4.1平方根
- 格式:pdf
- 大小:1.01 MB
- 文档页数:11
第4章 实数4.1 平方根第1课时 平方根(1)自主学习1. 如果 x²=a (a ≥0),那么x 叫做a 的 ,也称为二次方根,记作“±√a”,i 读作“正、负根号a”.2.平方根的性质:(1)一个正数有 个平方根,它们互为 ;(2)0的平方根是 ;(3)负数 平方根(填“有”或“没有”).3.求一个数的 的运算叫做开平方,开平方运算和 运算互为逆运算. 当堂反馈1.“916的平方根是: ±34”用数学式子表示应是 ( ) A.±√916=±34 B.√916=±34 C.√916=34 D.−√916=−342. 如果一个正数的平方根为2a+1和3a-11,则a= ( )A.±1B. 1C.2D.93.下列说法中正确的是 ( )A.任何数的平方根有两个B.只有正数才有平方根C.一个正数的平方根的平方仍是这个数D. a²的平方根是a4. 若a 是(-4)²⁶的平方根,b 的一个平方根是2,则a+b 的值为( )A.0B.8C.0或8D.0或-85.下列说法正确的是 ( )A.-81 的平方根是±9B.任何数的平方是非负数,因而任何数的平方根也是非负数C.任何一个非负数的平方根都不大于这个数D.4是16的平方根6. 2.56的平方根是 ,(-2)²=的平方根是 .7.如果一个数的平方根等于它本身,那么这个数是 .8. 若m 的平方根是±3,则m= .9. 若5x+4的平方根是±1,则x= .10. 若−√7是x的一个平方根,则另一个平方根是,x是 .11.求下列各数的平方根:;(1)49; (2)49(3)0.0081; (4)10⁻².12. (1)一个数的平方等于 121,求这个数;,求这个负数.(2)一个负数的平方等于116913. 求下列各式中的x.(1)x²=361;(2)x²+1=1.01;(3)(4x−1)²=225;(4)2(x²+1)=10.14.定义一种叫做“@”的运算,对于任意两个实数m、n,有m circlea n=m2−n2,请你解方程:x@(-1)= 4@2.能力拓展15. 若a²=4,b²=9,且ab<0,则a−b的值为( )A. -2B.±5C.5D. -516. 已知2a-1的平方根是:±3,3a+b−1的平方根是:±4,求a+2b的平方根.第 2课时平方根(2)自主学习1.正数a有两个平方根,我们把正数a的的平方根,叫做a的算术平方根;0的也叫做0的算术平方根.2.√a表示数σ的算术平方根,而负数没有算术平方根,所以√a中的字母a是数,即a≥0;算术平方根是平方根中非负的一个,所以√4的结果也应是非负数,即√a 0.当堂反馈1.下列各数中,没有算术平方根的是 ( )A.0B.100C.(−2)²D. -252.(−4)²的算术平方根是 ( )A.4B. ±4C.2D. ±23.下列运算正确的是 ( )A.−√(−13)2=13B.√(−6)2=−6C.−√25=−5D.√9=±34. 若a≥0,则4a²的算术平方根是 ( )A.2aB. ±2aC.√2aD. |2a|5.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是 ( )A. a+1B.a²+1C.√a2+1D.√a+16. (1)6.25 的算术平方根是 ;(2)0的算术平方根是 .7.(1)√8;(2)√1625= ;(3)−√2781= .8。
平方根第一课时(数学初二年级)[教材简解]平方根是苏教版数学八年级上册第四章第一节内容,隶属于“数与代数”领域,重点结合实际问题情景认识算术平方根、平方根的意义,能够对算术平方根进行符号表示,能够利用概念的本质探获求算术平方根、平方根的方法,理解算术平方根、平方根的性质。
本节共二课时,本课为第一课时,从学生熟悉的正方形面积与边长之间的关系入手提出已知面积探求边长的问题,通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。
通过对这一节课的学习,既可以让学生了解平方根的概念,会用符号表示非负数的平方根,又可以渗透化归思想(将求算术平方根的运算转化为求幂底数的运算)将为学生以后学习立方根奠定基础;同时这一节也是联系数学与生活的桥梁。
[目标预设]1. 学生能理解平方根概念的生成过程,会用符号表示一个非负数的平方根;2. 在教师的指导下,经历观察、交流、猜想等活动得出平方根概念,培养学生的合情推理与逆向思维的能力。
3.会求一个非负数的平方根,通过理解为什么要学习平方根培养学生的理性精神。
[重点]了解开方与乘方互为逆运算,能熟练地求某些非负数的平方根。
[难点]利用平方根定义解决问题。
[设计理念] 本节课采取教师启发引导与学生探究相结合的方式,使学生亲身体验得到平方根概念的生成过程,注重学生数学活动经验的积累。
促使学生采取积极主动、勇于探索的学习方式进行学习,为学生的终身发展奠基。
根据“以学定教”的原则,及时调整教学方案,使学生始终能主动地参与学习,成为学习的主人。
[设计思路]启发学生对问题的兴趣,促进其对问题进行思考。
让学生自己总结、交流,培养学生的概括能力和口头表达能力,培养自我反馈、自主发展的意识。
[教学过程]教学内容学生活动创设情景,感悟新知情境一:设图中的小方格的边长为1,你能分别说出图中2个长方形的对角线AB,A′B′的长吗?设计意图:通过实际情境,让学生发现AB,A′B′的长说不出来,制造认知冲突,激发好奇心,调动学生的学习积极性.积极思考,跃跃欲试.情境二:类似地,我们曾研究a2=2,那么a=?如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根.如果x2=a,那么x就叫做a的平方根,也称为二次方根.例如:2²=4,(-2)²=4,±2叫做4的平方根.10²=100,(-10)²=100,±10叫做100的平方根.13²=169,(-13)²=169,±13叫做169的平方根.一个正数的平方根有2个,它们互为相反数.一个正数a的正的平方根,记作“a”,正数a的负的平方根记作“-a”.这两个平方根合起来记作“±a”,读作“正、负根号a”.设计意图:通过实际情境,让学生发现用符号表示一个正数的平方根的必要性,并自己表示一些正数的平方根,加深对平方根的感性认识。
八年级上册数学《第4章实数》4.1平方根◆1、平方根的定义:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果x2=a,那么x叫做a的平方根.◆2、开平方:求一个数a的平方根的运算,叫做开平方.开平方与平方互为逆运算,运用这种关系可以求一个数的平方根.◆3、平方根的表示方法:正数a正的平方根可以表示为a,正数a的负的平方根,可以表示为-a.正数a的平方根可以用±a表示,读作“正、负根号a”.◆4、平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.◆1、算术平方根的定义:我们把正数a的正的平方根叫做a的算术平方根.a的算术平方根记作:a,读作:“根号a”.规定:0的算术平方根是0.记作:0=0.◆2、算术平方根的性质:算术平方根具有双重非负性.①被开方数一定是非负数,即a≥0.②一个非负数的算术平方根也是非负数,即a≥0.◆3、求一个正数的算术平方根与求一个正数的平方恰好是互逆的两种运算,因而,求一个数的算术平方根实际上可以转化为求一个正数的平方运算,但是,只有正数和0有算术平方根,负数没有算术平方根.◆4、被开方数越大,对应的算术平方根也越大.【注意】a实际上省略了2中的根指数2,不要误认为根指数是1或没有,因此a也读作:“二次根号a”.◆5、算术平方根与平方根的联系和区别:联系:(1)包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)只有非负数才有平方根和算术平方根.(3)0的平方根是0,算术平方根也是0.区别:(1)个数不同:一个正数有两个平方根,但正数算术平方根只有一个.;(2)表示方法不同:正数a的算术平方根表示为a,正数a的平方根表示为a【例题1】下列说法正确的是()A.25的平方根是5B.(﹣3)2的平方根是﹣3C.925的算术平方根是35D.0.16的算术平方根是±0.4【分析】依据平方根、算术平方根的定义和性质求解即可.【解答】解:A、25的平方根是±5,故A错误;B、(﹣3)2的平方根是±3,故B错误;C、925的算术平方根是35,故C正确;D、0.16的算术平方根是+0.4,故D错误.故选:C.【点评】本题主要考查的是算术平方根和平方根的定义和性质,熟练掌握相关知识是解题的关键.解题技巧提炼±(a≥0)表示非负数的a的平方根,(a≥0)表示非负数a的算术平方根.【变式1-1】(2022秋•莱州市期末)144的平方根是±12的数学表达式是()A.144=12B.144=±12C.±144=±12D.±144=12【分析】根据平方根的定义进行计算即可.【解答】解:144的平方根是±12的数学表达式是±144=±12,故选:C.【点评】本题考查平方根,理解平方根的定义以及表示方法是正确解答的前提.【变式1-2】下列说法中,正确的是()A.任何数的平方根都有两个B.一个数的平方根是它本身C.只有正数才有平方根D.负数没有平方根【分析】根据平方根的定义进行解答即可.【解答】解:A、0的平方根是0,只有一个,故错误,不符合题意;B、一个数的平方根不一定是它本身,故错误,不符合题意;C、0也有平方根,故错误,不符合题意;D、负数没有平方根,正确,符合题意.故选:D.【点评】本题考查的是平方根,熟知正数和0有平方根,负数没有平方根,且正数的平方根有两个,0的平方根还是0是解题的关键.【变式1-3】(2022秋•陈仓区期中)下列语句中,错误的是()A.14的平方根是±12B.9的平方根是±3C.−12是14的一个平方根D.9的平方根是±3【分析】如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根,根据平方根的意义解题即可.【解答】解:A.14的平方根是±12,该选项正确,故本选项不符合题意;B.9的平方根是±3,该选项错误,故本选项符合题意;C.−12是14的一个平方根,该选项正确,故本选项不符合题意;D.9的平方根是±3,该选项正确,故本选项不符合题意.故选:B.【点评】本题考查了平方根,正确理解平方根的意义是解题的关键.【变式1-4】(2022秋•鄞州区校级月考)平方根是±13的数是()A.13B.16C.19D.±19【分析】根据平方根的定义即可求解.【解答】解:∵(±13)2=19,∴平方根是±13的数是19,故选:C.【点评】本题主要考查了平方根,掌握平方根的定义是解题的关键.【变式1-5】(2022春•澄迈县期末)(﹣6)2的平方根是()A.6B.±6C.±6D.36【分析】根据平方根的定义解答即可.【解答】解:(﹣6)2=36,36的平方根是±6,故选:B.【点评】本题考查平方根的定义,熟练掌握平方根的定义是解题关键.【变式1-6】(2022秋•城阳区期中)若x+4是4的一个平方根,则x的值为()A.﹣2B.﹣2或﹣6C.﹣3D.±2【分析】依据平方根的定义得到x+4=2或x+4=﹣2,从而可求得x的值.【解答】解:∵x+4是4的一个平方根,∴x+4=2或x+4=﹣2,∴解得:x=﹣2或x=﹣6.故选:B.【点评】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.【变式1-7】(2022秋•薛城区校级月考)一个自然数的一个平方根是a,则与它相邻的上一个自然数的平方根是()A.±−1B.a﹣1C.a2﹣1D.±2−1【分析】由一个自然数的一个平方根是a,可得出这个自然数是a2,进而得到与这个自然数相邻的上一个自然数是a2﹣1,再根据平方根的定义得出答案即可.【解答】解:∵一个自然数的一个平方根是a,∴这个自然数是a2,∴与这个自然数相邻的上一个自然数是a2﹣1,∴与这个自然数相邻的上一个自然数的平方根是±2−1,故选:D.【点评】本题考查平方根,理解平方根的定义是正确解答的前提.【例题2】求下列各数的平方根:(1)2549(2)0.36(3)(﹣9)2(4)49【分析】(1)(2)根据一个正数有两个平方根,这两个平方根互为相反数计算结果;(3)先求出(﹣9)2=81,再根据一个正数有两个平方根,这两个平方根互为相反数计算结果;(4)先求出49=7,再根据一个正数有两个平方根,这两个平方根互为相反数计算结果.【解答】解:(1)2549的平方根是±57;(2)0.36的平方根是±0.6;(3)∵(﹣9)2=81,∴(﹣9)2的平方根是±9;(4)∵49=7,∴49的平方根是±7.【点评】本题考查了算术平方根和平方根,掌握算术平方根和平方根的定义,根据定义计算是解题关键.【变式2-1】1649的平方根是()A.47B.±47C.−47D.27【分析】直接根据平方根的概念解答即可.【解答】解:∵(±47)2=1649,∴1649的平方根是±47,故选:B.【点评】此题考查的是平方根,掌握其概念是解决此题关键.【变式2-2】(2023•常德三模)16的平方根是()A.4B.±4C.±2D.2【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:16=4,4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【变式2-3】(2023•西乡塘区校级开学)已知实数a的一个平方根是2,则它的另一个平方根是()A.﹣2B.−2C.4D.﹣4【分析】一个正数的平方根有2个,它们互为相反数,据此即可得出答案.【解答】解:∵实数a的一个平方根是2,∴它的另一个平方根是﹣2,故选:A.【点评】本题考查平方根的性质,熟练掌握其性质是解题的关键.【变式2-4】(2022秋•二道区校级期中)在﹣2,0,117,23,1.44中,有平方根的数有()A.4个B.3个C.2个D.1个【分析】根据平方根的性质即可求得答案.【解答】解:0,117,23,1.44都有平方根,﹣2没有平方根,则有平方根的数有4个,故选:A.【点评】本题考查平方根的性质,此为基础且重要知识点,必须熟练掌握.【变式2-5】(﹣8)2的平方根是()A.﹣8B.8C.±8D.±64【分析】根据平方根的概念即可求出答案.【解答】解:由于(﹣8)2=64,∴64的平方根是±8,故选:C.【点评】本题考查平方根,解题的关键是熟练运用平方根的概念,本题属于基础题型.【变式2-6】(2022秋•雁塔区校级月考)求下列各数的平方根:(1)49;(2)1625;(3)279;(4)0.36;(5)(−38)2.【分析】(1)根据平方根的定义求一个数的平方根;(2)根据平方根的定义求一个数的平方根;(3)根据平方根的定义求一个数的平方根;(4)根据平方根的定义求一个数的平方根;(5)根据平方根的定义求一个数的平方根.【解答】解:(1)∵(±7)2=49,∴49的平方根是±7;(2)∵(±45)2=1625,∴1625的平方根是±45;(3)∵279=259,(±53)2=259∴279的平方根是±53;(4)∵(±0.6)2=0.36∴0.36的平方根是±0.6;(5)∵(−38)2=964=(38)2,∴(−38)2的平方根是±38.【点评】本题考查的是平方根,掌握平方根的定义是解题的关键.平方根:如果一个数的平方等于a,那么这个数就叫a的平方根,一个整数的平方根有2个,它们互为相反数.【变式2-7】求下列各式的值:(1)−196;(2)(3)2−1.75;(4)±(−8)2.【分析】(1)根据算术平方根定义计算;(2)根据平方根定义计算;(3)根据算术平方根定义计算;(4)根据平方根定义计算.【解答】解:(1)原式=﹣14;(2)原式=±52;(3)原式=0.5;(4)原式=±8.【点评】本题考查了算术平方根和平方根,掌握算术平方根和平方根定义,根据定义计算是解题关键.【例题3】求下列各数的算术平方根:(1)144;(2)0.49;(3)614;(4)(−32)2.【分析】根据开方运算,可得算术平方根.【解答】解:(1)144=122=12;(2)0.49=0.72;(3==52;(4=|−32|=32.【点评】本题考查了算术平方根,开方运算是解题关键.【变式3-1】(2022秋•宁强县期末)9的值等于()A.3B.﹣3C.±3D.5【分析】根据算术平方根定义解答.【解答】解:∵32=9,∴9=3,故选:A.【点评】此题考查了算术平方根的定义:若一个正数x的平方等于a,则x是a的算术平方根,熟记定义是解题的关键.【变式3-2】(2023春•兴义市月考)81的平方根是.【分析】根据算术平方根的定义求出81=9,再根据平方根的定义求出9的平方根即可.【解答】解:∵81=9,∴81的平方根,即9的平方根为±9=±3,故答案为:±3.【点评】本题考查平方根、算术平方根,理解平方根、算术平方根的定义是正确解答的前提.【变式3-3】(2023春•秀屿区校级期中)16的算术平方根是.【分析】根据算术平方根的运算法则,直接计算即可.【解答】解:∵16=4,4的算术平方根是2,∴16的算术平方根是2.故答案为:2.【点评】此题考查了求一个数的算术平方根,这里需注意:16的算术平方根和16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.【变式3-4】(2022•济宁三模)若=5,则a的值为()A.10B.5C.25D.±25【分析】根据算术平方根的定义即可求出答案.【解答】解:∵52=25,∴若=5,则a的值为25.故选:C.【点评】本题考查算术平方根的定义.解题的关键是掌握算术平方根的定义.【变式3-5】(2022春•老河口市月考)设x=﹣22,y=(−3)2,那么xy等于()A.12B.﹣12C.6D.﹣6【分析】根据算术平方根以及有理数乘方的定义求出x、y的值,再代入计算即可.【解答】解:∵x=﹣22,y=(−3)2,∴x=﹣4,y=3,∴xy=﹣4×3=﹣12,故选:B.【点评】本题考查算术平方根,有理数的乘方,理解算术平方根的定义以及有理数乘方的计算方法是正确解答的前提.【变式3-6】求下列各式的值:(1)144;(2(3)10000;(4)0.0049.【分析】根据算术平方根的定义计算即可.注意:2=|U.【解答】解:(1)原式=122=12;(2)原式=57)=57;(3)原式=1002=100;(4)原式=0.072=0.07.【点评】本题主要考查了算术平方根,熟记定义是解答本题的关键.【例题4】(2022秋•崇川区校级月考)已知a,b满足(a﹣1)2++2=0,则a+b的值是()A.﹣2B.2C.﹣1D.0【分析】先根据平方和算术平方根的非负性求出a,b的值,再将a,b的值代入a+b中即可求解.【解答】解:∵(a﹣1)2++2=0,(a﹣1)2≥0,+2≥0,∴a﹣1=0,b+2=0,∴a=1,b=﹣2,则a+b=1+(﹣2)=﹣1.故选:C.【点评】本题主要考查了平方和算术平方根的非负性以及有理数的加法,掌握平方和算术平方根的非负性以及有理数的加法法则是解题的关键.【变式4-1】(2022秋•桂平市期末)若+2+(−3)2=0,则m n的值是.【分析】根据算术平方根、偶次方的非负性求出m、n的值,再代入计算即可.【解答】解:∵+2+(n﹣3)2=0,,+2≥0,(n﹣3)2≥0,∴m+2=0,n﹣3=0,解得m=﹣2,n=3,∴m n=(﹣2)3=﹣8,故答案为:﹣8.【点评】本题考查算术平方根、偶次方的非负性,掌握算术平方根、偶次方的非负性是正确解答的前提.【变式4-2】(2023•濠江区模拟)若a,b为实数,且|−1|++2=0,则(a+b)2023=.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:∵|a﹣1|++2=0,∴a﹣1=0,b+2=0,∴a=1,b=﹣2,∴(a+b)2023=(1﹣2)2023=﹣1,故答案为:﹣1.【点评】此题主要考查了非负数的性质,能够根据非负数的性质正确得出a,b的值是解题关键.非负数的性质:几个非负数的和为0时,这几个非负数都为0.【变式4-3】已知a,b为实数,且1++1−=0,则a2022﹣b2023=.【分析】依据非负数的性质可求得a、b的值,然后再利用有理数的运算法则进行计算即可.【解答】解:∵1++1−=0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2022﹣b2023=(﹣1)2018﹣12019=1﹣1=0.故答案为:0.【点评】本题主要考查的是算术平方根的性质,依据非负数的性质求得a、b的值是解题的关键.【变式4-4】(2023春•江源区期末)已知(a﹣1)2+|b+1|++−=0,则a+b+c=.【分析】先依据非负数的性质求得a、b、c的值,然后再代入计算即可.【解答】解:(a﹣1)2+|b+1|++−=0,∴a=1,b=﹣1,c=2.∴a+b+c=1+(﹣1)+2=2.故答案为:2.【点评】本题主要考查的是非负数的性质,依据非负数的性质求得a、b、c的值是解题的关键.【变式4-5】(2022春•蜀山区校级期中)若−1与|b+2|互为相反数,则a+b的绝对值为()A.1−2B.2−1C.2+1D.2【分析】根据题意可得−1+|b+2|=0,从而可得a﹣1=0,b+2=0,然后求出a,b的值,再根据绝对值的意义进行计算即可解答.【解答】解:由题意得:−1+|b+2|=0,∴a﹣1=0,b+2=0,∴a=1,b=−2,∴|a+b|=|1−2|=2−1,故选:B.【点评】本题考查了绝对值,算术平方根和绝对值的非负性,熟练掌握算术平方根和绝对值的非负性是解题的关键.【变式4-6】(2022秋•迎泽区校级月考)若x,y满足(−5)2++2=0,则x y的算术平方根为.【分析】直接利用非负数的性质得出x,y的值,再利用负整数指数幂的性质、算术平方根的定义分析得出答案.【解答】解:∵(−5)2++2=0,∴x﹣5=0,y+2=0,解得:x=5,y=﹣2,故x y=5﹣2=125,则x y的算术平方根为:15.故答案为:15.【点评】此题主要考查了非负数的性质以及负整数指数幂的性质,正确得出x,y的值是解题关键.【变式4-7】(2022秋•靖江市校级期中)已知a,b,c都是实数,且满足(2﹣a)2+2+++|c+8|=0,且ax2+bx+c=0,求代数式3x2+6x+200的值.【分析】根据偶次方的非负性、算术平方根的非负性、绝对值的非负性解决此题.【解答】解:∵(2﹣a)2≥0,2++≥0,|c+8|≥0,∴当(2﹣a)2+2+++|c+8|=0,则2﹣a=0,a2+b+c=0,c+8=0.∴a=2,c=﹣8,b=4.∵ax2+bx+c=0,∴2x2+4x﹣8=0.∴x2+2x=4.∴3x2+6x+200=3(x2+2x)+200=12+200=212.【点评】本题主要考查偶次方的非负性、算术平方根、绝对值,熟练掌握偶次方的非负性、算术平方根的非负性、绝对值的非负性是解决本题的关键.【变式4-8】已知a,b为实数,且满足−2+b2﹣6b+9=0.(1)求a,b的值;(2)若a,b为△ABC的两边,第三边c=13,求△ABC的面积.【分析】(1)利用完全平方公式整理,再根据非负数的性质列方程求解即可;(2)利用勾股定理逆定理判断出△ABC是直角三角形,再根据直角三角形的面积等于两直角边的乘积的一半列式计算即可得解.【解答】解:(1)整理得,−2+(b﹣3)2=0,所以,a﹣2=0,b﹣3=0,解得a=2,b=3;(2)∵a2+b2=22+32=13,c2=(13)2=13,∴a2+b2=c2,∴△ABC是直角三角形,∠C=90°,∴△ABC的面积=12ab=12×2×3=3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了勾股定理逆定理.【例题5】(2022春•建安区期中)若a是(﹣4)2的平方根,b的一个平方根是2,则代数式a+b的值为()A.8B.0C.8或0D.4或﹣4【分析】先依据平方根的定义和性质求得a、b的值,然后依据有理数的加法法则求解即可.【解答】解:∵a是(﹣4)2的平方根,∴a=±4.∵b的一个平方根是2,∴b=4.∴当a=4,b=4时,a+b=8;当a=﹣4,b=4时,a+b=0.故选:C.【点评】本题主要考查的是平方根的定义,依据平方根的定义求得a、b的值是解题的关键.【变式5-1】(2023春•长顺县期末)若2m﹣5与4m﹣9是某一个正数的平方根,则m的值是()A.73B.﹣1C.73或2D.2【分析】依据平方根的性质列出关于m的方程,可求得m的值.【解答】解:∵2m﹣5与4m﹣9是某一个正数的平方根,∴2m﹣5=4m﹣9或2m﹣5+4m﹣9=0.解得:m=2或m=73.故选:C.【点评】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.【变式5-2】(2022•游仙区校级二模)若﹣3x m y和5x3y n的和是单项式,则(m+n)3的平方根是()A.8B.﹣8C.±4D.±8【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.【解答】解:∵﹣3x m y和5x3y n的和是单项式,∴﹣3x m y和5x3y n是同类项,∴m=3,n=1,∴(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.【点评】本题考查了平方根,同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.【变式5-3】(2022秋•高新区校级月考)已知2a﹣1的平方根是±3,b,c满足|b﹣1|++4=0,求a+3b+c的算术平方根.【分析】根据算术平方根的概念列方程确定a的值,利用绝对值和算术平方根的非负性确定b和c的值,然后代入代数式,最后利用算术平方根的概念求解.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,解得:a=5,∵|b﹣1|++4=0,且|b﹣1|≥0,+4≥0,∴b﹣1=0,c+4=0,解得:b=1,c=﹣4,∴a+3b+c=5+3×1+(﹣4)=5+3﹣4=4,4=2,∴a+3b+c的算术平方根是2.【点评】本题考查平方根,算术平方根,理解平方根,算术平方根的概念以及绝对值和算术平方根的非负性是解题关键.【变式5-4】(2021春•饶平县校级期中)若x,y均为实数,且−1+1−+2y﹣1=0,求15+2的平方根.【分析】根据被开方数是非负数且它们互为相反数,可得被开方数为0,据此可求x,进一步求出y,再代入计算即可求出答案.【解答】解:∵−1+1−+2y﹣1=0,∴x﹣1≥0,1﹣x≥0,解得x=1,∴2y﹣1=0,∴y=12,∴15+2=15+1=16=4,∴15+2的平方根为±2.【点评】本题考查了算术平方根以及平方根,解题时注意:一个正数的两个平方根互为相反数.【变式5-5】(2022春•横县期中)已知3b+3的平方根为±3,3a+b的算术平方根为5.(1)求a,b的值;(2)求4a﹣6b的平方根.【分析】(1)根据平方根的定义列出方程求出b,再根据算术平方根的定义求出a,然后相加求出a+b,再根据平方根的定义解答.(2)根据平方根的定义计算即可.【解答】解:(1)∵3b+3的平方根为±3,∴3b+3=9,解得b=2,∵3a+b的算术平方根为5,∴3a+b=25,∵b=2,∴a=233,(2)∵a=233,b=2,∴4a﹣6b=563,∴4a﹣6b的平方根为【点评】本题考查了平方根和算术平方根的定义,熟记概念是解题的关键.【变式5-6】(2022春•芜湖期末)已知a+b﹣2的平方根是±17,3a+b﹣1的算术平方根是6,求a+4b 的平方根.【分析】先根据平方根和算术平方根的定义得出a+b﹣2=17,3a+b﹣1=36,解出a和b的值,代入a+4b 值求值,再求平方根即可.【解答】解:根据题意,得a+b﹣2=17,3a+b﹣1=36,解得a=9,b=10,∴a+4b=9+4×10=9+40=49,∴a+4b的平方根是±7.【点评】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a、b的值是解题的关键.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.【变式5-7】(2023春•恩施州期中)(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b 的平方根;(2)若2a﹣4与3a+1是同一个正数的平方根,求a的值.【分析】(1)直接利用平方根的定义得出a,b的值,进而得出答案;(2)直接利用平方根的定义得出a的值.【解答】解:(1)依题意,得2a﹣1=9且3a+b﹣1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,即±+2=±3;(2)∵2a﹣4与3a+1是同一个正数的平方根,∴2a﹣4+3a+1=0或2a﹣4=3a+1,∴解得:a=35或a=﹣5.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.【例题6】(2022春•岳麓区校级月考)求下列各式中x的值.(1)169x2=100;(2)(x+1)2=81.【分析】(1)两边都除以169,再根据平方根的定义求解可得;(2)先根据平方根的定义得出x+1的值,再解方程可得.【解答】解:(1)169x2=100,2=100169,=±169∴=±1013;(2)(x+1)2=81,+1=±81,x+1=±9,x=8或﹣10.【点评】本题主要考查的是平方根的定义,熟练掌握相关概念是解题的关键.【变式6-1】(2022秋•新城区校级期中)求下列式子中的x:(1)25(x−35)2=49;(2)12(x+1)2=32.【分析】(1)根据平方根的概念解方程;(2)根据平方根的概念解方程.【解答】解:(1)25(x−35)2=49,(x−35)2=4925,x−35=±75,x−35=75或x−35=−75,解得:x1=2,x2=−45;(2)12(x+1)2=32,(x+1)2=32÷12,(x+1)2=32×2,(x+1)2=64,x+1=±8,x+1=8或x+1=﹣8,解得:x1=7,x2=﹣9.【点评】本题考查平方根,注意一个正数有两个平方根,且它们互为相反数是解题关键.【变式6-2】(2022秋•滕州市校级月考)求满足下列各式x的值(1)169x2﹣100=0(2)(2x﹣1)2=(﹣5)2.【分析】(1)先求出x2的值,然后根据平方根的定义解答;(2)先求出(2x﹣1)2的值,然后根据平方根的定义解答.【解答】解:(1)由169x2﹣100=0,可得:x=±1013;(2)由(2x﹣1)2=(﹣5)2.可得:2x﹣1=±5,解得:x=3或x=﹣2.【点评】本题考查了利用平方根的定义求未知数的值,是基础题,熟记概念是解题的关键.【变式6-3】(2022春•武侯区月考)求下列各式中的x的值:(1)9x2﹣25=0;(2)(x﹣1)2+8=72;(3)3(x+2)2﹣27=0;(4)12(x﹣5)2=8.【分析】根据等式的性质和平方根的定义进行计算即可.【解答】解:(1)移项得,9x2=25,两边都除以9得,x2=259,由平方根的定义得,x=±53;(2)(x﹣1)2+8=72,移项得,(x﹣1)2=72﹣8,合并同类项得,(x﹣1)2=64,由平方根的定义得,x﹣1=±8,即x=9或x=﹣7;(3)移项得,3(x+2)2=27,两边都除以3得,(x+2)2=9,由平方根的定义得,x+2=±3,即x=1或x=﹣5;(4)两边都乘以2得,(x﹣5)2=16,由平方根的定义得,x﹣5=±4,即x=9或x=1.【点评】本题考查平方根,理解平方根的定义,掌握等式的性质是正确解答的前提.【变式6-4】已知a,b满足|a﹣4|+−7=0,解关于x的方程(a﹣3)x2﹣1=5b.【分析】直接利用绝对值和二次根式的性质得出a,b的值,进而代入解方程即可.【解答】解:由题意得:a﹣4=0,b﹣7=0,∴a=4,b=7,将a=4,b=7代入(a﹣3)x2﹣1=5b,得(4﹣3)x2﹣1=5×7∴x2=36,解得:x=±6.【点评】此题主要考查了算术平方根以及绝对值,正确得出a,b的值是解题关键.【变式6-5】(2023春•澄海区期末)已知|2a+b﹣4|与3+12互为相反数.(1)求5a﹣4b的平方根;(2)解关于x的方程ax2+5b﹣5=0.【分析】(1)依据非负数的性质可求得a、b的值,然后再求得5a﹣4b的值,最后依据平方根的定义求解即可;(2)将a、b的值代入得到关于x的方程,然后解方程即可.【解答】解:(1)由题意,得|2+−4|+3+12=0,∴2a+b﹣4=0,3b+12=0,解得:a=4,b=﹣4,∴5a﹣4b=5×4﹣4×(﹣4)=36,∴5a﹣4b的平方根为±6;(2)将a=4,b=﹣4代入ax2+5b﹣5=0,得4x2﹣25=0,解得:=±52.【点评】本题主要考查的是平方根的定义、非负数的性质,熟练掌握平方根的定义、非负数的性质是解题的关键.【例题7】(2022春•渝中区校级月考)若51.11≈7.149,511.1≈22.608,则511100的值约为()A.71.49B.226.08C.714.9D.2260.8【分析】将511100转化为51.11×10000,进而得出51.11×100即可.【解答】解:511100=51.11×10000=51.11×100≈7.149×100=714.9,故选:C.【点评】本题考查算术平方根,理解“一个数扩大(或缩小)100倍,10000倍,其算术平方根就随着扩大(或缩小)10倍,100倍”是解决问题的关键.【变式7-1】(2023•宁津县校级开学)若25.36≈5.036,253.6≈15.906,则253600≈.【分析】根据算术平方根的定义,被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位,进行解答即可.【解答】解:∵25.36≈5.036,∴则253600≈503.6.故答案为503.6:【点评】此题考查了算术平方根的定义,掌握算术平方根的定义是本题的关键.【变式7-2】(2022春•顺德区校级期中)若169=13,则16900为130.【分析】根据算术平方根的性质,将∴16900转化为169×100即可.【解答】解:∵169=13,∴16900=169×100=169×100=13×10=130,故答案为:130.【点评】本题考查算术平方根,掌握“被开方数扩大100倍,其算术平方根就随着扩大10倍”是解决问题的关键.【变式7-3】(2021春•淮南月考)已知2021≈44.96,202.1≈14.22,则20.21≈()A.4.496B.1.422C.449.6D.142.2【分析】直接利用算术平方根的性质化简得出答案.【解答】解:∵2021≈44.96,∴20.21≈4.496.故选:A.【点评】此题主要考查了算术平方根,正确理解算术平方根的定义是解题的关键.算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.【变式7-4】(2022秋•衡阳县期中)已知 4.3≈2.0736,43≈6.5574,下列运算正确的是()A.0.43≈0.65574B.430≈65.574C.4300≈20.736D.43000≈2073.6【分析】根据题目意思,找出题中规律即可求解.【解答】解:∵ 4.3≈2.0736,43≈6.5574,A.0.43≈1100≈43×1100≈6.5574×110≈0.65574,选项A符合题意;B.430≈ 4.3×100≈ 4.3×100≈2.0736×10≈20.736,选项B不符合题意;C.4300≈43×100≈43×100≈6.5574×10≈65.574,选项C不符合题意;D.43000= 4.3×10000= 4.3×10000≈2.0736×100≈207.36,选项D不符合题意;故选:A.【点评】本题主要考查了算术平方根,掌握算术平方根的性质是解题的关键.【变式7-5】(2022春•潍坊期中)(1)观察各式:0.03≈0.1732,3≈1.732,300≈17.32…发现规律:被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(2)应用:已知5≈2.236,则0.05≈,500≈;(3)拓展:已知6≈2.449,60≈7.746,计算240和0.54的值.【分析】(1)观察规律即可得出答案;(2)根据(1)中的规律进行计算即可得出答案;(3)由240=4×60=4×60代入计算即可得出答案,由0.54=9×0.06=9×0.06根据(1)中的规律代入计算即可得答案.【解答】解:(1)观察各式:0.03≈0.1732,3≈1.732,300≈17.32…发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2)应用:已知5≈2.236,则0.05≈0.2236,500≈22.36;故答案为:0.2236,22.36;(3)240=4×60=4×60≈2×7.746≈15.492,0.54=9×0.06=9×0.06≈3×0.2449≈0.7347.【点评】本题主要考查了算术平方根,熟练掌握算术平方根的定义进行求解是解决本题的关键.【变式7-6】根据下表回答下列问题:x1616.116.216.316.416.516.616.716.816.917x2256259.21262.44265.69268.96272.25275.56278.89282.24285.61289(1)289的算术平方根是,268.96=;(2)±256=,275.56的平方根是;(3) 1.5921=,28224=;(4)若=(x>0),则100=(用含a的式子表示).【分析】(1)根据图表和算术平方根的定义即可得出答案;(2)根据图表和平方根的定义即可得出答案;(3)根据被开方数与算术平方根的关系可得答案;(4)根据被开方数扩大100倍,算术平方根随之扩大10倍可得答案.【解答】解:(1)由表中的数据可得,289的算术平方根是17,268.96=16.4,故答案为:17,16.4;(2)由表中的数据可得,±256=±16,275.56的平方根是±16.6,故答案为:±16,±16.6;(3)由表中的数据可得,159.21的算术平方根是16.1,282.24的算术平方根是16.8,∴ 1.5921=1.61,28224=168,故答案为:1.61,168;(4)由(3)可得被开方数扩大100倍,算术平方根随之扩大10倍,若=(x>0),则100=10a(用含a的式子表示).故答案为:10a.【点评】本题考查算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题关键.【例题8】(2022春•连江县期末)某学校有一块长、宽分别为38m和16m的长方形空地,计划沿边建造一个长宽之比为5:3且面积为540m2的长方形标准篮球场,请判断该学校能否用这块长方形空地建造符合要求的篮球场?并说明理由.【分析】通过用同一未知数表示出篮球场的长和宽,列方程进行求解.【解答】解:不能,理由如下:设长方形标准篮球场的长为5xm.宽为3xm,由题意得:5x×3x=540,解得:x=﹣6(舍去)或6,即长方形标准篮球场的长为30m,宽为18m,∵18m>16m,∴该学校不能用这块长方形空地建造符合要求的篮球场.【点评】此题主要考查了算术平方根,正确得出x的值是解题的关键.【变式8-1】(2023春•桥西区期末)射击时,子弹射出枪口时的速度可用公式=2a进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105米/秒2,s=0.81米,那么子弹射出枪口时的速度(用科学记数法表示)为()A.0.9×103米/秒B.0.8×103米/秒C.8×102米/秒D.9×102米/秒【分析】首先根据题意求出速度,然后根据科学记数法的表示方法求解即可.【解答】解:∵a=5×105米/秒2,s=0.81米,∴=2a=2×5×105×0.81=900=9×102米/秒.故选:D.【点评】本题主要考查算术平方根和科学记数法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.【变式8-2】(2023春•巩义市期末)电流通过导线时会产生热量,满足Q=I2Rt,其中Q为产生的热量(单位:J),I为电流(单位:A),R为导线电阻(单位:Ω),t为通电时间(单位:s).若导线电阻为5Ω,1s时间导线产生30J的热量,则通过的电流I为()。
平方根 学习目标: 1、初步理解并掌握算术平方根的意义,并掌握正确的表示方法; 2、会正确地求出一个非负数的算术平方根. 重点:理解算术平方根的符号表示 难点:算术平方根有关的两个计算公式学习流程:一、问题情境 一块正方形地板瓷砖的边长应是多少?分析:在实际问题中,我们有时并不是需要求出所有的平方根。
例如在这个问题中,一块正方形地板瓷砖的边长可以为负数吗?【归纳】:一个正数a 的正的平方根,叫做a 的算术平方根,记作a 。
2、举例填空:4的平方根是_______;4的算术平方根是___________2的平方根是_______;2的算术平方根是___________0的平方根是_______;0的算术平方根是___________一般地:a 表示 ;—a 则表示 ,+ a 表示 。
二、典例选讲例2填空:(1)16= ;16的平方根= ; 16的算术平方根是 ;(2)2(4) 的平方根是__ _____;算术平方根是 ,(3)|9|-的平方根是___ ____;算术平方根是 ,例3.判断下列各式中,哪些是有意义的?哪些是无意义的?(1) (2) (3) (4)练习提 高已知y= + +3,求xy 的算术平方根。
三、问题讨论计算1、?01.02= ?52= =216 =-2)16(归纳与发现: ;计算2、=2)01.0( =2)16( =2)5(归纳与发现: ;尝试练习:四、课堂检测1、一个数的算术平方根等于本身,这个数是 。
2、若x ²=16,则5-x 的算术平方根是 。
22223()?(25)?(9)?4(1)?(((m 222= -=-=-= 4 ) =? 3 ) =?) =?3-2-)3(2-12--x a 1.若4a+1有意义,则能取得最小整数为( )A. 0B. 1C. -1D. -422.1()0,___________x x y x y ++===若则,2-x x -23、若4a+1的平方根是±5, 则a ²的算术平方根是 。
4.1平方根 1.新课导读问题链接 小明在学习时,想到加法的逆运算是减法,算法的逆运算是除法,乘方是不是可以类推? 问题探究 乘方有没有逆运算?2.教材解读知识点1平方根的概念及表示(重点/难点/掌握)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也称为二次方根,也就是说,如果a x =2,那么x 就叫做a 的平方根.记作a ±,读作正负根号a.)【知识拓展/】我们用符号来表示平方根,读作“根号”,一个正数a 的正的平方根就记作”,正数a 的负的平方根记作“”,这两个平方根合起来记作“”读作“正,负根号a”. 【例1】2的平方根如何记? 【分析】按平方根的定义记。
【解】2【解题策略】这里有两个,就是在a 外面加上±“。
知识点2 原知识点2 (知识详解)不变 【知识拓展】不变【新课导读点拨】乘方有逆运算,就是开方。
【探究交流】已知数m 的平方根是a+3及2a-15,求m.【点拨】因为正数有两个平方根,并且它的两个平方根互为相反数,0有一个平方根, 负数没有平方根,所以,这个数一定是非负数.当这个数m 是正数时,a+3与2a-15互为相反数;当这个数是O 时,应有a+3=2a-15=O .这样分两种情况进行分析和解答.(1)若这个数是正数,则有a+3+2a-15=O ,解得a=4.所以a+3=7,2a-15=-7,故m=49.(2)假设这个数是零,则a+3=O ,且2a-15=O , 解得a=-3,且a=-7.5,矛盾. 综上所述,这个数是49.【教材栏目答疑】“问题:下列各数有平方根吗?如果有,请写出来;如果没有,请说明理由。
9,5,259,0,-94,-8,-36。
(课本P95“交流”) 【例2】P71例1 【分析】 【解】【解题策略/】 知识点3原知识点3 (知识详解)不变【知识拓展】不变【知识拓展】关于算术平方根的公式(1)2a =(a ≥0)(2)()()⎪⎩⎪⎨⎧〈-=〉==).0(,00,02a a a a a a a【知识拓展】平方根与算术平方根之间的区别和联系的算术平方根表示为的平方根表示为【例3】P72例2 【分析】 【解】【解题策略/规律·方法】3.典例剖析基本知识题类型1根据平方根、算术平方根概念计算 【例4】】求下列各数的平方根:(1)64; (2)49121; (3)0.0004. 【分析】根据平方根的定义,求一个数a 的平方根可转化为求一个数的平方等于a 的运算.具体解题步骤是:找出平方等于a 的数,写出平方根;根据定义,从平方式中确定a 的平方根;表示出开平方的结果. 【解】(1)因为(±8) 2=64,所以64的平方根是±8;(2)因为2711⎛⎫± ⎪⎝⎭= 49121,所以49121的平方根是±711;(3)因为(±0.02) 2=O .0004,所以O.0004的平方根是=±0.02,即0.02.=±【规律·方法】运用平方运算求一个非负数的平方根是常用方法.如果被开方数是小数,要注意小数点的位置.也可以先将小数化成分数,再求它的平方根.如果被开方数是带分数,先要将带分数化成假分数. 【例5】已知:x 是16的平方根,试求5-x 的算术平方根.静心做人 精心做事3【分析】本题要分两步进行,先要求出x 的值,再求5-x 的算术平方根.要注意x 的值有两个,必须要分类讨论.【解】因为x 是16的平方根,所以x=4或x=-4. ①当x=4时,5-x=5-4=1; ②当x=-4时,5-x=5-(-4)=9. 综合①②,5-x 的算术平方根是1或3. 【解题策略】接根据算术平方根的定义求解 【例6】求下列各数的平方根和算术平方根(1)121; (2) 297; (3) (-13)2; (4)-(-4)3. 【分析】根据平方根与算术平方根的定义来求。
苏科版数学八年级上册4.1.1《平方根》教学设计一. 教材分析《平方根》是苏科版数学八年级上册4.1.1的内容,本节课主要让学生掌握平方根的定义、性质及求法,并能运用平方根解决一些实际问题。
教材通过引入平方根的概念,让学生理解平方根与乘方的关系,进一步掌握平方根的求法。
本节课的内容是学生进一步学习二次根式、勾股定理等知识的基础,对于学生来说具有重要的意义。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方,对乘方有一定的理解。
但是,平方根的概念及其求法对学生来说是一个新的内容,需要通过实例来引导学生理解。
此外,学生对于实际问题中的平方根可能比较陌生,需要通过具体的例子来让学生感受平方根在实际问题中的应用。
三. 教学目标1.知识与技能:理解平方根的定义,掌握求一个数的平方根的方法,会求一些实际问题中的平方根。
2.过程与方法:通过实例,引导学生理解平方根的概念,培养学生的逻辑思维能力。
3.情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:平方根的定义及其求法。
2.难点:理解平方根的概念,求实际问题中的平方根。
五. 教学方法1.情境教学法:通过具体的例子,引导学生理解平方根的概念。
2.小组合作学习:让学生在小组内讨论,培养学生的团队合作意识。
3.实践操作法:让学生通过计算器求平方根,培养学生的动手操作能力。
六. 教学准备1.教学课件:制作课件,展示平方根的定义、性质及求法。
2.实例:准备一些实际问题,让学生求解其中的平方根。
3.计算器:确保每个学生都有计算器,用于求解平方根。
七. 教学过程1.导入(5分钟)利用一个实际问题,如“一个正方形的边长是16厘米,求这个正方形的面积。
”让学生思考,引出平方根的概念。
2.呈现(10分钟)通过PPT展示平方根的定义、性质及求法,让学生理解平方根的概念,并掌握求一个数的平方根的方法。
3.操练(10分钟)让学生用计算器求解一些实际的平方根问题,如“求25的平方根”、“求9的平方根”等,巩固所学知识。