化学工程与技术硕士论文:有机金属催化剂-脱沥青重油-悬浮床工艺-加氢裂化-生焦
- 格式:doc
- 大小:50.50 KB
- 文档页数:4
《化学工程与工艺论文》化学工程与工艺论文(一):题目:关于绿色化学工程与工艺对化学工业节能的促进作用探析关键词:绿色化学工程;工艺;化学工业节能摘要:在处理有害、有毒物质时,采用传统化化学生产方法具有必须的滞后性,严重影响了化学工业的发展速率。
所以,应结合应用绿色化学工程和工艺,这样一来方可减少成本费用的支出,进而提升资源利用率。
本文主要探讨了绿色化学工程与工艺对化学工业节能的作用,并提出了个人见解,对今后的研究具有必须的参考好处。
在当前社会的发展中,科技水平得到了飞速发展,而经济发展速度也随之加快,在这一背景条件的影响下,环境污染也在不断加剧,而自然生态系统也遭到了破坏。
因此,我们务必要提高对自然环境的保护力度,合理应用各项资源和能源,提升其应用效率,这样一来方可到达可持续发展的目的。
本文主要探讨了绿色化学工程与工艺对化学工业节能的作用,而这也是减少化工污染以及能源消耗的主要渠道,并对人类的发展具有必须的现实好处。
1绿色化学工程与工艺对化学工业节能的促进作用1.1正确选取清洁生产技术结合当前社会的发展形势进行思考,由于清洁生产技术所需的成本比较高,当对生产原料进行相应的处理之后,能够有效提升资源利用率,进而提升化学生产的综合品质。
现阶段,比较常见的清洁生产技术可包括以下几种,即:脱硝技术与脱硫技术,透过采用合理的方式对垃圾物质以及具有必须污染性的化学物质等采用此种方式处理后,均会使其变为沼气。
在此过程中,也务必要合理应用自然发电技术,例如风能等,研发出更多的新型技术手段,尤其是应加大生物工程的研发力度,推出很多全新的清洁生产技术,方可提升资源利用率,减少污染状况,保护自然生态环境。
1.2合理应用生物技术透过对化学工程生产进行分析后可发现,应用比较广泛的生物技术主要可包括两个方面,即:生物化工以及化学仿生学、例如,在正确使用生物酶后,结合相应的绿色化工工程以及工艺,能够有效提高资源的利用率,促使再生资源能够得以使用,进而提高产品质量。
2016年第35卷第8期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·2309·化工进展渣油深度加氢裂化技术应用现状及新进展任文坡,李振宇,李雪静,金羽豪(中国石油石油化工研究院,北京 100195)摘要:长远来看,原油重劣质化的发展趋势不可避免,能够实现渣油清洁高效转化的深度加氢裂化技术是应对这一挑战的关键,正逐渐成为炼厂最主要的渣油加工技术手段。
本文介绍了渣油沸腾床加氢裂化和渣油悬浮床加氢裂化技术的应用现状,结合技术特点和技术经济指标进行了对比分析,进一步综述了两种渣油加氢裂化技术的研发新进展。
文中指出渣油沸腾床加氢裂化技术是目前最为成熟的渣油高效转化技术,未来仍将在渣油高效加工利用方面发挥重要作用,其中组合集成工艺以及未转化塔底油的处理工艺是其研发和应用的重点。
渣油悬浮床加氢裂化技术具有高转化率的优势,但在工业化应用方面尚不如沸腾床成熟和普遍,仍需继续开发高活性、高分散的催化剂以及着重解决装置结焦问题,未来发展前景看好。
关键词:渣油;加氢裂化;深度转化;沸腾床;悬浮床中图分类号:TE 624.4+3 文献标志码:A 文章编号:1000–6613(2016)08–2309–08DOI:10.16085/j.issn.1000-6613.2016.08.01Application situation and new progress of residuum deep hydrocrackingtechnologiesREN Wenpo,LI Zhenyu,LI Xuejing,JIN Yuhao(PetroChina Petrochemical Research Institute,Beijing 100195,China)Abstract: In the long run, the crude oil would become heavier and poorer in quality. Hydrocracking technologies are regarded as one of the key techniques in efficient and clean conversion of residuum, and have become a major upgrading process in the refineries. In this paper, the application status of residuum ebullated bed and slurry bed hydrocracking technologies were introduced. The technical characteristics and technical-economic indicator were also compared. And then, the new progress and future trend were reviewed. The ebullated bed technology is the most mature residuum high-efficient conversion technology currently, and will continue to play an important role in residuum utilization. In the future, the research is focused on combined technology and unconverted tail-oil processing technology.Although the slurry bed technology is far from mature compared with ebullated bed technology, it has its advantage of high conversion rate and great potential for future development. The technology development should resolve equipment coking problem and develop high-active and high-dispersible catalyst.Key words:residuum;hydrocracking;deep conversion;ebullated bed;slurry bed当前我国经济发展进入“新常态”,更加注重发展质量、环境保护和资源节约[1]。
化学工程与工艺的论文【化学工程与工艺论文参考例文】化学工程与工艺论文参考例文篇1浅析化学工程与工艺发展趋势摘要:近代化学工程与工艺的发展更加注重多学科的融合,保持良好的生态环境是发展的重要环节。
化学工程与工艺主要通过对相关的化工材料进行加工处理,使资源的利用率最大化,达到保护环境的目的。
全面落实科学发展观,走环境保护与科技发展的道路,进一步调整资源环境与经济发展之间的关系。
本文就化学工程与工艺发展趋势与环境的影响进行了一些分析。
关键词:化学工程与工艺环保发展趋势化学工程与工艺就是对材料进行加工处理,然后进行再次利用实现能量的传递,这样高效环保完成资源的优化配置,优化产品加工生产的过程。
化学工程与工艺的发展由来已久,它以化学工程相关理论还有实际的一些运用为指导,利用这一学科知识对各种产品进行研究、开发跟生产。
化工工程领域的相关行业非常多,比如石油化工、生物化工、材料化工、冶炼化工等相关行业。
化学工程领域相关的行业都是关乎我国经济发展的重要领域,化工工程还与一些高新科技领域相互影响作用,共同推动着科技的发展,促进社会的进步。
目前化学工程领域正向着自动集约化、高效精细化方向发展。
总而言之,化工工程涵盖的专业领域范围非常广,因此,加强对化工工程与工艺发展研究时非常有必要的。
一、化学工程学科的发展特点趋势1.化学工程与工艺特点化学工程简称化工,是研究以化学为代表的相关工业的,化学工程与工艺这门学科是一门工业特色十分显著学科,化学工程与工艺的研究范围广,是一门应用十分宽泛的专业。
如一些食品加工业、印刷业、冶炼业、医药生产、材料化工等都是建立在化学工程与化学工艺的基础之上。
化学工程与工艺这门课就是培养学习化学工程与化学工艺方面的理论知识,想要在这一门学科能够为我国各个行业都做出贡献,就必须要组织构建一个能够发展化学工程与工艺学科的研究基地。
构建适合专业特点的,有利于人才培养的创新型体系。
2.化学工程与工艺研究对环境保护的意义化学工程与工艺这门学科是一门工业特色明显的专业,它覆盖了原有的各种化学相关的专业。
化学工程专业优秀毕业论文范本新型催化剂在化学反应中的应用研究催化剂是化学工程领域中广泛应用的一种重要物质,能够加速化学反应速率,提高反应的选择性和效率。
随着科技的发展和工业的进步,在化学工程中研发出了许多新型的催化剂,这些新型催化剂在化学反应中的应用研究成为了热门的话题。
一、新型催化剂的发展概述新型催化剂的发展是化学工程领域的一个重要研究方向。
传统的催化剂如金属催化剂和酶催化剂等在一定程度上存在着催化活性低、反应条件苛刻等问题。
为了解决这些问题,研究者们不断寻求创新,发展出了一系列新型催化剂,如纳米催化剂、分子筛催化剂等。
这些新型催化剂具有催化活性高、选择性好、稳定性强等优点,为化学工程领域的发展带来了新的机遇与挑战。
二、新型催化剂在有机合成中的应用有机合成是化学工程中的一项重要研究内容,也是新型催化剂应用的一个重要领域。
新型催化剂在有机合成中起到了至关重要的作用。
例如,纳米催化剂可以通过纳米结构的特殊性质,提高有机合成反应速率,降低催化剂用量和反应条件。
分子筛催化剂则可以通过选择性吸附等机制,实现对有机物的高效转化。
这些新型催化剂的应用大大促进了有机合成工艺的发展,推动了该领域的研究进展。
三、新型催化剂在能源领域中的应用能源领域是当前全球关注的焦点之一,新型催化剂在该领域中也有广泛的应用。
例如,金属催化剂可以在石油加工过程中起到催化裂化的作用,将重质烃转化为轻质烃,提高石油资源的利用率。
另外,纳米级催化剂可以用于燃料电池中,提高电极反应速率,增加电池的能量密度。
新型催化剂在能源领域的应用有助于解决能源紧缺和环境污染等问题,具有重要的意义。
四、新型催化剂的开发与研究方法新型催化剂的开发与研究需要有科学的方法和手段。
常见的方法包括合成新型催化剂、对催化剂进行表征和评价等。
合成新型催化剂可以采用溶胶-凝胶法、气相沉积法、共沉淀法等多种方法。
而催化剂的表征和评价则可以通过X射线衍射、透射电子显微镜等技术手段实现。
浅谈悬浮床与固定床渣油加氢改质技术区别发布时间:2021-10-14T07:10:35.993Z 来源:《科学与技术》2021年17期作者:刘圆元[导读] 固定床渣油加氢钙质技术出现的时间比较早,工艺相对较为成熟,悬浮床渣油加氢技术则是一种比较新的技术手段。
刘圆元中国石油四川石化有限责任公司 611930摘要:固定床渣油加氢钙质技术出现的时间比较早,工艺相对较为成熟,悬浮床渣油加氢技术则是一种比较新的技术手段。
本文详细对比了两种技术性质上和工艺过程的不同,可以根据实际情况选择相应的工艺手段,以便实现更大的经济价值。
关键词:悬浮床;固定床;渣油;加氢引言由于现代化社会发展对于环保的高度要求,工业生产对于油品质量的要求也越来越高,因此,渣油轻质化技术得到了行业内高度重视并不断发展成熟,悬浮床和固定床加氢技术作为渣油改质的主要技术手段,得到了迅速发展。
悬浮床和固定床渣油加氢技术在性质和工艺上都有明显的不同,下面就两种技术的不同方面进行对比。
一、催化剂的区别1.悬浮床渣油加氢处理催化剂按照催化剂的溶解性特点来分,悬浮床渣油加氢催化剂主要可以分为两种,一种是固体粉末催化剂,另一种是没有载体的均相催化剂。
因为在工艺中加入催化剂的剂量非常小,再加上原料自身就含有一定比例的硫,所以也就可以进行在线硫化来参与反应。
影响悬浮床催化剂加氢性能的主要原因有催化剂在原料油中的分散情况和金属活动组分。
通常情况下,固定粉末催化剂的活动要稍低于均相催化剂,因为均相催化剂在渣油原料中的接触面积比较大,加氢反应也就更加迅速。
2.固定床渣油加氢处理催化剂因为渣油原料的组成成分复杂较高,其中包含着比较多的金属成分,因此使用的催化剂类型也比较多。
固定床渣油加氢催化剂的物理性质诸如孔体积、空隙率等因素密切关系这催化剂的活性和使用时间。
二、反应机理的区别渣油加氢改质工艺较为复杂,因为渣油原料中含有大量的重金属以及其他化合物。
悬浮床和固定床渣油加氢工艺过程均会发生加氢和热裂化反应,但其中也存在些许区别。
《化学工程与工艺论文》化学工程与工艺论文(一):题目:关于绿色化学工程与工艺对化学工业节能的促进作用探析关键词:绿色化学工程;工艺;化学工业节能摘要:在处理有害、有毒物质时,采用传统化化学生产方法具有必须的滞后性,严重影响了化学工业的发展速率。
所以,应结合应用绿色化学工程和工艺,这样一来方可减少成本费用的支出,进而提升资源利用率。
本文主要探讨了绿色化学工程与工艺对化学工业节能的作用,并提出了个人见解,对今后的研究具有必须的参考好处。
在当前社会的发展中,科技水平得到了飞速发展,而经济发展速度也随之加快,在这一背景条件的影响下,环境污染也在不断加剧,而自然生态系统也遭到了破坏。
因此,我们务必要提高对自然环境的保护力度,合理应用各项资源和能源,提升其应用效率,这样一来方可到达可持续发展的目的。
本文主要探讨了绿色化学工程与工艺对化学工业节能的作用,而这也是减少化工污染以及能源消耗的主要渠道,并对人类的发展具有必须的现实好处。
1绿色化学工程与工艺对化学工业节能的促进作用1.1正确选取清洁生产技术结合当前社会的发展形势进行思考,由于清洁生产技术所需的成本比较高,当对生产原料进行相应的处理之后,能够有效提升资源利用率,进而提升化学生产的综合品质。
现阶段,比较常见的清洁生产技术可包括以下几种,即:脱硝技术与脱硫技术,透过采用合理的方式对垃圾物质以及具有必须污染性的化学物质等采用此种方式处理后,均会使其变为沼气。
在此过程中,也务必要合理应用自然发电技术,例如风能等,研发出更多的新型技术手段,尤其是应加大生物工程的研发力度,推出很多全新的清洁生产技术,方可提升资源利用率,减少污染状况,保护自然生态环境。
1.2合理应用生物技术透过对化学工程生产进行分析后可发现,应用比较广泛的生物技术主要可包括两个方面,即:生物化工以及化学仿生学、例如,在正确使用生物酶后,结合相应的绿色化工工程以及工艺,能够有效提高资源的利用率,促使再生资源能够得以使用,进而提高产品质量。
辽宁石油化工大学中文题目加氢裂化工艺的进展和发展趋势教学院研究生学院专业班级化学工程0904学生姓名张国伟学生学号 01200901030412完成时间 2010 年6月20日加氢裂化工艺的进展和发展趋势张国伟(辽宁石油化工大学抚顺113001)摘要:加氢裂化是油料轻质化的有效方法之一,且原料适应性强,他可以将馏分油到渣油的各种油料转化为更轻的油品,随世界范围内原油变重,重油加氢裂化技术发展较快。
本文主要介绍了重油高压和中压加氢裂化技术的特点,阐述了固定床、沸腾床、移动床、悬浮床重油加氢裂化技术在世界范围内工艺发展趋势。
关键字:加氢裂化;工艺;技术特点; 发展趋势Hydrocracking process of development and trendsZhang guowei(Liaoning petrochemical industry university fushun 113001)Abstract:The hydrocracking is one of effective methods which transfer fuel oils to light one , and raw material is uncompatible.Tt may transform range from the fraction oil to residual oil of each kinds of fuel oils to a lighter oil quality. Accompanying with the crude oil change heavy ,the heavy oil hydrocracking technological development is pretty quick.This article mainly introduce the characteristics of the heavy oil hydrocracking technology in high pressure and mid-presses, The article elaborates the fixed bed, the ebullition bed, the moving bed, hang the floating floor heavy oil hydrocracking technology in the worldwide scale and the craft trend of development. Key word:hydrocracking; artwork; tech- characteristic; development tendency重油加氢裂化工艺是重质油轻质化的重要手段之一,其最大优势在于可以根据加工原料油类型的不同和市场对各类产品需求的变化, 通过在高温、氢气、催化剂和高压或中压的条件下, 调整工艺条件使重油发生裂化反应, 转化为气体、汽油、煤油、柴油等各种清洁马达燃料和优质化工原料,最大限度满足市场的不同需求。
石油炼化七种工艺流程从原油到石油要经过多种工艺流程,不同的工艺流程会将同样的原料生产出不同的产品.从原油到石油的基本途径一般为:①将原油先按不同产品的沸点要求,分割成不同的直馏馏分油,然后按照产品的质量标准要求,除去这些馏分油中的非理想组分;②通过化学反应转化,生成所需要的组分,进而得到一系列合格的石油产品.石油炼化常用的工艺流程为常减压蒸馏、催化裂化、延迟焦化、加氢裂化、溶剂脱沥青、加氢精制、催化重整.一常减压蒸馏1.原料:原油等.2.产品:2.石脑油、粗柴油瓦斯油、渣油、沥青、减一线.3.基本概念:常减压蒸馏是常压蒸馏和减压蒸馏的合称,基本属物理过程:原料油在蒸馏塔里按蒸发能力分成沸点范围不同的油品称为馏分,这些油有的经调合、加添加剂后以产品形式出厂,相当大的部分是后续加工装置的原料.常减压蒸馏是炼油厂石油加工的第一道工序,称为原油的一次加工,包括三个工序:a.原油的脱盐、脱水;b.常压蒸馏;c.减压蒸馏.4.生产工艺:原油一般是带有盐份和水,能导致设备的腐蚀,因此原油在进入常减压之前首先进行脱盐脱水预处理,通常是加入破乳剂和水.原油经过流量计、换热部分、沏馏塔形成两部分,一部分形成塔顶油,经过冷却器、流量计,最后进入罐区,这一部分是化工轻油即所谓的石脑油;一部分形成塔底油,再经过换热部分,进入常压炉、常压塔,形成三部分,一部分柴油,一部分蜡油,一部分塔底油;剩余的塔底油在经过减压炉,减压塔,进一步加工,生成减一线、蜡油、渣油和沥青.各自的收率:石脑油轻汽油或化工轻油占1%左右,柴油占20%左右,蜡油占30%左右,渣油和沥青约占42%左右,减一线约占5%左右.常减压工序是不生产汽油产品的,其中蜡油和渣油进入催化裂化环节,生产汽油、柴油、煤油等成品油;石脑油直接出售由其他小企业生产溶剂油或者进入下一步的深加工,一般是催化重整生产溶剂油或提取萃类化合物;减一线可以直接进行调剂润滑油.5.生产设备:常减压装置是对原油进行一次加工的蒸馏装置,即将原油分馏成汽油、煤油、柴油、蜡油、渣油等组分的加工装置.原油蒸馏一般包括常压蒸馏和减压蒸馏两个部分.a.常压蒸馏塔所谓原油的常压蒸馏,即为原油在常压或稍高于常压下进行的蒸馏,所用的蒸馏设备叫做原油常压精馏塔或称常压塔.常压蒸馏剩下的重油组分分子量大、沸点高,且在高温下易分解,使馏出的产品变质并生产焦炭,破坏正常生产.因此,为了提取更多的轻质组分,往往通过降低蒸馏压力,使被蒸馏的原料油沸点范围降低.这一在减压下进行的蒸馏过程叫做减压蒸馏.b.减压蒸馏塔减压蒸馏是在压力低于100KPa的负压状态下进行的蒸馏过程.减压蒸馏的核心设备是减压塔和它的抽真空系统.减压塔的抽真空设备常用的是蒸汽喷射器也称蒸汽吸射泵或机械真空泵.其中机械真空泵只在一些干式减压蒸馏塔和小炼油厂的减压塔中采用,而广泛应用的是蒸汽喷射器.二催化裂化一般原油经过常减压蒸馏后可得到的汽油,煤油及柴油等轻质油品仅有10~40% ,其余的是重质馏分油和残渣油.如果想得到更多轻质油品,就必须对重质馏分和残渣油进行二次加工.催化裂化是最常用的生产汽油、柴油生产工序,汽油柴油主要是通过该工艺生产出来.这也是一般石油炼化企业最重要的生产的环节.1.原料:渣油和蜡油70%左右,催化裂化一般是以减压馏分油和焦化蜡油为原料,但是随着原油日益加重以及对轻质油越来越高的需求,大部分石炼化企业开始在原料中搀加减压渣油,甚至直接以常压渣油作为原料进行炼制.2.产品:汽油、柴油、油浆重质馏分油、液体丙烯、液化气;各自占比汽油占42%,柴油占%,丙烯占%,液化气占8%,油浆占12%.3.基本概念:催化裂化是在有催化剂存在的条件下,将重质油例如渣油加工成轻质油汽油、煤油、柴油的主要工艺,是炼油过程主要的二次加工手段.属于化学加工过程.4.生产工艺:常渣和腊油经过原料油缓冲罐进入提升管、沉降器、再生器形成油气,进入分馏塔.一部分油气进入粗汽油塔、吸收塔、空压机进入凝缩油罐,经过再吸收塔、稳定塔、最后进行汽油精制,生产出汽油.一部分油气经过分馏塔进入柴油汽提塔,然后进行柴油精制,生产出柴油.一部分油气经过分馏塔进入油浆循环,最后生产出油浆.一部分油气经分馏塔进入液态烃缓冲罐,经过脱硫吸附罐、砂滤塔、水洗罐、脱硫醇抽提塔、预碱洗罐、胺液回收器、脱硫抽提塔、缓冲塔,最后进入液态烃罐,形成液化气.一部分油气经过液态烃缓冲罐进入脱丙烷塔、回流塔、脱乙烷塔、精丙稀塔、回流罐,最后进入丙稀区球罐,形成液体丙稀.液体丙稀再经过聚丙稀车间的进一步加工生产出聚丙稀.5.生产设备:a.再生器再生器的主要作用是烧去结焦催化剂上的焦炭以恢复催化剂的活性,同时也提供裂化所需的热量.再生器由壳体、旋风分离器、空气分布器、辅组燃烧室和取热器组成b.提升管反应器直管式:多用于高低并列式反再系统,特点是从沉降器底部直接插入,结构简单,压降小.折叠式:多用于同轴式式反再系统.c.沉降器沉降器的作用是使来自提升管的反应油气和催化剂分离,油气经旋风分离器分出夹带催化剂后经集气室去分馏系统;由快速分离器出来的催化剂靠重力在沉降器中向下沉降,落入气体段.d.三机主风机:供给再生器烧焦用空气.气压机:用于给分馏系统来的富气升压,然后送往吸收稳定系统.增压机:供给Ⅳ型反应再生装置密相提升管调节催化剂循环量.e.三阀单动滑阀:在Ⅳ型催化裂化装置中,正常操作时全开,紧急情况下关闭,切断两器联系,防止催化剂倒流;在提升管催化裂化装置中调节两器催化剂循环量.双动滑阀:安装在再生器出口和放空烟囱之间,调节再生器的压力,保持两器压力平衡.塞阀:在同轴式催化裂化装置中调节催化剂的循环量.三延迟焦化焦炭化简称焦化是深度热裂化过程,也是处理渣油的手段之一.它又是唯一能生产石油焦的工艺过程,是任何其他过程所无法代替的.尤其是某些行业对优质石油焦的特殊需求,致使焦化过程在炼油工业中一直占据着重要地位.1.原料:延迟焦化与催化裂化类似的脱碳工艺以改变石油的碳氢比,延迟焦化的原料可以是重油、渣油甚至是沥青,对原料的品质要求比较低.渣油主要的转化工艺是延迟焦化和加氢裂化.2.产品:主要产品是蜡油、柴油、焦碳、粗汽油和部分气体,各自比重分别是:蜡油占23-33%,柴油22-29%,焦碳15-25%,粗汽油8-16%,气体7-10%,外甩油1-3%.3.基本概念焦化是以贫氢重质残油如减压渣油、裂化渣油以及沥青等为原料,在高温400~500℃下进行深度热裂化反应.通过裂解反应,使渣油的一部分转化为气体烃和轻质油品;由于缩合反应,使渣油的另一部分转化为焦炭.一方面由于原料重,含相当数量的芳烃,另一方面焦化的反应条件更加苛刻,因此缩合反应占很大比重,生成焦炭多.4.生产工艺延迟焦化装置的生产工艺分为焦化和除焦两部分,焦化为连续操作,除焦为间隙操作.由于工业装置一般设有两个或四个焦炭塔,所以整个生产过程仍为连续操作.a.原油预热,焦化原料减压渣油先进入原料缓冲罐,再用泵送入加热炉对流段升温至340~350 ℃ 左右.b.经预热后的原油进入分馏塔底,与焦炭塔产出的油气在分馏塔内塔底温度不超过400℃换热.c.原料油和循环油一起从分馏塔底抽出,用热油泵打进加热炉辐射段,加热到焦化反应所需的温度500 ℃ 左右,再通过四通阀由下部进入焦炭塔,进行焦化反应.d.原料在焦炭塔内反应生成焦炭聚积在焦炭塔内,油气从焦炭塔顶出来进入分馏塔,与原料油换热后,经过分馏得到气体、汽油、柴油和蜡油.塔底循环油和原料一起再进行焦化反应.5.生产设备a.焦炭塔焦炭塔是用厚锅炉钢板制成的空筒,是进行焦化反应的场所.b.水力除焦设备焦炭塔是轮换使用的,即当一个塔内焦炭聚结到一定高度时,通过四通阀将原料切换到另一个焦炭塔.聚结焦炭的焦炭塔先用蒸汽冷却,然后进行水力除焦.c. 无焰燃烧炉焦化加热炉是本装置的核心设备,其作用是将炉内迅速流动的渣油加热至500℃左右的高温.因此,要求炉内有较高的传热速率以保证在短时间内给油提供足够的热量,同时要求提供均匀的热场,防止局部过热引起炉管结焦.为此,延迟焦化通常采用无焰炉.四加氢裂化重油轻质化基本原理是改变油品的相对分子质量和氢碳比,而改变相对分子质量和氢碳比往往是同时进行的.改变油品的氢碳比有两条途径,一是脱碳,二是加氢.1.原料:1.重质油等2.产品:2.轻质油汽油、煤油、柴油或催化裂化、裂解制烯烃的原料3.基本概念加氢裂化属于石油加工过程的加氢路线,是在催化剂存在下从外界补入氢气以提高油品的氢碳比.加氢裂化实质上是加氢和催化裂化过程的有机结合,一方面能使重质油品通过裂化反应转化为汽油、煤油和柴油等轻质油品,另一方面又可防止像催化裂化那样生成大量焦炭,而且还可将原料中的硫、氯、氧化合物杂质通过加氢除去,使烯烃饱和.4.生产流程按反应器中催化剂所处的状态不同,可分为固定床、沸腾床和悬浮床等几种型式.1固定床加氢裂化固定床是指将颗粒状的催化剂放置在反应器内,形成静态催化剂床层.原料油和氢气经升温、升压达到反应条件后进入反应系统,先进行加氢精制以除去硫、氮、氧杂质和二烯烃,再进行加氢裂化反应.反应产物经降温、分离、降压和分馏后,目的产品送出装置,分离出含氢较高 80%,90%的气体,作为循环氢使用.未转化油称尾油可以部分循环、全部循环或不循环一次通过.2沸腾床加氢裂化沸腾床又称膨胀床工艺是借助于流体流速带动具有一定颗粒度的催化剂运动,形成气、液、固三相床层,从而使氢气、原料油和催化剂充分接触而完成加氢反应过程.沸腾床工艺可以处理金属含量和残炭值较高的原料如减压渣油.并可使重油深度转化;但反应温度较高,一般在400~450℃范围内.此种工艺比较复杂,国内尚未工业化.3悬浮床浆液床加氢工艺悬浮床工艺是为了适应非常劣质的原料而重新得到重视的一种加氢工艺.其原理与沸腾床相类似,其基本流程是以细粉状催化剂与原料预先混合,再与氢气一向进入反应器自下而上流动,催化剂悬浮于液相中,进行加氢裂化反应,催化剂随着反应产物一起从反应器顶部流出.该装置能加工各种重质原油和普通原油渣油,但装置投资大.该工艺目前在国内尚属研究开发阶段.5.生产设备加氢工艺生产装置的主要设备是在高温、高压及有氢气和硫化氢存在的条件下运行的,故其设计、制造和材料的选用等要求都很高,对生产操作的控制也极严格.高压加氢反应器是装置中的关键设备,工作条件苛刻,制造困难,价格昂贵.根据介质是否直接接触金属器壁,分为冷壁反应器和热壁反应器两种结构.反应器由筒体和内部结构两部分组成.a.加氢反应器筒体反应器筒体分为冷壁筒和热壁筒两种.b.加氢反应器内件加氢反应是在高温高压及有腐蚀介质H2、H2S的条件下操作,除了在材质上要注意防止氢腐蚀及其他介质的腐蚀以外,加氢反应器还应保证:反应物油气和氢在反应器中分布均匀,保证反应物与催化剂有良好的接触;及时排除反应热,避免反应温度过高和催化剂过热.以保证最佳反应条件和延长催化剂寿命;在反应物均匀分布的前提下,反应器内部的压力降不致过大,以减少循环压缩机的负荷,节省能源.为此,反应器内部需设置必要的内部构件,以达到气液均匀分布为主要目标.典型的反应器内构件包括:入口扩散器、气液分配盘、去垢篮筐、催化剂支持盘、急冷氢箱及再分配盘、出口集合器等.五溶剂脱沥青溶剂脱沥青是一个劣质渣油的预处理过程.用萃取的方法,从原油蒸馏所得的减压渣油有时也从常压渣油中,除去胶质和沥青,以制取脱沥青油同时生产石油沥青的一种石油产品精制过程.1.原料:1.减压渣油或者常压渣油等重质油2.产品:2.脱沥青油等3.基本概念溶剂脱沥青是加工重质油的一种石油炼制工艺,其过程是以减压渣油等重质油为原料,利用丙烷、丁烷等烃类作为溶剂进行萃取,萃取物即脱沥青油可做重质润滑油原料或裂化原料,萃余物脱油沥青可做道路沥青或其他用途.4.生产流程包括萃取和溶剂回收.萃取部分一般采取一段萃取流程,也可采取二段萃取流程.沥青与重脱沥青油溶液中含丙烷少,采用一次蒸发及汽提回收丙烷,轻脱沥青油溶液中含丙烷较多,采用多效蒸发及汽提或临界回收及汽提回收丙烷,以减少能耗.临界回收过程,是利用丙烷在接近临界温度和稍高于临界压力丙烷的临界温度℃、临界压力的条件下,对油的溶解度接近于最小以及其密度也接近于最小的性质,使轻脱沥青油与大部分丙烷在临界塔内沉降、分离,从而避免了丙烷的蒸发冷凝过程,因而可较多地减少能耗.国内的溶剂脱沥青工艺流程主要有沉降法二段脱沥青工艺、临界回收脱沥青工艺、超临界抽提溶剂脱沥青工艺.1沉降法二段脱沥青工艺沉降法两段脱沥青是在常规一段脱沥青基础上发展起来的.在研究大庆减压渣油的特有性质的基础上,注意到常规的丙烷脱沥青不能充分利用好该资源,而开发出的一种新脱沥青工艺2临界回收脱沥青工艺溶剂对油的溶解能力随温度的升高而降低,当温度和压力接近到临界条件时,溶剂对油的溶解能力已降到很低,这时,该丙烷溶剂经冷却后可直接循环使用,不必经过蒸发回收.3超临界抽提溶剂脱沥青工艺超临界流体抽提是利用抽提体系在临界区附近具有反常的相平衡特性及异常的热力学性质,通过改变温度、压力等参数,使体系内组分间的相互溶解度发生剧烈变化,从而实现组分分离的技术5.生产设备a.抽提塔抽提塔的作用有:在渣油进口和主溶剂进口之间为抽提区,渣油进口以上部分为分馏区,主溶剂进口以下为沥青沉降区.b.溶剂临界/超临界回收塔脱沥青油溶液分离器又称为超临界塔或临界塔,它实际上是一个可在溶剂临界压力以上操作的液—液分离器,用以回收脱沥青油溶液中的溶剂.c.增压泵脱沥青油溶液增压泵是实现超临界溶剂回收工艺的关键设备,它需要具有以上的扬程,入口能承受高的压力和温度,泵的作用是能保证实现溶剂在系统内循环.六加氢精制加氢精制一般是指对某些不能满足使用要求的石油产品通过加氢工艺进行再加工,使之达到规定的性能指标.1.精制原料:含硫、氧、氮等有害杂质较多的汽油、柴油、煤油、润滑油、石油蜡等.2.精制产品:精制改质后的汽油、柴油、煤油、润滑油、石油蜡等产品.3.基本概念加氢精制工艺是各种油品在氢压力下进行催化改质的一个统称.它是指在一定的温度和压力、有催化剂和氢气存在的条件下,使油品中的各类非烃化合物发生氢解反应,进而从油品中脱除,以达到精制油品的目的.加氢精制主要用于油品的精制,其主要目的是通过精制来改善油品的使用性能.4.生产流程加氢精制的工艺流程一般包括反应系统、生成油换热、冷却、分离系统和循环氢系统三部分.a.反应系统原料油与新氢、循环氢混合,并与反应产物换热后,以气液混相状态进入加热炉这种方式称炉前混氢,加热至反应温度进入反应器.反应器进料可以是气相精制汽油时,也可以是气液混相精制柴油或比柴油更重的油品时.反应器内的催化剂一般是分层填装,以利于注冷氢来控制反应温度.循环氢与油料混合物通过每段催化剂床层进行加氢反应.b.生成油换热、冷却、分离系统反应产物从反应器的底部出来,经过换热、冷却后,进入高压分离器.在冷却器前要向产物中注入高压洗涤水,以溶解反应生成的氨和部分硫化氢.反应产物在高压分离器中进行油气分离,分出的气体是循环氢,其中除了主要成分氢外,还有少量的气态烃不凝气和未溶于水的硫化氢;分出的液体产物是加氢生成油,其中也溶解有少量的气态烃和硫化氢;生成油经过减压再进入低压分离器进一步分离出气态烃等组分,产品去分馏系统分离成合格产品.c.循环氢系统从高压分离器分出的循环氢经储罐及循环氢压缩机后,小部分约30%直接进入反应器作冷氢,其余大部分送去与原料油混合,在装置中循环使用.为了保证循环氢的纯度,避免硫化氢在系统中积累,常用硫化氢回收系统.一般用乙醇胺吸收除去硫化氢,富液吸收液再生循环使用,解吸出来的硫化氢送到制硫装置回收硫磺,净化后的氢气循环使用.5.生产设备a.加热炉原料油与新氢、循环氢混合,并与反应产物换热后,以气液混相状态进入加热炉加热至反应温度进入反应器.b.反应器换热、炉后混氢进入反应器.在反应器催化剂床层反应,硫、氧、氮和金属化合物等即变为易于除掉的物质通过加氢变为硫化氢、水及氨等,烯烃同时被饱和.c.高压低压分离器加氢生成油经过换热和水冷后依次进入高压,低压分离器.d. 汽提塔从低压分离器来的加氢生成油与汽提过的加氢生成油换热,并进入加热炉加热,然后进入汽提塔,其作用是把残留在油中的气体及轻馏分汽提掉.汽提塔底出来的生成油经过换热和水冷却后,为加氢精制产品.七催化重整1.主要原料:石脑油轻汽油、化工轻油、稳定轻油,其一般在炼油厂进行生产,有时在采油厂的稳定站也能产出该项产品.质量好的石脑油含硫低,颜色接近于无色.2.主要产品:高辛烷值的汽油、苯、甲苯、二甲苯等产品这些产品是生产合成塑料、合成橡胶、合成纤维等的主要原料、还有大量副产品氢气.3.基本概念重整:烃类分子重新排列成新的分子结构.催化重整装置:用直馏汽油即石脑油或二次加工汽油的混合油作原料,在催化剂铂或多金属的作用下,经过脱氢环化、加氢裂化和异构化等反应,使烃类分子重新排列成新的分子结构,以生产C6~C9芳烃产品或高辛烷值汽油为主要目的,并利用重整副产氢气供二次加工的热裂化、延迟焦化的汽油或柴油加氢精制.4.生产流程根据催化重整的基本原理,一套完整的重整工业装置大都包括原料预处理和催化重整两部分.以生产芳烃为目的的重整装置还包括芳烃抽提和芳烃精馏两部分.a.原料预处理将原料切割成适合重整要求的馏程范围和脱去对催化剂有害的杂质.预处理包括:预脱砷、预分馏、预加氢三部分.b.催化重整催化重整是将预处理后的精制油采用多金属铂铼、铂铱、铂锡催化剂在一定的温度、压力条件下,将原料油分子进行重新排列,产生环烷脱氢、芳构化、异构化等主要反应,以增产芳烃或提高汽油辛烷值为目的.工业重整装置广泛采用的反应系统流程可分为两大类:固定床反应器半再生式工艺流程和移动床反应器连续再生式工艺流程.。
化学工程与技术硕士论文:有机金属催化剂存在下脱沥青重油悬浮床加氢工艺研究
【中文摘要】本研究尝试了对含S、P基团的有机钼催化剂进行合成,并优化合成路线,研究表明,在最优反应条件下,合成的催化剂
金属含量能达到9.56wt%,金属元素钼的收率高达80wt%以上。
通过紫外光谱和红外光谱对所合成催化剂进行分析表明,催化剂中含有预期目标官能团,如P=S、Mo=S及Mo=O等官能团;同时应用不同溶剂对催化剂的油溶性进行验证,证实了所合成的有机Mo催化剂具有很好的
油溶性。
以合成的有机Mo催化剂为催化体系,选用脱沥青重油(DAO) ZH01、ZH02为反应原料,进行重油悬浮床加氢工艺的小试研究与评价。
研究初步表明,有机钼催化剂在加氢裂化反应过程中主要以MoS2的
形态存在,其平均粒径在5μm左右;X射线光电子能谱(XPS)分析表明,活性组分Mo主要以一种价态存在,结合能主要由Mo 3d5/2和Mo 3d3/2贡献;激光拉曼光谱(LRS)分析表明,在加氢裂化反应中大部分有机Mo 催化剂的活性组分是以类似MoS2六方晶体结构的四配位Mo物种存在的。
脱沥青重油悬浮床加氢小试反应的产物分布结果显示,由于原料性质不同,脱沥青重油ZH01较ZH02而言,其饱和分含量低而胶质含量高,较难达到裂化,但此原料在较高温度...
【英文摘要】The organic molybdenum catalyst that contains S, P groups was synthesized and the process of synthesis was optimized. The research shown that proportion of synthetic
catalyst’s metal can achieve 9.56wt%, and yield of molybdenum element reaches as high as 80wt%. UV spectrum and IR spectrum analysis shown that the synthetic catalyst contains expected functional group, such as P=S, Mo=S, Mo=O and so on. Simultaneously, it was deduced that synthetic catalyst has a high level of oil-solubility by mixing catalyst...
【关键词】有机金属催化剂脱沥青重油悬浮床工艺加氢裂化生焦
【英文关键词】organo-metallic catalyst deasphalted heavy oil slurry-phase technology hydrocracking coking
【目录】有机金属催化剂存在下脱沥青重油悬浮床加氢工艺研究摘要4-5Abstract5-6第一章前言
9-23 1.1 选题背景与意义9-10 1.2 国内外研究现状10-18 1.2.1 悬浮床加氢工艺概述10-13 1.2.2 分散
型加氢催化剂进展13-18 1.3 悬浮床加氢裂化影响因素
18-20 1.3.1 反应温度对产物分布的影响18-19 1.3.2 反应氢分压对产物分布的影响19 1.3.3 反应时间对产物分布的影响19 1.3.4 供氢剂、表面活性剂、供电子溶剂等助剂的考察与应用19-20 1.4 悬浮床工艺作用机制
20-22 1.4.1 加氢机理20-21 1.4.2 抑焦机理
21-22 1.5 本文主要研究内容22-23第二章有机金属催化剂的制备与表征23-34 2.1 引言23 2.2 实验部分23-26 2.2.1 实验仪器及试剂23-24 2.2.2 有机金属催化剂的制备24-25 2.2.3 有机金属催化剂的表征
25-26 2.3 结果与讨论26-33 2.3.1 有机金属催化剂合成条件的优化26-29 2.3.2 有机金属催化剂的表征及油溶性分析29-33 2.4 本章小结33-34第三章脱沥青重油悬浮床加氢裂化小试评价及反应机制研究34-60 3.1 引言
34-35 3.2 实验部分35-38 3.2.1 实验仪器及试剂
35 3.2.2 原料油性质35-37 3.2.3 实验方法及操作步骤37-38 3.3 结果与讨论38-48 3.3.1 油溶性催化剂与水溶性催化剂活性比较39 3.3.2 催化剂浓度对产物分布的影响39-42 3.3.3 氢分压对产物分布的影响
42-45 3.3.4 反应温度对产物分布的影响45-48 3.4 有机钼催化剂存在下脱沥青重油悬浮床加氢机制探讨
48-58 3.4.1 升温硫化过程分析与讨论48-54 3.4.2 加氢裂化过程分析与探讨54-58 3.5 本章小结58-60
第四章脱沥青重油悬浮床加氢中型连续试验研究60-80 4.1 引言60 4.2 实验部分60-68 4.2.1 原料性质与实验流程60-61 4.2.2 操作条件对产物分布的影响61-68 4.3 脱沥青重油产品性质分析及比较68-73 4.3.1 气体组成分析68-69 4.3.2 汽油馏分性质69 4.3.3 柴油馏分性质
69-70 4.3.4 蜡油馏分性质70-71 4.3.5 尾油馏分性质71-73 4.4 悬浮床加氢工艺处理脱沥青油与其他劣质重油对比73-79 4.4.1 悬浮床加氢原料油性质分析
73-76 4.4.2 悬浮床加氢连续评价结果对比76-79 4.5 本章小结79-80第五章结论80-82参考文献
82-88攻读硕士学位期间取得的学术成果88-89致谢89。