分式的乘方1
- 格式:ppt
- 大小:227.00 KB
- 文档页数:14
分式的乘除(基础)责编:杜少波【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】【高清课堂402545 分式的乘除运算 知识要点】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭. 【典型例题】类型一、分式的乘法1、计算:(1)422449158a b x x a b g ;(2)222441214a a a a a a -+--+-g . 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算.【答案与解析】解:(1)422449158a b x x a b g 422449315810a b x b x a b x==g g . (2)222441214a a a a a a -+--+-g 22(2)1(1)(2)(2)a a a a a --=-+-g 22(2)(1)(1)(2)(2)a a a a a --=-+-g g 222(1)(2)2a a a a a a --==-++-. 【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算.举一反三:【变式】计算.(1)26283m x x m g ;(2)22122x x x x+-+g 【答案】解:(1)原式22621283242m x mx x x m mx ===g g ; (2)原式22112(2)2x x x x x x+==-+-g ; 类型二、分式的除法【高清课堂402545 分式的乘除运算 例1(4)】2、 计算:(1)222324a b a b c cd-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简.【答案与解析】解:(1)222324a b a b c cd -÷22222244236a b cd a b cd c a b c a b ==--g g 23d c=-.(2) 2222242222x y x y x xy y x xy-+÷+++ 2(2)(2)2()()2x y x y x x y x y x y+-+=++g 22(2)24x x y x xy x y x y --==++. 【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的.举一反三:【变式】(2015•宝鸡校级模拟)化简:.【答案】解:原式=• =.类型三、分式的乘方3、(2014秋•华龙区校级月考)下列计算正确的是( )A. B.C. D.【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.【答案】C .【解析】解:A 、,本选项错误; B 、,本选项错误;C 、,本选项正确;D 、,本选项错误.所以计算结果正确的是C .【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.类型四、分式的乘除法、乘方的混合运算4、 计算:(1)(2016春•淅川县期中)(﹣2ab ﹣2c ﹣1)2÷×()3;(2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g . 【思路点拨】先算乘方,再算乘、除.【答案与解析】解:(1)(﹣2ab ﹣2c ﹣1)2÷×()3=﹣•• =﹣. (2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g 2222232()1()[()]()a b ab b a a b b a -=+-g g 22222332()()1()()a b a b a b b a a b a b +-=+-g g211()a a b a ab==++. 【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算.举一反三:【变式】计算:(1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)2222()m n n m m n m n mn m --+⎛⎫÷ ⎪-⎝⎭g .【答案】解: (1)332212b ba a ab⎛⎫⎛⎫⎛⎫-÷-÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23263382633312212b b b a a b a ba a ab a b⎛⎫⎛⎫=-÷-÷==⎪ ⎪⎝⎭⎝⎭g g.(2)2222()m n n m m nm n mn m--+⎛⎫÷⎪-⎝⎭g22222()()()()m n m n m n m m nm n m n m n mn+---==-+g g.。
2.2.2分式的乘方教学目标1 探索分式乘方的运算法则.2 熟练运用乘方法则进行计算. 重点、难点重点:分式乘方的法则和运算.难点:分式乘方法则的推导过程的理解及利用分式乘方法则进行运算. 教学过程一创设情境,导入新课1 复习:分式乘除法则是什么? 2什么叫最简分式?3 取一条长度为1个单位的线段AB ,如图:第一步:把线段AB 三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由_____条长度相等的线段组成的折线,每一段等于____,总长度等于____.第二步:把上述折线中的每一条重复第一步的做法,得到___,继续下去.情况怎么样呢? 这节课我们来学习------分式的乘方.二 合作交流,探究新知. 分式乘方的法则(1)把结果填入下表:(2)进行到第n 步时得到的线段总长度是多少呢?44444444...33333333nn n n ⨯⨯⋅⋅⋅⎛⎫=⨯⨯== ⎪⨯⨯⋅⋅⋅⎝⎭个N=2N=1N=0ABBA(3)把43改为f g ,...n nn n f f f f f f f f g g g g f f g g ⎛⎫⨯⨯⋅⋅⋅⨯=⨯⨯== ⎪⨯⨯⋅⋅⋅⨯⎝⎭个即:nf g ⎛⎫= ⎪⎝⎭____.用语言怎么表达呢分式乘方等于分子、分母分别乘方. 三 应用迁移,巩固提高 1 分式乘方公式的应用例1 计算:()()342241;23x x y y w ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭强调每一步运用了哪些公式.2 除法形式改为分式形式进行计算. 例2 计算:()()()()()()23344224222162;2534x yxy x yx y x y x y -÷--+÷-.强调:除法形式改为分式,利用分式的运算性质进行计算给计算带来了方便. 3 分式乘方与分式乘法、除法的综合运用.例3 计算:24322x y z y x xy ⎛⎫⎛⎫--⎛⎫⋅÷ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭4 整体思想例4 已知:45b a =,求20092008a b a a b a -⎛⎫⎛⎫⋅ ⎪ ⎪-⎝⎭⎝⎭的值.四 课题练习,巩固提高 补充:先化简,再求值.()2222121442x x x x x x ++⎛⎫÷⋅+ ⎪+++⎝⎭,其中x=1.五 反思小结,拓展提高 这几课你有什么收获? (1) 分式乘法法则,(2)分式乘方法则与分式乘除运算法则综合运用时的顺序. 作业:P 35 A 组: 4 B 组: 4,5,6。
分式定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
分式A/B中,A叫做分子,B叫做分母。
分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分尸的值不变。
用字母表示为A/B=(A*C)/(B*C), A/B=(A÷C)/(B÷C)(C≠0)。
分式法则一、乘法法则分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
用字母表示(a/b)*(c/d)=(a*c)/(b*d);二、除法法则分式除以分式,把除式的分子、分母颠倒位置后,与除式相乘。
用字母表示(a/b)÷(c/d)= (a/b)*(d/c)= (a*d)/(b*c);知识拓展:(1)分式乘、除法的运算按从左到右的顺序进行,结果如果不是最简分式,要进行约分。
(2)根据分式乘法法则有:①分式与分式相乘时,如果分子和分母是多项式,那么先分解因式,再看能否约分,然后相乘;②整式与分式相乘时,可以直接把整式看成分母是1的代数式,再与分式相乘;③分式的乘法实质就是约分,所以计算结果如能约分的,必须约分,或通过分解因式后能约分的也要约分,必须把结果化为最简分式或整式。
(3)根据法则我们知道,分式的除法需转化成乘法,转化过程实际上是“一变一倒”的过程,即除号变为乘号,除式的分子与分母颠倒位置。
当除式是整式时,可以将整式看成分母是1的代数式进行运算。
分式的乘方分式乘方要把分子、分母分别乘方。
用字母表示分式的乘方法则是:知识拓展:(1)分式的乘方法则是由乘方的意义和分式的乘法法则推导出来的。
(2)分式的乘方法则中“把分子、分母分别乘方”,是把分子、分母分别看做一个整体,如分式的加减法一、同分母分式加减法法则。
同分母分式相加减,分母不变,把分子相加减。
用字母表示为:(a/c)+(b/c)=(a+b)/c。
二、异分母分式加减法法则。
异分母分式相加减,先通分,变为同分母的分式,再加减。
分式的乘方和乘方法则一、分式的乘方和乘方法则1、分式的乘除(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
用式子表示为$\fracab·\fraccd=\fraca·cb·d。
(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为$\fracab÷\fraccd=\fracab·\fracdc=\fraca·db·c$。
(3)乘方法则:一般地,当$n$是正整数时,$\left\displaystyle\fracab\right^n=$$\beginmatrix\underbrace\displaystyle\fracab·\fracab·\cdots·\fracab \\n个\endmatrix=$$\beginmatrixn个\\ \overbrace\beginmatrix\underbrace\displaystyle\fraca·a·\cdots·ab·b·\cdots·b \\n个\\ \\ \endmatrix \endmatrix=$$\displaystyle\fraca^nb^n$,即$\left\fracab\right^n=\fraca^nb^n$。
即分式乘方要把分子、分母分别乘方。
2、分式的加减类似分数的加减,分式的加减法则是(1)同分母分式相加减,分母不变,把分子相加减。
即:$\fracac±\fracbc=\fr aca±bc$。
(2)异分母分式相加减,先通分,变为同分母的分式,再加减。
即:$\fracab±\fraccd=\fracadbd±\fracbcbd=\fracad±bcbd$。
二、分式的乘方的相关例题$\fracx^2-1x+1·\fracx^2__^2-2x+1=$___A.$x$ B.$2x$ C.$x^2$ D.$2x^2$答案:A解析:原式$=\fracx+1__1x+1·\frac__1__1^2=x$。