x cos x﹣sin2x=cos2x﹣sin2x=cos(2x+)(1)T=π(2)∵∴20.解:由f(x)+f(﹣x)=0.当,则函数f(x)是奇函数,且f(0)=0,当x>0时,f(x)=﹣4x+8×2x+1.当x<0时,﹣x>0,则f(﹣x)=﹣4﹣x+8×2﹣x+1.由f(x)=﹣f(﹣x)所以:f(x)=4﹣x﹣8×2﹣x﹣1.故得f(x)的解析式;f(x)=(Ⅱ)x∈[﹣3,﹣1]时,令,t∈[2,8],则y=t2﹣8t﹣1,其对称轴t=4∈[2,8],当t=4,即x=﹣2时,f(x)min=﹣17.当t=8,即x=﹣3时,f(x)max=﹣1.21.解:(Ⅰ)f(x)==sin cos+=sin+=sin(+)+,由2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,所以f(x)的单调递减区间是[4kπ+,4kπ+].(Ⅱ)由已知f(a)=得sin(+)=,则a=4kπ+,k∈Z.∴cos(﹣a)=cos(﹣4kπ﹣)=1.(Ⅲ)将函数y=f(x)的图象向右平移个单位得到g(x)=sin(﹣)+的图象,则函数y=g(x)﹣k=sin(﹣)+﹣k.∵﹣≤﹣≤π,所以﹣sin(﹣)≤1,∴0≤﹣sin(﹣)+≤.若函数y=g(x)﹣k在上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,所以实数k的取值范围为[0,].22.(1)证明:令x=0,y=0,则f(0)=2f(0),∴f(0)=0.令y=﹣x,则f(0)=f(x)+f(﹣x),∴﹣f(x)=f(﹣x),即f(x)为奇函数;(2)解:任取x1,x2∈R,且x1<x2,∵f(x+y)=f(x)+f(y),∴f(x2)﹣f(x1)=f(x2﹣x1),∵当x>0时,f(x)>0,且x1<x2,∴f(x2﹣x1)>0,即f(x2)>f(x1),∴f(x)为增函数,∴当x=﹣2时,函数有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.当x=6时,函数有最大值,f(x)max=f(6)=6f(1)=3;(3)解:∵函数f(x)为奇函数,∴不等式可化为,又∵f(x)为增函数,∴,令t=log2x,则0≤t≤1,问题就转化为2t2﹣4>2t﹣4m在t∈[0,1]上恒成立,即4m>﹣2t2+2t+4对任意t∈[0,1]恒成立,令y=﹣2t2+2t+4,只需4m>y max,而(0≤t≤1),∴当时,,则.∴m的取值范围就为.。