地震组合法原理
- 格式:ppt
- 大小:2.46 MB
- 文档页数:28
地震断裂识别解释组合
地震断裂识别解释组合是一种用于识别和解释地震数据中可能存在的断裂带或断层的技术方法。
该组合通常包括以下几个方面的技术和分析手段:
1.地震勘探技术:通过使用地震波反射或折射的原理,对地下结构进行探测。
地震勘探可以提供地下岩层的速度、密度和反射界面等信息,有助于识别潜在的断裂带或断层。
2.地震层析成像:利用地震波在地下传播的速度差异,构建地下速度结构的三维图像。
这种技术可以帮助确定断裂带或断层的位置、走向和形态。
3.地震波形分析:对地震波在不同位置的传播特征进行分析,包括振幅、相位、频率等参数。
通过对比不同位置的波形差异,可以推断出地下结构的变化,进而识别断裂带或断层。
4.地质和地球物理资料综合解释:结合地震数据与其他地质和地球物理资料,如地质图、钻井数据、重力和磁法测量等,进行综合分析和解释。
这有助于更全面地了解地下构造和断裂带的特征。
5.三维可视化:利用计算机技术将地震数据和解释结果进行三维可视化展示,以便更好地理解断裂带或断层的空间分布和形态。
通过综合应用这些技术和方法,可以提高对地震断裂的识别和解释能力,为地震灾害评估、工程建设和资源勘探等提供重要的参考依据。
需要注意的是,具体的技术选择和应用会根据研究区域的特点和数据可获取性进行调整。
《地震资料采集与处理》课程总结(仅供参考)郑重申明:采集与处理难度较大,老师上面提及‘仅供参考’四字,可能出的题目会有较大偏差,被坑了不关我事。
这总结内容有点多,包含了一些相关内容,答案还要从中自己总结,前面是老师总结的内容,后面是附加重点,内容有点混乱,因为自己都不懂的情况下总结的,仅供本人使用。
提高地震资料信噪比:1、组合法压制干扰波(面波和随机干扰波)的基本原理及其优缺点。
组合法的原理:它是利用有效波(反射波)与低速规则干扰波(面波)的传播方向或视速度的差异,根据地震信号的叠加原理和组合统计效应,来压制低速规则干扰面波和无规则的随机干扰波,以增强反射波提高地震资料信噪比(Ratio Signal to Noise)。
➢优点:(1)利用组合的方向特性,可以压制低速规则干扰面波。
(2)利用组合的统计效应,可以压制随机干扰波。
(3)组合表层的平均效应,有利于波形对比和追踪。
➢缺点:(1)组合具有低频滤波作用,可能会使波形发生畸变。
(2)组合深层的平均效应,模糊了深层反射界面构造细节,降低了地震资料的横向分辨率,易漏掉小断层、小构造。
(3)不能压制高速规则干扰波(多次反射波)。
2、多次覆盖技术(共反射点多次叠加法)压制干扰波(多次波和随机干扰波)的基本原理及其与组合法的异同点。
基本原理:它是利用有效波(一次反射波)和规则干扰波(如多次反射波) 经正常时差校正(Normal MoveOut Correction)后,存在着剩余时差的差异,来突出有效波(一次反射波),压制干扰波(如多次波),提高资料信噪比(S/N)的。
➢相同点:● 1.共反射点多次叠加法(多次覆盖法)与组合检波方法都是进行多个地震道叠加。
● 2.当界面倾斜时,多次覆盖法和组合法都存在平均效应。
● 3.多次覆盖法和组合法利用统计效应,均可压制随机干扰波。
● 4.当有剩余时差时,多次覆盖法对地震波有低通滤波作用,组合法也有低通滤波作用。
➢相同点:● 1.共反射点多次叠加法(多次覆盖法)与组合检波方法都是进行多个地震道叠加。
地震勘探原理的基本问题地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线.动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正.多次覆盖:对被追踪的界面进行多次观测.剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合等.几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh.时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x之间的关系剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差.绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波.三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三维空间的特征.水平切片:就是用一个水平面去切三维数据体得出某一时刻tk各道的信息,更便于了解地下构造形态个查明某些特殊地质现象.同相轴:一串套合很好的波峰或波谷.相位:一个完整波形的第i个波峰或波谷.纵波:传播方向与质点振动方向一致的波.转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波.反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同.地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。
《地震勘探原理》各章节的复习要点第一章绪论(不作为考试内容)第二章地震波运动学理论§2.1 几何地震学基本概念1、基本概念,如地震子波:具有多个相位、延续60~100毫秒的稳定波形称为地震子波。
几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.波面:介质中每一个同时开始振动的曲面。
射线:在几何地震学中,通常认为波及其能量是沿着一条“路径”从波源传到所考虑的一点P,然后又沿着那条“路径”从P点传向其他位置。
这样的假想路径称为通过P点的波线或射线。
振动图:在地震勘探中,每个检波器所记录的,便是那个检波器所在点处的地面振动,它的振动曲线习惯上叫做该点的振动图。
波剖面:在地震勘探中,通常把沿着测线画出的波形曲线叫做“波剖面”。
视速度和视波长:如果不是沿着波的传播方向而是沿着别的方向来确定波速和波长,得到的结果就不是波速和波长的真实值。
这样的结果叫做简谐波的视速度和视波长。
全反射:如果V2>V1,则有sinθ2>sinθ1,即θ2>θ1;当θ1增大到一定程度但还没到90°时,θ2已经增大到90°,这时透射波在第二种介质中沿界面“滑行”,出现了“全反射”现象,因为θ1再增大就不能出现透射波了。
雷克子波:2、基本原理反射定律:反射线位于入射平面内,反射角等于入射角,即。
透射定律:透射线也位于入射面内,入射角的正弦与透射角的正弦之比等于第一、第二两种介质中的波速之比,即Snell定律:惠更斯原理:在已知波前面(等时面)上的每一个点都可视为独立的、新的子波源,每个子波源都向各方发出新的波,称其为子波,子波以所在处的波速传播,最近的下一时刻的这些子波的包络面或线便是该时刻的波前面。
第三章地震资料采集方法与技术一.野外工作概述1.陆地石工基本情况介绍试验工作内容:①干扰波调查,了解工区内干扰波类型与特性。
②地震地质条件调查,了解低速带的特点、潜水面的位置、地震界面的存在与否、地震界面的质量如何(是否存在地震标志层)、速度剖面特点等。
③选择激发地震波的最佳条件,如激发岩性、激发药量、激发方式等。
④选择接收和记录地震波的最佳条件,包括最合适的观测系统、组合形式和仪器因素的选择等。
生产工作过程:地震队的组成(1)地震测量:把设计中的测线布置到工作地区,在地面上定出各激发点和接收排列上各检波点的位置(2)地震波的激发陆上地震勘探的震源类型:炸药震源和可控震源。
激发方式:炸药震源的井中激发、土坑等。
激发井深:潜水面以下1-3m,(6-7m)。
(3)地震波的接收实现方式:检波器、排列和地震仪器2.调查干扰波的方法(1)小排列(最常用)3-5m道距、连续观测目的:连续记录、追踪各种规则干扰波,分析研究干扰波的类型和分布规律。
从地震记录中可以得到干扰波的视周期和视速度等基本特征参数(2)直角排列适用于不知道干扰波传播方向的情况Δt1和Δt2的合矢量的方向近似于干扰波的传播方向(3)三分量检波器观测法(4)环境噪声调查信噪比:有效波的振幅/干扰波的振幅(规则)信号的能量/噪声的能量3.各种干扰波的类型和特点(1)规则干扰指具有一定主频和一定视速度的干扰波,如面波、声波、浅层折射波、侧面波等。
面波(地滚波):在地震勘探中也称为地滚波,存在于地表附近,振幅随深度增加呈指数衰减。
其主要特点:①低频:几Hz~20Hz;②频散(Dispersion):速度随频率而变化;③低速:100m/s ~1000m/s,通常为200m/s~500m/s;④质点的振动轨迹为逆时针方向的椭圆。
面波时距曲线是直线,记录呈现“扫帚状”,面波能量的强弱与激发岩性、激发深度以及表层地震地质条件有关。
(能量较强)声波:速度为340m/s左右,比较稳定,频率较高,延续时间较短,呈窄带出现。
第一章地震波的运动学第一节地震波的基本概念第二节反射地震波的运动学第三节地震折射波运动学第二章地震波动力学的基本概念第一节地震波的频谱分析第二节地震波的能量分析第三节影响地震波传播的地质因素第四节地震记录的分辨率第三章地震勘探野外数据的野外采集第一节野外工作方法第二节地震勘探野外观测系统第三节地震波的激发和接收第四节检波器组合第五节地震波速度的野外测定第四章共中心点迭加法原理第一节共中心点迭加法原理第二节多次反射波的特点第三节多次叠加的特性第四节多次覆盖参数对迭加效果的影响及其选择原则第五节影响迭加效果的因素第五章地震资料数字处理第一节提高信噪比的数字滤波第二节反滤波第三节水平迭加第四节偏移归位第五节地震波的速度第六章地震资料解释第一节地震资料构造解释工作概述第二节时间剖面的对比第三节地震反射层位的地质解释第四节各种地质现象在时间剖面上的特征和解释第五节地震剖面解释中可能出现的假象第六节反射界面空间位置的确定第七节构造图、等厚图的绘制及地质解释第八节水平切片的解释一、名词解释第一章地震波的运动学1、波动(难度90区分度30)2、波前(难度89区分度31)3、波尾(难度89区分度31) 4、波面(难度89区分度31) 5、等相面(80 、 33) 6、波阵面(81 、 34)7、波线(70 、 33) 8、射线(72 、 40)9、振动曲线(75 、 42) 10、波形曲线(76 、 44) 11、波剖面(65 、 46) 12、子波(60 45)13、视速度(80 、 30) 14、射线平面(60 、 47)15、运动学(70 、 55) 16、时距曲线(68、 40) 17、正常时差(60 、 45) 18、动校正(60、 60) 19、几何地震学(70 、 35)第二章地震波动力学的基本概念1、动力学(70 、 40)2、物理地震学(71、 35)3、频谱(50 、 50)4、波的发散(90 、 30)5、波散(90 、 31)6、频散(80、 35)7、吸收(70 、 40 )8、纵向分辨率(60、40)9、垂向分辨率(60、40)10、横向分辨率(60、40)11、水平分辨率(60、40)12、菲涅尔带(50、45) 13、主频(65、40)第三章地震勘探野外数据的野外采集1、规则干扰波(90、30)2、不规则干扰波(90、30)3、观测系统(80、35)4、多次覆盖(65、50) 5、共反射点道集(70、45)6、检波器组合(90、30)7、方向特性(75、30)8、方向效应(90、30)第四章共中心点迭加法原理1、共中心点迭加(70、40)2、水平迭加(60、40)3、剩余时差(60、50)第五章地震资料数字处理1、偏移迭加(75、30)2、平均速度(85、30)3、均方根速度(80、30)4、迭加速度(70、40)第六章地震资料解释1、标准层(50、40)2、绕射波(40、50)3、剖面闭合(30、60)4、三维地震(70、30) 5、水平切片(45、60) 6、等厚图(65、40) 7、构造图(80、30)二、填空题第一章1、振动在介质中的传播就是()。
1、地球物理勘探简称“物探”,即用物理的原理研究地质构造和解决找矿勘探中问题的方法。
目前主要的物探方法有:重力勘探,磁法勘探,电法勘探,地震勘探,放射性勘探等。
2、地震勘探:1.效果最好(精度高)2.用得最多(90%)3.发展最快4.和油气勘探与开发联系最紧密!3、勘探石油的方法目前有三类:地质法、钻探法、物探法。
4、在勘探油气的各种物探方法中,地震勘探已成为一种最有效的方法。
5、所谓的地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播情况,查明地下地质构造,为寻找油气田或其它勘探目标的一种物探方法。
6、地震勘探的生产工作,基本上可分为三个环节: ①野外工作。
②室内资料处理。
③地震资料的解释。
7、地震勘探方法与其他物探方法(重、磁、电)相比,具有精度高的优点,其他物探方法都不可能象地震方法那样能详细而较准确地了解地下有浅到深一整套地层的构造特点。
地震方法与钻探方法相比又有成本低以及可以了解大面积的地下地质构造情况的特点。
因此,地震勘探已成为石油勘探中一种最重要的勘探方法。
8、同一反射界面的波,其波形特征是相似,不同反射界面的波其波形特征是不同的,这就是在地震资料解释中常用的基本法则之一。
9、惠更斯原理:介质中波所传到的各点,都可以看成新的波源,叫做子波源。
可以认为,每个子波源都向各个方向发出微弱的波,叫做子波。
子波是以所在点处的波速传播的。
10、费马原理:波在各种介质中从一点传播到另一点,所走的路径遵守时间最小。
11、地震波是在地下岩石中传播的弹性波,其类型纵波、横波、面波、反射波、透射波、折射波等。
12、弹性模量:1.杨氏模量(E)T=E e 2.体变模量(K)K=-Kθ 3.切变模量(μ)F=μψ 4.拉梅常数(λ)G=λ e 5.泊松比(σ)13、对于大多数弹性介质,σ约为0.25,非常坚硬的岩石是0.05,固结性很差的松软介质,大约为0.45,对于液体,μ=0,所以σ可达最大值0.5。
合成地震记录制作原理研究摘要:合成地震记录的一般是由测井资料中的声波时差和密度曲线来计算波阻抗,进而计算反射系数,由地震资料来确定地震子波;再用反射系数和地震子波一一进行褶积(卷积),就可以得到初始的合成地震记录。
在更精确的速度场的基础上,校正初始合成地震记录,并通过沿井的地震轨迹的匹配和调整来获得最终的合成地震记录。
从叠加和线性的角度来看,合成地震记录是在不同时间的地震子波作用在反射系数的结果。
由于时间不同,得到的强振动和弱振动会交叉组合在一起,就形成了合成地震记录中看到的同相轴。
关键词:合成地震记录;地震子波;反射系数1 计算反射系数序列反射系数的求取可以采用均匀采样和非均匀采样两种。
采用非均匀算法比较复杂,但效果较好,这是因为地层的时间厚度分布是不均匀的。
因此,应该根据地下地层实际情况来,采用非均匀采样来求取反射系数。
2 地震子波的提取地震子波是地震勘探中一个非常重要的问题。
它的定义是人工震源产生的地震波在地下介质中传播,在一段时间后趋于稳定,这种稳定的地震波就是地震子波。
地震子波起始时间有限、能量有限、具有一定的连续性。
它是地震记录的基本单位。
地震子波的提取直接影响到合成地震记录的质量。
子波可以通过它的振幅谱和相位谱来定义。
相位谱的类型可以是零相位、恒定相位、最小相位、混合相位、最大相位等。
零相位和常数相位子波可以看作是一组不同振幅和频率的正弦波。
在频域中,地震子波确定问题主要是确定子波的振幅谱和相位谱,确定相位谱比较困难,并且是合成地震记录中误差的主要来源。
地震子波具有以下特征:(1)每个反射波(每个相位轴)的初始时间(或极限时间)可以用来确定地层的深度。
但反射层以上的层对波的形状(振幅、频率、相位)有一定的影响,不能直接用于解释目标层的岩性。
在信息处理过程中,首先要消除检波器固有频率中存在的振动,然后对各相轴,从浅到深,逐层求出相应的物理参数。
(2)检波器的输出信号不仅包括地下回波各频率分量叠加的地震波,还包括检波器固有频率中存在的强波。
振型组合方法CQC和SRSS的区别第一:地震作用力的计算常常用底部剪力法和振型分解反应谱法,振型分解反应谱法的基本概念是:假定建筑结构是线弹性的多自由度体系,利用振型分解和振型正交性的原理,将求解n个自由度弹性体系的地震反应分解为求解n个独立的等效单自由度弹性体系的最大地震反应,进而求得对应于每一个振型的作用效应。
此时,就可以根据考虑地震作用的方式不同,采用不同的组合方式,对于平面振动的多质点弹性体系,可以用SRSS法,它是基于假定输入地震为平稳随机过程,各振型反应之间相互独立而推导得到的;对于考虑平—扭耦连的多质点弹性体系,采用CQC法,它与SRSS 法的主要区别在于:平面振动时假定各振型相互独立,并且各振型的贡献随着频率的增高而降低;而平—扭耦连时各振型频率间距很小,相邻较高振型的频率可能非常接近这就要考虑不同振型间的相关性,还有扭转分量的影响并不一定随着频率增高而降低,有时较高振型的影响可能大于较低振型的影响,相比SRSS时就要考虑更多振型的影响。
底部剪力法考虑到结构体系的特殊性对振型分解反应谱法的简化,当建筑物高度不大,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,结构振动位移反应往往以第一振型为主,而且第一振型接近于直线时,就可以把振型分解法简化为基本的底部剪力法计算公式。
这个基本公式计算得到的各质点的水平地震作用可以较好的反映刚度较大的结构,但当结构基本周期较长,场地特征周期较小时,计算所得顶部地震作用偏小。
顾名思义,CQC-complete quaddratic combination,即完全二次项组合方法,其不光考虑到各个主振型的平方项,而且还考虑到耦合项,对于比较复杂的结构比如考虑平扭耦连的结构使用完全二次项组合的结果比较精确。
第二:SRSS简称“平方和开平方”,该方法建立在随机独立事件的概率统计方法之上,也就是说要求参与数据处理的各个事件之间是完全相互独立的,不存在耦合关联关系。
第5节地震组合法一、引言二、简单线性组合的方向特性三、组合的统计效应四、组合的其它效应五、组合参数的确定六、其它组合方式主讲教师:刘洋一、引言二、简单线性组合的方向特性三、组合的统计效应四、组合的其它效应组合的频率特性图五、组合参数的确定(一)干扰波调查干扰波的速度、主周期、道间时差、随机干扰的相关半径。
(二)理论分析计算1、根据有效波和反射波的视速度、周期等,设计不同的组合参数方案(组内距、组合个数),计算组合的方向特性随的组合参数的变化规律2、选择能使有效波落入通放带、干扰波落入压制带的最佳方案。
六、其它组合方式(一)不等灵敏度组合同一组内各检波器接收到的信号幅度不一致。
1、组合方法同一点放两个和更多个检波器。
2、特性曲线特点(1)通放带较宽、陡度较 缓,有利于信号通过; (2)压制带极值较小,有 利于压制干扰波。
不等灵敏度组合特性 曲线示意图(二)面积组合检波器组合布置在一条线上,不能够压制垂直于 测线方向传播的规则干扰波。
1、组合方法检波器分布在一个面积上,可以压制来自不同方向的干扰。
矩形、放射状、圆形分布。
矩形面积组合示意图(二)面积组合2、等效变换原理(二)面积组合2、等效变换原理面积组合和等效变换原理示意图(三)震源组合提高有效波能量。