地震勘探在海洋石油勘探中的基本原理
- 格式:doc
- 大小:214.00 KB
- 文档页数:8
地球物理学在海洋资源勘探中的应用地球物理学是研究地球内部结构和物质性质的学科,它在海洋资源勘探中发挥着重要的作用。
通过地球物理学的方法,我们可以获得海洋地下物质的分布情况,进一步指导海洋资源的勘探与开发。
本文将介绍地球物理学在海洋资源勘探中的应用。
1. 地震勘探技术地震勘探技术是海洋资源勘探中最常用的一种方法。
它通过在海底或海面上布设震源和接收器,利用地震波在地下不同介质中传播速度不同的特性,解释和分析地震波的反射、折射、散射等现象,进而得到海底地形、地下构造等信息。
这些信息对于海洋石油、天然气等资源的勘探非常重要。
地震勘探技术的实施步骤一般包括震源激发、接收器接收和信号处理等环节。
震源激发可以采用爆炸物、空气枪等方式,在海底或海面上产生压力波,从而引发地震波。
接收器接收地震波的反射信号,并将其转化为电信号进行记录。
信号处理过程中,地震学家将反射信号进行分析和揭示,以获得海底地质构造的信息。
2. 电磁法勘探技术电磁法勘探技术是利用地下不同导电性介质对电磁场的响应特性,来推断地下结构与构造的一种方法。
该技术在海洋资源勘探中也有重要应用。
电磁法勘探技术可以通过在海面或海底上布设电磁发射源和接收器,发射电磁波并观测反射和散射信号来获取地下构造的信息。
电磁法勘探技术的应用范围广泛,可以用于石油、天然气等矿产资源的勘探和定位。
通过分析电磁场的反射、散射等现象,可以确定地下储层的存在、性质和分布情况,为资源的勘探和开发提供重要的依据。
3. 重力测量技术重力测量技术也是地球物理学在海洋资源勘探中常用的方法之一。
利用重力测量技术可以测量地球重力场的分布情况,从而推断出地下构造的变化。
在海洋资源勘探中,重力测量技术可以用于确定海底地形的变化、地下构造的分布情况等。
重力测量技术一般通过测量重力加速度的变化来推断地下构造的性质。
在海洋中,可以通过在船上或飞机上测量重力加速度的变化,然后与基准值进行对比,从而得到海底地形和地下构造的信息。
地震勘探技术及发展趋势研究地震勘探技术是寻找地下资源的一种有效手段,具有广泛的应用前景。
本文将重点深入探讨地震勘探技术的发展历程、技术原理和未来发展趋势。
一、地震勘探技术的发展历程地震勘探技术起源于20世纪初。
1906年,美国人雷金纳德·莫尔(Reginald Fessenden)第一次利用地震波来探测海洋。
此后,在20世纪30年代,S.A.造了第一台地震仪—托马斯-布莱斯顿地震仪(Thomas-Blayston seismometer),并使用地震勘探技术实施石油地质勘探。
20世纪50年代,利用空气振荡发射地震波的空气炮的出现,预示着地震勘探技术的科学研究进入了一个新阶段。
由于空气炮威力惊人,破裂面积大,振荡覆盖面广,使得勘探深度和效率都大大提高。
20世纪60年代,地震学家开始利用子波分离技术和反演方法,开展三维地震反演勘探,进一步提高了地震勘探的精度。
在此基础上,出现了新的石油勘探方法,如正演波传播法、波形反演法、偏导反演法等,它们东西都能有效地为勘探工作提供有力的科技支持。
二、地震勘探技术的原理地震勘探技术利用地震波在地下的传播和反射特性,获取地下地质构造和资源信息。
地震勘探包括正常波、剪切波和面波三种波形类型。
其中,正常波和剪切波均为体波,传播速度较快,而面波传播速度较慢,波形特点复杂。
地震波的产生是以声波或地震波的形式发射能源,各种能量在地下通过不同介质的传播,通过瞬间反射、折射以及散射的现象,然后经由分析这些反应信号的特征,获取地下物质、构造等重要信息。
三、地震勘探技术的发展趋势1.三维地震勘探技术3D地震勘探技术是地震勘探技术的一个发展方向,对于油气地质勘探非常重要。
要实现三维地震勘探,就需要使用大规模的计算机进行计算,以及小型化、专业化设备的研制。
2.地震勘探云计算云计算拥有大规模的计算机资源,具备海量数据的处理能力,可以快速有效的分析数据,为地震勘探工作者提供更加精准的勘探预测结果。
地震波传播特性及其在勘探中的应用研究一、引言地震波作为一种自然的物理现象,在地球物理勘探领域中扮演着重要的角色。
地震波的传播特性不仅对于地下结构的了解有着至关重要的意义,同时也是地震灾害研究的基础。
因此,研究地震波传播特性及其在勘探中的应用具有深远的意义。
二、地震波的传播特性地震波存在着多种不同的类型,包括纵波、横波、面波等。
不同类型的波具有不同的传播方式和传播速度。
1. 纵波纵波是一种沿着传播方向上具有压缩膨胀作用的波。
在地震波中,震源产生的纵波在地壳中的传播速度通常要比横波快一些。
在岩石中,纵波传播的速度也会受到物质性质的限制。
例如,在同样的情况下,密度越大的岩石中纵波速度越快。
2. 横波横波是一种在与传播方向垂直的方向上具有振动的波。
在地震波中,横波的传播速度通常要比纵波慢一些。
横波通常只能传播到相对浅的深度,因为在深部,压力会使得横波衰减。
3. 面波面波是一种横波和纵波的混合波。
在地震波中,面波传播的速度通常要比横波慢,但要比纵波快。
三、地震勘探中的应用利用地震波的传播特性,可以获取地下结构的信息。
以下是地震勘探中常见的应用。
1. 井下地震测量井下地震测量是指将地震探测器下放到井中进行勘探。
相比于地面勘探,井下地震测量能够获取更加精确和深入的信息。
同时,井下勘探还能够避免因地面上杂散波而产生误差。
2. 二维和三维地震勘探二维和三维地震勘探是指利用地震波在地下反弹的原理,测量不同深度的地下结构。
通过将地震传感器放置在地面上,可以获取地下结构的横向属性。
如果将传感器放置在不同高度或者深度,还可以获取其纵向属性。
3. 井间勘探井间勘探是指在地下多个井的位置上布设地震探测器,然后发送地震波进行勘探。
井间勘探可以大大提高勘探精度,尤其是在海洋石油勘探中,因为利用井间勘探能够实现更深入的勘探。
四、总结地震波的传播特性及其在地球物理勘探领域中的应用是地球物理学研究的重要方向之一。
未来的研究将更加注重技术创新和优化,以更加精确和高效地获取地下结构信息。
海底地形的测绘与地质勘探技术导语:海洋是地球上覆盖面积最大的地理空间,海底地形的测绘与地质勘探对于深入了解地球自然形态、发现海洋资源和保护海洋生态具有重要意义。
本文将介绍海底地形的测绘与地质勘探的技术手段和方法。
一、测绘技术海底地形的测绘技术主要包括声学测深、遥感测量和卫星测绘。
1. 声学测深声音在水中具有很好的传播性,在测量海底地形时,我们常用声学测深仪来测量水深。
声学测深仪通过发射声波,利用声波的传播时间来计算水深。
这种测深技术可以快速、精确地测量大面积海域的水深,是海底地形测绘的重要手段。
2. 遥感测量遥感测量利用雷达、卫星和飞机等远距离的传感器技术来获取海底地形数据。
通过对波浪、潮汐、水质等信息的分析,可以推测出海底地形的形状和特征。
遥感测量技术能够快速获取大范围的数据,提供了海底地形测绘的重要参考。
3. 卫星测绘卫星测绘是利用卫星遥感技术对地球表面进行观测和测量,以获取海底地形的数据。
目前,全球定位系统(GPS)的发展使得卫星测绘技术得以广泛应用,可以实现高精度的全球范围的测量和地图绘制。
二、地质勘探技术地质勘探技术是通过对海底地形的综合勘探,探测地下的地质结构和资源分布情况。
1. 电磁测探电磁测探是利用电磁波与岩石、矿物等地下物质的相互作用来勘探地质结构和资源的一种技术。
常用的电磁测探方法有电阻率法和电磁法。
电阻率法通过测量地下岩石的电阻率来判断地质层性质和矿产资源情况;电磁法则是通过测量地下岩石对电磁波的响应来推断地下结构和资源。
2. 磁力测量磁力测量是利用地球磁场和地下岩石的磁性差异来勘探地质结构和资源的一种方法。
通过测量地表磁场强度和方向的变化,可以推测出地下岩石的分布和地质构造。
磁力测量技术在矿产勘探中应用广泛,可以有效探测金属矿床、石油和天然气等资源。
3. 地震勘探地震勘探是利用地震波在地下传播的规律来勘探地质结构和资源的一种方法。
通过放置地震仪记录地震波传播的速度和方向,可以揭示地下岩层的分布和性质。
地质学在海洋资源勘查中的应用地球上的海洋覆盖了巨大的面积,蕴藏着丰富的资源,包括石油、天然气、矿产等。
对于海洋资源的勘查与开发,地球科学中的地质学发挥着重要的作用。
本文将探讨地质学在海洋资源勘查中的应用。
一、海底地质调查与采样海底地质调查是海洋资源勘查的起点,通过对海底地质的调查,可以了解海底地貌、地层构造、沉积物分布等重要信息。
为了获得精确的数据,地质学家通常会使用声纳测深仪、地震反射仪等设备来获取海底地形、岩性和深度等数据。
此外,地质学家还会进行海底岩石和沉积物的采样,以便后续的实验室分析和研究。
二、地震勘探技术地震勘探技术是海洋石油勘探的重要手段之一。
地震勘探通过对地震波在地下的传播与反射进行观测和分析,来识别潜在的油气储集层。
地质学家会将地震仪器悬挂在船上,通过发射声波并记录其返回时间和强度,来推测地下的构造和油气蕴藏情况。
这种方法可以提供海底的地层构造和地质编录,为石油勘探提供依据。
三、海洋底质沉积物分析海洋底质沉积物分析是地质学在海洋资源勘查中的又一重要应用。
通过海底沉积物的分析,可以了解到历史气候变迁、地球表层动力学过程以及潜在的矿产资源等信息。
地质学家通常会采集海底沉积物样品,并通过岩心采样技术来获得连续的地质纪录。
然后,这些样品会被送到实验室进行物理、化学、生物等多个方面的分析,以了解其中的矿物质含量、化学成分及有机物质等特征。
四、地热资源勘查除了石油和天然气,地质学在海洋资源勘查中还可以应用于地热资源的勘查。
地热资源是指位于地下的温度较高的水或蒸汽资源,可以用于发电、供暖等。
地质学家会利用地下水温度、地热梯度和地下岩石的热导率等数据,来确定地热资源蕴藏的情况。
通过深海钻探和岩心采样技术,可以获取海底的地温、地震活动等信息,从而推断地热资源的分布和潜力。
五、海底矿产资源勘查另一个地质学在海洋资源勘查中的重要应用领域是海底矿产资源的勘查。
海底蕴藏着丰富的金属矿产资源,如铜、铁、铅、锌等,以及稀土元素和磷酸盐等。
海上地震勘探系统在海底构造演化分析中的应用海上地震勘探系统是一种被广泛应用于海洋地质研究领域的技术手段。
它通过利用地震波的传播和反射特性,对海床以下的地质构造和岩层信息进行探测和分析。
在海底构造演化的研究中,海上地震勘探系统发挥着至关重要的作用。
海底构造演化研究对于深入理解地球表面及其变化过程具有重要意义。
通过分析海底地壳的构造演化,可以揭示地壳运动、板块演化、地质活动等现象的原因和机制。
在这一领域,海上地震勘探系统的应用可以提供宝贵的信息和数据,推动研究者对海底构造演化的深入认识。
首先,海上地震勘探系统可以帮助确定海底地壳的厚度和分布。
通过发送地震波并记录其反射和折射情况,可以推断海底地壳的厚度变化。
这对于了解海底地壳的形成机制和板块活动有着重要的意义。
例如,在研究海底地震带时,海上地震勘探系统可以帮助确定海底地壳的厚度和断层的分布状况,从而推断出板块活动的强度和方向。
其次,海上地震勘探系统还可以用于探测海床下的岩石类型和构造特征。
通过分析地震波的反射和折射特征,可以推断海底下方的岩层组成和结构状况。
这对于研究海底地质构造的演化过程非常重要。
例如,在进行海底火山研究时,海上地震勘探系统可以帮助确定海底岩浆的运动路径和喷发机制,揭示火山活动的原因和变化规律。
此外,海上地震勘探系统还可以用于研究海底地形的演化过程。
地震波在不同岩层之间的传播速度会受到岩层的密度和硬度等因素的影响,因此可以通过分析地震波的传播和反射情况来推断海床的地形变化。
这对于研究地质剥蚀、沉积和地形演变等过程至关重要。
例如,在研究海底沉积过程中,海上地震勘探系统可以帮助确定不同沉积层次的厚度、分布和特征,推断出海底沉积的速率和地形演化的规律。
最后,海上地震勘探系统可以为海洋资源勘探提供支持。
海床下的地质构造和组成状况会对海洋资源的分布和富集起到重要影响。
通过利用地震波的传播特性和反射模式,可以为海洋资源的勘探、开发和管理提供重要依据。
石油勘探技术中的地震成像研究石油勘探技术是石油工业中非常重要的一环,其中地震勘探成像技术是石油勘探领域中的一项重要技术。
地震勘探成像技术是通过对地震波的监测、分析和处理,来寻找地下石油储藏的一种勘探技术。
本文将详细介绍石油勘探技术中的地震成像研究。
地震勘探成像技术的原理地震勘探成像技术是利用地震波在地下物质中的传播规律,通过三维成像技术来研究地下结构的一种勘探技术。
在地震勘探中,首先要设置地震震源,在地震震源产生地震波之后,这些地震波会不断地向下穿过地下物质,并在穿过物质的过程中受到阻尼和反射,最终被地震检波器所接收。
地震波在不同的地下物质中的传播速度和传播方式会因地下物质密度、弹性模量和速度等特性不同而有所不同。
因此,通过对地震波在地下物质中的传播规律进行分析和处理,可以推断地下石油储藏的位置、状态和体积等信息。
同时,地震成像技术还可以反演出地下物质的精确的三维分布情况,帮助石油勘探人员进行更加准确、高效的勘探工作。
常用的地震勘探成像技术在地震勘探成像技术中,常用的方法主要有两种:全波形反演方法和层析成像方法。
全波形反演方法是一种全波段反演技术,它利用地震波在地下物质中的细节信息来进行准确反演,可以提高成像质量和成像分辨率。
全波形反演方法具有非线性、高维度、高计算复杂度等特点,是地震成像技术中的一种高端技术。
层析成像方法是利用地震波在不同深度的物质中的反射和透射等原理,进行成像的一种方法。
层析成像方法主要分为折射波资料层析和反射波资料层析两种类型。
在成像的过程中,折射波层析可以得到较高的分辨率,反射波层析可以得到较高的精度。
研究进展和应用前景随着计算机技术和数值计算方法的不断发展,地震成像技术在石油勘探领域的应用也得到了不断的推广和深入研究。
尤其是在三维地震勘探中,地震成像技术的研究和应用更是不断取得新的进展。
目前,地震勘探成像技术的应用已经涉及到海洋勘探、陆上勘探、地下水勘探等多个领域,其中在海洋勘探方面,地震成像技术的应用尤其突出。
地震勘探在海洋石油勘探中的基本原理本科生课外研学任务书及成绩评定表题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________指导教师____ 严家斌____________学院____ 地信院________________专业班级___ 地科0901_______________地震勘探在海洋石油勘探中的基本原理一、引言国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。
宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。
因此,油气勘探开发离不开地震技术和地震技术的进步与发展。
如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。
纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法!21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。
二、海洋地震勘探在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。
近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。
在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。
在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。
地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。
用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。
第一章绪论1.地球物理勘探的概念及分类概念:利用物理学原理和相关技术获取某些地质参数、特征及变化规律, 从而对地质问题经行切实合理的分析和解释的油气勘探手段。
分类: 地震勘探、电法勘探、重力勘探、磁法勘探2.地震勘探的概念利用人工激发的地震波来定位矿藏, 确定考古位置, 获取工程地质信息的勘探方法, 它是地球物理勘探中最重要、解决油气勘探问题最有效的一种方法。
3.地震勘探的基本原理人工激发的弹性波在岩石中传播时, 遇到岩层的分界面便产生反射波或折射波, 在它们返回地面时用高灵敏度的仪器记录, 根据波的传播路程和旅行时间, 确定发生弹性波反射或折射的岩层界面的埋藏深度和形状, 从而认识地下地质构造, 寻找油气圈闭。
4.地震勘探的三个环节野外资料采集、室内资料处理、地震资料解释第二章地震波运动学理论1.基本概念●各种介质的概念(1)均匀介质与非均匀介质均匀介质: 介质内每一点的物理特性参数均相同非均匀介质: 介质内的物理特性参数随空间位置的变化而变化(2)弹性介质与非弹性介质弹性介质: 介质卸载后能够完全恢复到加载前状态非弹性介质: 卸载后不能够完全恢复到加载前状态(3)各向同性介质与各向异性介质各向同性介质: 介质参数与方向无关各向异性介质: 介质参数随方向变化而变化(4)单相与双相、多相单相: 固体、流体(油、气、水)双相: 固体骨架以及孔隙内的流体实际地下介质的特征: 非均匀、非弹性、各向异性、多相●波动、弹性波、地震波、波前、波后、波面、振动曲线(地震记录)、波形曲线(波剖面、波场快照)波动: 振动在介质中传播形成波动;弹性波: 振动在弹性介质中传播形成弹性波;地震波: 地层中传播的弹性波;波前: 在某一时刻, 介质中刚刚开始振动的点连接起来形成的面;波后:在某一时刻, 介质中刚刚停止振动的点连接起来形成的面;波面: 介质中同一时刻开始振动的点连接起来形成的曲面;振动曲线: 即地震记录, 在某一点处质点位移和时间的关系(同一点不同时刻的位移形成的曲线);波形曲线:又叫波剖面、波长快照, 某一时刻各点的位移(同一时刻各点的位移形成的曲线);●波长、视波长、速度、视速度、周期、频率波长: 波在一个振动周期内传播的距离;视波长: 不是沿波的传播方向确定的波长;速度:在沿波的传播方向上, 波在单位时间前进的距离;视速度: 不是沿波的传播方向确定的速度;周期: 波传播一个波长的距离所需要的时间;频率: 周期的倒数;●体波、面波、纵波、横波体波: 振动能够在整个介质区域内传播形成的波。
题目地震勘探在海洋石油勘探中的基本原理学生姓名邵鑫学号 2702100423 指导教师孙_渊学院___地球科学与资源学院专业班级___ 资源勘查(石油与天然气)地震勘探在海洋石油勘探中的基本原理一、引言从19世纪中叶,马利特用人工激发的地震波来测量弹性波在地壳的传播速度为地震勘探萌芽的开始,经历了数百年的应用于发展,地震勘探已经在生产生活的各个领域发挥着越来越多、越来越重要的作用。
中国于1951年开始进行地震勘探,并将其广泛的应用于石油与天然气、每天勘探、工程地质勘查已经金属矿的勘查当中。
从国内外的近几十年勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。
宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。
因此,油气勘探开发离不开地震技术和地震技术的进步与发展。
如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。
纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法!21世纪是海洋的世纪,海洋对于人类,对于中国未来几十年甚至数百年的发展的重要性非同小可。
目前,石油已经成为世界各国发展中必不可少的战略性资源,世界各国对石油资源的消费量逐年递增,据统计和预测,全世界石油消费在1990一一2010年将以每年1.3%的速度增长;国土资源部的资料显示,近十年来,我国原油消费量以年均5.7%的速度增加,高出全世界石油消费总增长速度4.4个百分点。
近几年来,我国对石油的需求量越来越大,国内石油产量和需求量之间的差距日益拉大,1993年我国成为石油净进口国;200()年我国原油产量是1.5亿吨,进口5983万吨;2003年产量1.7亿吨,进口9112万吨,预计2015年我国原油需求缺口将达到2亿多吨。
地球物理勘探名词解释(地震)[爆炸笼] Flexotir;是海洋地震勘探中的一种炸药震源装置。
将少量的炸药用水压驱动,通过胶管而进入一个带有小孔洞的钢笼,在水下起爆后,钢笼上的小孔洞使爆炸所产生的气体进入水中,而不产生气泡脉冲。
这种装置在水深40英尺处爆炸,也不致产生重复冲击,能得到较大的地震有效能量。
[爆炸索]Geoflex;是在地震勘探中进行爆炸工作的一种专门装置。
在海洋地震勘探中用的爆炸索是在船两舷伸出的几米长的支架和尾端是一个带有钢钩起爆管的绝缘电缆以及悬挂在开口的铁丝环上的炸药包。
工作时,用支架将绝缘电缆拖曳于爆炸点位置上,铁丝环沿支架下的绝缘钢缆向后滑动并落入水中。
当起爆管尾端与铁丝环接触时,即可自动爆炸。
爆炸索在技术能力和经济方面部比双船工作法优越。
但它还属于炸药震源,不具备非炸药震源的优点。
使用日渐减少。
陆地上的爆炸索用一种高级炸药制成,形状像电缆,不打井,埋在表土下爆炸。
[变密度记录]variable density record;在显示地震磁带记录时,使记录在照相纸上感光的密度和地震波的振幅成正比,故称变密度记录。
同时用波形和变密度方式显示的地震记录,称为波形加变密度记录。
用变密度显示的地震记录,称变密度记录剖面。
[变面积记录]variable area recording; 在显示地震磁带记录时,使记录在照相纸上感光面积的宽度与地震波的振幅成正比,故称变面积记录。
同时用波形和变面积方式显示的地震记录,称为波形加变面积记录。
用此方法显示的地震记录,称为“变面积记录剖面”,或波形加变面积剖面。
[波的动力学特点]dynamic properties of wave;波在传播过程中能量的变化特点,如波的振幅变化,频率变化,波形变化等称为波的动力学特点。
这些特点受地层的岩性,结构和厚薄影响很明显,充分研究和利用它们,可提高地震勘探资料的解释质量和解决地质问题的能力。
[波的运动学特点] kinematic characteristiec of wave;波在传播过程中,波前的空间位置和传播时间的关系称为波的运动学特点。
地震勘探在海洋石油勘探中的基本原理地震勘探是利用地震波在地下介质中传播的特性来获取地下结构信息的一种方法。
在海洋石油勘探中,地震勘探被广泛应用于寻找潜在的油气储藏层、评估油气储藏层的特征以及确定油气储藏层与井筒间的地层关系等方面。
其基本原理可以概括为以下几点:1.产生地震波:地震勘探中使用震源产生地震波,常用的方法有爆炸、人工震源和空气枪等。
在海洋石油勘探中,常使用空气枪作为震源,其原理是通过将压缩空气快速释放到水中,产生的压力波在水中形成地震波。
2.传播地震波:地震波从震源点向外传播,经过地下的各种介质时会发生折射、反射和散射等现象。
当地震波遇到地下不同介质的边界时,会发生反射和折射,通过分析这些反射和折射现象,可以了解地下结构。
3.接收地震波:在海洋石油勘探中,常采用地震探测船搭载的水下传感器接收地震波。
这些传感器一般以固定距离沿线布设,可以记录地震波在不同位置的到达时间和强度。
4.数据处理和解释:通过对接收到的地震波数据进行处理和解释,可以还原地下的构造。
常用的处理手段包括时距变换、滤波、叠加等方法,通过这些处理手段可以提取出地震剖面、速度模型等信息。
接下来,将使用这些信息来描绘地下结构,并对潜在的油气储藏层进行评估。
5.解释地下结构:通过地震剖面和速度模型等信息,地震学家可以解释地下结构。
地震波在地下的传播速度取决于地下介质的性质,如密度、岩性、孔隙度等。
通过基于这些性质的解释,可以确定潜在的油气储藏层的位置、厚度、形状等特征。
总的来说,地震勘探在海洋石油勘探中的基本原理是通过产生地震波,利用地震波在地下介质中传播的特性,通过接收、处理、解释地震波数据来获取地下结构信息,从而找到潜在的油气储藏层、评估其特征以及确定与井筒间的地层关系等。
这是一种非常重要的方法,在海洋石油勘探中起着关键作用。
如何在海底寻找石油一、如何发现海底石油1、海山地震勘探:海洋油气勘探是以海底地形以及含石油气储量的三维空间结构为基础进行勘探,探明下层地层的厚度,从而发现可能存在的油气资源。
2、沉积介质测井:根据测井工程将深层沉积介质渗透类型、饱和度以及压力状态等属性进行研究,以发现可能存在的油气藏。
3、地震断层:根据深层地质断层的特征赋存,找到潜在的烃源层和聚集层,从而确定油气运移通道和富集区,判断其中的油气储量。
二、如何开发海底石油1、依靠海底钻井技术:海洋石油开发将依靠海底钻井等技术,不断深入海底,以解决从发现到开发的历史难题。
2、采用抽气弯管技术:高压抽气可将油气与水带到海面,解决海洋油气的采收与水的分离问题,此外还可以进行降低泥沙的过滤与抽出,使其达到可用的限度。
3、排除水体声诱导振动法:排除水体声诱导振动法则是可以借助海洋水体潮汐引起的振动,从而实现压力释放,使原有的油气被释放到海水中区,并可以通过管线抽出。
三、如何进行海洋石油管理1、健全监管条例:根据海洋法规,要求科学有序地管理海洋石油资源,制定严格的监管条例,进行地区性的区划和分区开发,加强多学科和多专业的联防联控和开发管控,为海洋石油开发和油田作业运行提供技术支持。
2、重视可持续发展:有效管控海底石油开采,重视可持续发展是重要原则之一。
国家重视海洋资源的永续发展,并要求将更新技术的绿色理念融入海洋石油的开发模式中,实施清洁能源发展,防止可能引发的污染和破坏海洋环境活动。
3、建立定期检测机制:为了保证海洋石油开采的安全有序,应建立详尽的定期检测机制,建立完善的监管制度,坚持安全第一、生态取向的发展理念,以保护良好的海洋环境,促进海洋油气资源的有效开采。
海洋石油钻井知识介绍1.勘探:在进行海洋石油钻井之前,必须进行相关的勘探工作以确定潜在的石油和天然气资源。
这包括使用声学和地震技术进行地质勘探,以确定潜在的油气层位置和厚度。
2.定位:确定油气层的位置后,需要选择合适的钻井位置。
这通常通过使用定位设备,如全球定位系统(GPS)来完成。
钻井平台通常被安装在海洋上,以容纳钻井设备和提供工作空间。
3.钻探:钻探是钻井过程中最重要的步骤之一、通过使用钻井工具,如钻头和钻杆,钻井设备可以抵达潜在的油气层。
钻井液被泵送到钻孔中,以冷却钻头和清洗碎屑。
4.完井:钻孔到达油气层后,必须进行完井以保持井身的完整性和减少风险。
这通常包括安装套管和完井栓塞,以确保井孔不塌陷并防止石油和天然气的流失。
5.采油:经过完井后,可以开始开采石油和天然气。
这通常通过使用生产设备,如油井泵或柱塞泵,将石油和天然气从钻井井身中提取到地面。
然后经过处理和分离,将石油储存在储油罐中,天然气则通过管道输送。
1.恶劣环境:相比陆地钻井,海洋石油钻井面临更加恶劣的环境,如海洋风浪、冰冻水域和海底山脉。
这些因素增加了钻井设备的风险和复杂性。
2.深水钻井:随着陆地油气资源逐渐减少,海洋石油钻井逐渐向深海扩展。
深水钻井面临着更高的压力和温度,以及更高的安全风险。
3.环境保护:海洋石油钻井对环境造成的影响是一个重要的问题。
石油泄漏和废水排放等问题需要得到有效管理和监管,以减少对生态系统的影响。
然而,海洋石油钻井也带来了许多机遇和好处:1.能源供应:石油和天然气是全球主要的能源资源之一,海洋石油钻井可以提供大量的能源供应,满足全球需求。
2.经济效益:海洋石油钻井带来了巨大的经济效益,创造了就业机会,提高了当地经济发展水平。
3.技术创新:海洋石油钻井促进了钻井技术和设备的创新,推动了石油工业的发展。
4.科学研究:海洋石油钻井为海洋科学研究提供了机会。
通过研究海底地质和生物多样性,可以更好地了解地球生态系统和气候变化。
石油勘探中的地震勘探技术解析地震勘探是石油勘探领域中最重要的地球物理勘探方法之一。
通过利用地震波在地下的传播和反射特性,地震勘探技术可以获取地下岩层的信息,进而推断油气藏的位置、大小和构造特征。
本文将对地震勘探的原理、应用以及技术进展进行解析。
一、地震勘探原理地震勘探利用地震波在地下的传播和反射原理。
人工地震源产生的地震波在地下传播并与地下岩层发生相互作用,一部分能量返回地表形成反射波。
根据反射波的波形特征,可以推断地下岩层的构造和物性。
地震勘探常用的地震波有压力波和剪切波,它们的传播速度和反射特性与地下岩石的物性有关。
二、地震勘探应用地震勘探在石油勘探中应用广泛,主要包括以下几个方面:1. 油气勘探:地震勘探可以用于定位油气藏的位置和构造特征。
通过分析反射波的幅值、走时以及频谱特征,可以确定地下构造的变化,进而判断油气藏的分布和类型。
2. 油气开发:地震勘探可以用于预测储层岩石的物性特征,如孔隙度、饱和度、渗透率等。
这些物性参数对于评估储层的产能和储量具有重要意义,可以指导油气开发的决策。
3. 油气生产:地震勘探可以用于监测油气田的动态变化。
通过连续监测地面上的地震信号,可以追踪油气田中的流体运移和储层压力变化,提供实时的生产监测数据。
三、地震勘探技术进展随着科技的不断进步,地震勘探技术也在不断发展。
以下是一些技术进展的例子:1. 三维地震勘探:传统的地震勘探是基于二维地震剖面进行解释和分析的,这种方法存在信息不足和模糊性的问题。
而三维地震勘探可以获得更加准确和全面的地下构造信息,有助于更精确地定位油气藏。
2. 正反演技术:正反演技术是指通过数值模拟和优化算法,将观测数据与模型进行匹配,从而获得地下岩层的物性参数。
这种技术可以提高地震解释的准确性和速度,为勘探活动提供更可靠的依据。
3. 多波束与宽带地震:多波束地震是指利用多个接收器接收地震波信号,并利用波束成像技术提高信噪比和分辨率。
而宽带地震则是指利用更宽的频带范围接收地震信号,可以获得更丰富的地下信息。
应用于海洋地震勘探的震源技术探讨
杜万兴
【期刊名称】《石化技术》
【年(卷),期】2024(31)5
【摘要】我国油气勘探工作中,海洋地震勘探技术是一种十分重要的研究内容。
随着我国能源需求量的不断增加,陆地石油资源储量的逐渐减少,油气勘探工作已将开始从陆地向着海上转移,我国海上石油资源储量十分丰富,同时还有着水合物、矿物等大量资源,目前我国的海洋资源开采与探测已经成为了石油企业开采过程中的重中之重。
海上油气勘探与陆地油气勘探在施工方式、施工设备等方面都存在较大的差异,基于此,对海洋工程地震勘探系统进行分析,介绍了几种常见的震源技术。
【总页数】3页(P307-309)
【作者】杜万兴
【作者单位】中石化海洋石油工程有限公司上海物探分公司
【正文语种】中文
【中图分类】F42
【相关文献】
1.浅析应用于海洋地震勘探的震源技术
2.海洋天然气水合物三维地震与海底地震勘探中的震源技术研究
3.海洋电火花震源地震勘探研究进展
4.海洋电火花震源地震勘探研究进展
5.海洋地震勘探震源空气枪功能失效修复研究
因版权原因,仅展示原文概要,查看原文内容请购买。
海洋勘探中的地震技术综述近年来,随着人类社会经济发展的提高,对于深海资源的需求也越来越大,然而深海勘探却是一项技术含量极高、成本极大的任务。
而海洋地震技术则是深海勘探中不可或缺的一项技术。
一、海洋地震成像技术海洋地震成像是地球物理勘探的一个分支,它利用了地震波在地下介质中的传播规律,通过记录地震波在海洋底部的反射、散射和透射等物理现象,可以对地下结构做出高分辨率、三维立体的成像。
这种技术可以产生与探测系统距离沿深度变化的剖面图,使勘探人员能够了解深海底部地质构造情况,推测深海底部所蕴藏的矿产资源和石油气门的位置和数量。
海洋地震成像技术主要包括地震触发、信号接收、数据采集和处理等部分。
在地震触发部分,勘探人员会通过爆炸、震源车或钻探等方式,将能量释放到地下构造内,然后观测地震波的到达时间、形态和速度。
信号接收部分,勘探人员会在海洋底下铺设一定数量的地震接收器,记录地震波的传播路径。
数据采集部分,勘探人员会将海洋底部接收到的地震数据通过电缆传输到地面设备,然后进行数据处理,重建地下结构。
二、海底地震仪海底地震仪被广泛用于海洋地震资料的采集和处理。
它是一种在海底长时间工作的自动化设备,采用微型化的地震仪来记录和存储地震信号,同时能够处理和传输数据。
海底地震仪可根据不同的采集任务进行调整,通常能够实现连续记录地震信号的几个月甚至几年,采集的数据量在TB量级以上。
海底地震仪的主要组成部分有两个:传感器和数据搜集和存储系统。
传感器被埋入海底,用来接收和记录地震信号,而数据收集和存储系统则是由电子设备和电池等组成,主要负责电力提供、信号接收和存储管理等工作。
海底地震仪通常需要承受深海环境下的高压、低温、强电磁干扰等极其恶劣的条件。
因此,在设计和制造过程中,考虑到了多种环境因素和物理要求。
比如,海底地震仪一般需要兼顾在极深的海底工作,并保证数据采集稳定和抗干扰能力强等特性。
三、海底地震勘探技术的优势海洋地震勘探技术可以在海底高速稳定地采集地震数据,是一种高效、准确的地下成像技术。
地震勘探在海洋石油勘探中的基本原理
————————————————————————————————作者: ————————————————————————————————日期:
本科生课外研学任务书及成绩评定表
题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________
指导教师____ 严家斌____________ 学院____ 地信院________________
专业班级___地科0901_______________
地震勘探在海洋石油勘探中的基本原理
一、引言
国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。
宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。
因此,油气勘探开发离不开地震技术和地震技术的进步与发展。
如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。
纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法!
21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。
二、海洋地震勘探
在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。
近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。
在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。
在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。
地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。
用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。
其中,
测量原理
在这类方法中,地震波在介质中传播的物理模型如图1所示。
从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。
能
够形成反射的界面,必须具备这样的条件,即在弹性波垂直入射时,界面R上的反射系数不等于零。
公式
公式中ρ、υ分别为地层的密度和弹性波的传播速度,它们的乘积称为波阻抗,角标1、2分别表示界面上下的地层。
因此,反射界面存在的条件为:ρ2υ2≠ρ1υ1。
所以,反射界面也称为波阻抗界面。
反射波返回地表,为检波器(s1,s2,s3,…)接收,并由地震仪记录下来。
反射地震记录内包含着多种信息,其中反射波的旅行时间和震源到检波器之间距离的关系,称为时距曲线t(x)。
用时距曲线可反演出地下反射界面的几何形态(地质构造);而在地震反射信息中,还包含有地震波的振幅、相位、频率、速度、极性以及其他一些参数,表现出反射波的动力学特点,它能给出地层岩性的特征,有助于判断沉积环境,甚至还能给出油气的直接指示。
数据处理和资料解释方面
对共深点反射记录磁带,必须应用电子计算机处理。
机器完成动静校正、振幅调整、滤波、相关和组合等程序之后,再分别进行水平叠加、偏移叠加和振幅保持,提供水平叠加时间剖面、偏移叠加时间剖面,作为常规处理成果。
根据时间剖面图和时间—深度转换关系编制反映某个地震层位空间展布的构造图。
在有利构造上进行反射振幅比、瞬时振幅、瞬时相位、瞬时频率、子波反褶积、伪声阻抗和烃类检测(亮点技术)等特殊处理,并进行速度分析和层速度计算,提取各种地震参数,进而利用地震波的动力学特点来研究地层的岩性,为发现地层圈闭或隐伏油气藏提供依据。
但在野外工作方面,由于海洋与陆地有很大的差别,海上地震工作也有许多特殊性。
海上地震工作是以地震队(船)的组织形式来完成的。
可把地震仪器安装在船上,使用海上专用的电缆和检波器,在地震船航行中连续地进行地震波的激发和接收。
海上地震工作具有下述几方面的特点:
1.使用非炸药震源,如空气枪。
2.野外记录数字化,使用96、120、240、480、720、或960道数字地震仪。
3.使用等浮数字电缆。
为了适应高覆盖的需要,等浮电缆的道数不断增加。
4.一般为单船作业,记录仪器和震源在同一条船上,目前多船作业也逐渐增多。
5.采用高次覆盖,例如在部分海域的地震勘探最高已达120次。
6.采用导航定位技术实时确定船的位置和炮点的位置。
三、海洋物探船
海洋物探船是海上进行地震数据采集的基本条件,所有的仪器的正常工作和采集的完成都离不开物探船!物探船除了具有一般船只的构造和装备基本要求外,由于地震仪器都安装在船上,使用海上专用的电缆和检波器(这些器件长而重),在地震船航行中连续地进行地震波的激发和接收,所以船应足够的大,并且要有足够大的马力,这样才能拖得动这些设备。
常规的海洋地震勘探时由一条或两条地震勘探专用船拖着多个震源和一条(二维)或多条(三维)水用检波器拖缆,在工区内往返航行采集数据。
四导航定位
海洋物探船在海上从事物探工作时,导航定位是十分重要的。
没适当的导航定位设备和技术保证,所获得的地震资料会因为缺乏关于测线位置的数据而变得毫无价值。
导航定位设备必须使其测线的位置能够在作图比例尺的精度范围之内,并用地理坐标表示出来,否则将
会给编制成果图件造成困难。
随着生产技术的不断提高和发展,对定位技术和精度的要求也就越来越高。
这就要求我们必须使用专门的定位设备和特殊方法。
在生产中通常采用综合定位方法,也就是说采用的设备越来越多,即同时使用DG PS、电罗经、磁罗盘、声学定位系统、激光跟踪系统和RGPS尾标跟踪系统构成综合定位网络。
综合导航系统是海上地震勘探的控制核心,其作用为:
①为地震船行驶提供导航信息;
②为地震测线、炮点、检波点定位;
③控制点火放炮;
④共反射点面元计算;
⑤实时质量控制;
⑥与地震勘探仪器交换信息。
综合导航系统实时采集所有定位传感器的数据,对其进行实时计算处理,在此基础上进行实时控制。
五、海洋地震波的激发
关于海洋地震波的激发人们首先想到的是海上震源,最早的海上震源是简单地把陆上炸药震源引入到海上,但很快暴露出了它的缺陷:
①炸药在海水中爆炸会产生气泡效应,为了不产生重复冲击,要通过试验确定炸药的最佳沉放深度;
②施工不方便,它不能自动化操作,人工操作很危险;
③对环境污染严重,尤其是对鱼类的伤害。
在非炸药震源出现之后,炸药震源就在海洋勘探中迅速消失了。
空气枪是目前常规地震勘探中占了主导地位:
空气枪震源是将压缩空气在短暂的瞬间内释放于水中,可以和炸药爆炸一样,形成气泡并造成强烈的地震震动。
海洋地震勘探中使用的各种空气枪的具体结构不完全一样,但它们的工作原理可概括如下:空气压缩将空气送进空气枪的气室中并达到一定的压力。
工作时,用电磁阀打开气室,其中的压缩空气即迅速进入水中形成气泡,造成振动。
六、海洋地震勘探的接收系统
海洋地震勘探的接收系统主要包括电缆和室内数据接收仪器两个部分。
1.漂浮电缆。
在海洋地震勘探中,电缆拖在船后接收地震信号,由于电缆的比重与海水基本相同,在定深器的协助下,可沉放到任何深度,所以又称漂浮电缆。
它内部除主要有海洋检波器外,还有磁罗经、罗经鸟、声学鸟、RGPS、压力传感器、深度传感器等。
近年来,随着电子技术、光纤通讯技术和集成电路的发展,海上地震电缆已由模拟电缆迈向了数字电缆,它与模拟电缆相比,其优点是:传输信息数字化、
信号衰减小、信噪比高、抗干扰能力强等。
已广泛地应用到深海常规地震勘探、三维地震勘探和高分辨地震勘探之中。
2.室内数据接收仪器。
室内数据接收仪器负责将水中电缆接受到的地震信号进行数字处理,然后记录在磁带上或者硬盘上。
七、结语
随着时代的发展,人类社会对于石油的需求不断增大,同时,石油资源也在日益减少,特别是陆地石油资源,为了能找到更多的石油资源,人类的目光都将转向海洋。
广阔的海洋中蕴藏着大量的石油资源,为了能开发这些资源,必须用到地震勘探技术,所以地震勘探技术将被更加广泛的运用,也将迎来技术上的更大进步。
在未来的几十年中,地震勘探行业将成为一个蒸蒸日上的行业,成为真正能为国家为人类造福的事业。