重质油悬浮床加氢技术新进展
- 格式:pdf
- 大小:829.38 KB
- 文档页数:6
VCC悬浮床加氢裂化技术简介主要流程:全馏分煤焦油(不经预处理、包括焦油沥青)与添加剂混合后经高压进料泵和预热器进入悬浮床加氢裂化反应器(该反应器无内件,采用上流模式操作。
为保证转化率,该反应器采用多台串联,通常为3台)进行初步转化(热裂化)生成比煤焦油轻的烃类,中间不发生缩合反应或结焦。
未转化的渣油和添加剂在热分离器中与汽化的反应产物和循环气分离。
热分离器的底部产物进入减压闪蒸塔回收馏分油,回收的馏分油与热分离器的顶部产物一起送入加氢处理段,该处理段采用固定床催化反应器,可设计成加氢精制也可设计成加氢裂化,其操作压力与悬浮床操作压力基本相当。
加氢处理后的物料进入冷分离器,在冷分离器实现馏分油与气体的分离,气体经净化后,氢气经循环经压缩机进入氢气循环系统,含硫尾气进硫磺装置。
来自冷分离器底部馏分油则进入分馏塔依次切割出C1-C4、石脑油、柴油和蜡油,柴油、汽油符合国家标准,可直接外卖,蜡油则再次循环至悬浮床反应器和固定床反应器深度处理。
另:减压闪蒸塔产生约5%的残渣,可作沥青使用。
悬浮床加氢处理技术工艺是少量催化剂以固体粉末或液体形式分散在原料中,原料和氢气加热到反应温度后自下而上以气液固三相浆形式通过反应器。
悬浮床加氢裂化的初步转化本质上属于热裂化,部分程度上与其他脱碳工艺类似,高氢分压阻止可能伴随分子裂解发生的缩合反应(脱碳工艺中可能发生此类反应,并生成较重的渣油,最终生成焦炭)。
因此,与其他热化学过程不同,该反应系统可生成比进料轻的产品,不发生缩合反应或焦炭类产品。
溶解沥青质的饱和馏分很容易裂解,随着转化反应的进行,渣油(煤焦油)失去其溶解能力,沥青质沉淀下来。
为了帮助理解,可以对比溶剂脱沥青工艺。
溶剂脱沥青工艺中,当饱和馏分溶解在轻质支链烷烃溶剂中时会发生分相,沥青质则沉淀为沥青。
沉淀下来的含有重金属的未转化的的沥青质,会粘附到设备上,导致严重的结垢。
为避免结垢,沸腾床和渣油加氢裂化技术不得不降低单程转化率或借助循环或添加大量外来的芳烃溶剂,以便溶解未转化的沥青质。
190近年来随着原油重质化、劣质化趋势的加剧,以及市场对轻质油品需求逐年加大,在市场需求和企业追求效益最大化的推动下,重油尤其是渣油的深加工越来越引起企业的重视[1]。
传统的固定床渣油加氢处理工艺渣油转化率较低,近年来国内在渣油加氢工艺上陆续引进沸腾床渣油加氢、浆态床渣油加氢工艺,两种工艺在渣油的转化率方面较传统固定床渣油加氢得到大大提高。
但是两种工艺工业化较晚,技术成熟度还有待继续完善,反应出问题主要是在高转化率下的结焦问题。
文章重点阐述浆态床渣油加氢装置运行问题及相关研究。
1 制约浆态床渣油加氢装置长周期运行问题浆态床渣油加氢工艺具有原料适用性强、转化率高、轻油收率高、工艺简单、操作灵活以及反应器结构简单(空筒反应器)等特点[2],逐渐获得学界及企业界的认可,但浆态床新工艺在国内乃至国外没有成熟运行经验。
渣油一般分成四个组分:饱和分、芳香分、胶质和沥青质。
在渣油体系中,沥青质和胶质重组分构成混合胶团,胶质轻组分、芳香分和饱和分组分构成分散介质,混合胶团与分散介质之间具有复杂的物理化学联系并处于动态平衡。
浆态床渣油加氢裂化对减压渣油稳定系统造成破坏,使溶解沥青质的重质溶剂组分比例减少及加氢饱和使油品的芳香性降低,进而沥青质过饱和析出,成为结焦的前驱物,在反应器后的分馏系统出现结焦、堵塞等情况,影响装置的长周期运行[3-4]。
经统计发现结焦部位大多出现在:反应器、换热器、热高分、热低分、浆液汽提塔、减压塔及相连接的管线、管道过滤器等部位,结焦区域分布见图1。
2 装置长周期运转技术措施装置长周期运转的常规手段一般有控制原料性质稳定、控制反应各操作参数稳定、控制动静设备及仪表阀门不出现故障或出现故障及时处理等,其中原料性质稳定包括原料中沥青质、金属、残碳等含量稳定,操作参数稳定包括温度、压力、处理量等参数稳定。
接下来重点阐述几项技改,以防止在事故状态下造成装置大面积结焦堵塞缩短运行周期甚至中断生产运行。
2015年9月第23卷第9期 工业催化INDUSTRIALCATALYSIS Sept.2015Vol.23 No.9综述与展望收稿日期:2015-02-03;修回日期:2015-05-05 作者简介:王明进,1963年生,湖南省岳阳市人,硕士,高级工程师,研究方向为化工催化剂研究开发。
通讯联系人:童凤丫,博士。
浆态床渣油加氢催化剂研究进展王明进1,童凤丫2(1.中国石化催化剂有限公司长岭分公司,湖南岳阳414012;2.中国石化石油化工科学研究院,北京100083)摘 要:渣油加氢技术主要有固定床、沸腾床、移动床和浆态床。
浆态床技术不存在催化剂的失活问题,几乎能处理各种性质的原料,是近年来的研究热点。
浆态床技术通过加入催化剂达到劣质渣油改质的目的,使用的催化剂可分为不具有加氢活性的添加剂和具有加氢活性的催化剂两大类,添加剂的作用在渣油高转化率下较明显,所起的作用是阻隔生焦中间相的聚集以减少生焦;催化剂主要通过提供活性氢抑制大分子自由基的缩合和生焦并改质劣质渣油。
对浆态床渣油加氢催化剂和添加剂的使用情况与机理进行总结,对未来发展进行展望,认为低成本有加氢活性的催化剂是未来浆态床渣油加氢催化剂的研究重点。
关键词:石油化学工程;渣油;浆态床;加氢催化剂;添加剂doi:10.3969/j.issn.1008 1143.2015.09.001中图分类号:TE624.9+3;TQ426.95 文献标识码:A 文章编号:1008 1143(2015)09 0659 07Developmentinthecatalystsforresidualoilhydrocrakinginslurry bedWangMingjin1,TongFengya2(1.ChanglingBranchofSinopecCatalystCo.,Ltd.,Yueyang414012,Hunan,China;2.SinopecPetrochemicalResearchInstitute,Beijing100083,China)Abstract:Thetechnologiesforresidualoilupgradingmainlyincludethetechniquesoffix bed,ebullated bed,moving bedandslurry bed.Withthehighflexibilitytorawmaterialsandwithoutthecatalystdeacti vationproblem,theslurry bedtechnologyhasbeenthehotspotofresearch.Inordertoachieveresidueupgrading,catalysthastobeusedinslurrybedtechnology.Thehydrocrakingcatalystsusedintheslurrybedscanbedividedintotwokinds:theadditiveswhichhadnohydrogenationactivityandcatalystswhichhadcatalyticactivity.Theadditivepossessedobviousinfluenceontheresidualoilhydrogenationprocessundertheconditionofhighresidueconversion,andplayedaroleofprohibitingphysicaladsorptionofthecokemesophaseduringthecokingformationprocess.Thecatalystsmainlypreventedtheaggregationofmacromolecularfreeradicalbyofferingactivehydrogenatom,andfinallyreducedthecokeformation.Inthisarticle,theapplicationstatusandmechanismsofthecatalystsandtheadditivesusedforresidualoilhydrogenationinslurry bedprocesseswerereviewed,andtheirdevelopmentprospectsinthefuturewereoutlined.Itispointedoutthattheresearchonresidualoilhydrotreatingcatalystsusedfortheslurrybedswillbefocusedonthecatalystswithlow costandhydrogenationactivity.Keywords:petrochemicaltechnology;residualoil;slurry bed;hydrogenationcatalyst;additivedoi:10.3969/j.issn.1008 1143.2015.09.001CLCnumber:TE624.9+3;TQ426.95 Documentcode:A ArticleID:1008 1143(2015)09 0659 07Copyright ©博看网. All Rights Reserved. 660 工业催化 2015年第9期 2013年的IEA预测数据表明,在未来的20年,化石能源仍将占据全球能源构成中的最大板块,约为30%,石油需求将从2011年的4.52亿吨增加到2035年的5.29亿吨[1]。
加氢裂化:加氢裂化,是一种石化工业中的工艺,即石油炼制过程中在较高的压力的温度下,氢气经催化剂作用使重质油发生加氢、裂化和异构化反应,转化为轻质油(汽油、煤油、柴油或催化裂化、裂解制烯烃的原料)的加工过程。
它与催化裂化不同的是在进行催化裂化反应时,同时伴随有烃类加氢反应。
加氢裂化实质上是加氢和催化裂化过程的有机结合,能够使重质油品通过催化裂化反应生成汽油、煤油和柴油等轻质油品,又可以防止生成大量的焦炭,还可以将原料中的硫、氮、氧等杂质脱除,并使烯烃饱和。
加氢裂化具有轻质油收率高、产品质量好的突出特点。
基本信息英文名称:hydrocracking说明:在较高的压力的温度下[10-15兆帕(100-150大气压),400℃左右],氢气经催化剂作用使重质油发生加氢、裂化和异构化反应,转化为轻质油(汽油、煤油、柴油或催化裂化、裂解制烯烃的原料)的加工过程。
它与催化裂化不同的是在进行催化裂化反应时,同时伴随有烃类加氢反应。
加氢裂化的液体产品收率达98%以上,其质量也远较催化裂化高。
虽然加氢裂化有许多优点,但由于它是在高压下操作,条件较苛刻,需较多的合金钢材,耗氢较多,投资较高,故没有像催化裂化那样普遍应用。
化学反应烃类在加氢裂化条件下的反应方向和深度,取决于烃的组成、催化剂性能以及操作条件,主要发生的反应类型包括裂化、加氢、异构化、环化、脱硫、脱氮、脱氧以及脱金属等。
①烷烃的加氢裂化反应。
在加氢裂化条件下,烷烃主要发生C-C键的断裂反应,以及生成的不饱和分子碎片的加氢反应,此外还可以发生异构化反应。
②环烷烃的加氢裂化反应。
加氢裂化过程中,环烷烃发生的反应受环数的多少、侧链的长度以及催化剂性质等因素的影响。
单环环烷烃一般发生异构化、断链和脱烷基侧链等反应;双环环烷烃和多环环烷烃首先异构化成五元环衍生物,然后再断链。
③烯烃的加氢裂化反应。
加氢裂化条件下,烯烃很容易加氢变成饱和烃,此外还会进行聚合和环化等反应。
加氢裂化技术的现状与趋势摘要:文章以加氢裂化技术的现状为切入点,简单阐述重质、劣化原油常见处理技术,详细分析技术发展情况,以此为基础,提出加氢裂化技术的发展趋势,明确该技术将向装置小型化、工艺简洁化、处理高效化方向发展,从而为相关工作者提供参考。
关键词:加氢裂化技术;发展现状;发展趋势引言:世界原油质量变化以劣质化、重质化为主要趋势,劣质、重质原油总量较大,高效加工利用对炼油工业提出了新的挑战,面对市场变化和环保要求提高,为将重油通过化学反应,改变重油油质,需通过加氢裂化方式,在高氢压、催化剂、加热条件下,让重油产生裂化反应,转化成喷气燃料、汽油和柴油。
加氢裂化不同原料加工难度不同,需合理使用加氢裂化技术,提高液体产物收率,从而满足原油生产需求。
1加氢裂化技术的现状1.1悬浮床加氢裂化该工艺有煤焦油加工、煤-油共炼这几种加工模式,具有投资少、转化率高、氢耗低的特点。
1.1.1 煤焦油加工煤焦油全馏分通过预处理,脱除机械杂质与水分,分离恰当馏分用于生产催化重整原料、柴油馏分或清洁车用汽油,通过加工不同品质和馏分的煤焦油,合理应用悬浮窗加氢裂化技术。
例如,兰炭企业以低温煤焦油为原料,在22MPa、468℃、0.5kg/h空速下,添加0.5%的催化剂,沥青质与重组分接近全转化,500℃以下液体吸收率超过90%。
操作中需要注意以下环节:(1)处理原材料时,需对水含量严格控制,小于1%,固定含量处于1~2%之间。
(2)试验中油水分离罐液位、油水界位初期存在波动,主要是由于煤焦油冷高分底部产物密度接近水,导致部分含有羟基物质发生乳化作用,难以有效分离油水,需经过多次调整,稳定分离曲线。
(3)预热器出口温度控制在260~280℃间。
1.1.2煤-油共炼煤-油共炼是将相应浓度煤按照比例混合重劣质油,在460℃、20MPa及催化剂下,将油煤浆通过反应器,通过加氢裂解为中、轻质油与少量烃类气体,可实现煤的直接液化,提高渣油和重油利用率从,改善了煤直接液化技术。