图形与坐标填
- 格式:doc
- 大小:132.00 KB
- 文档页数:12
绝密★启用前小学数学总复习图形与位置(填空)题号一总分得分一.填空题(共70小题,共70分)1.(2016·江西景德镇)音乐课上,聪聪坐在教室的第4列第2行,用数对(4,2)表示,明明坐在聪聪后方的第一个位置上,明明的位置用数对表示是。
(1分)2.填一填。
以雷达站为观测点。
潜水艇的位置是北偏东60°,距离雷达站km 。
巡洋舰的位置是偏,距离雷达站km。
护卫舰的位置是偏,距离雷达站km。
(1分)3.小华从家出发,向走 m到达养鱼塘,再向偏度走 m到达广播站,再向走 m到达学校.(1分)4.以广场为观测点,学校在广场的西偏北65°的方向,也可以说学校在广场的偏°的方向,距广场米.(1分)5.在上图中找出第2列第4行的位置,用数对表示是。
(1分)6.如图,如果A的位置表示为(2,4),那么B的位置应该表示为。
(1分)7.盆景园的位置是?(1分)8. 请写出2路公交车行驶的路线.2路公交车从公交总站出发,向方向行驶到东街口,再向 方向行驶到鼓楼,再向 方向到中心公园,然后再向 方向行驶到文化宫;以后向 方向行驶到少林寺,最后向 方向行驶到达终点站到达游泳场. (1分)9. 小红游览动物园的路线如右图.她先从“入口”向 走到“虎岩”,然后向 走到“猩猩馆”,接着再向 走到“猴山”,最后向 走到“出口”离开动物园.(1分)10. 海盗船在百货亭的 偏 方向,距离百货亭 米。
过山车在百货亭的 偏 方向,距离百货亭 米。
(1分)11. 做课间操时,张红站在第八列第十二个,张红的位置用数对表示是( , ). (1分)12. 图书馆在学校的 面,图书馆在公园的 面,学校在小华家的 面.小华从家向 面走,到 , 再向 向走,能到便民超市.(1分)13. (8,1)在C 的 方向?(1分)14. 小明从家向 走 米,再向 走 米到学校。
湘教版八年级下册数学第3章图形与坐标含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,已知点A(-3,6)、B(-9,-3),以原点O 为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(-1,2)B.(-9,18)C.(-9,18)或(9,-18)D.(-1,2)或(1,-2)2、下列有污迹的电影票中能让小华准确找到座位的是()A. B. C.D.3、若点关于原点的对称点是,则m+n的值是 ( )A.1B.-1C.3D.-34、如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图图案,已知A(﹣2,6),则点B的坐标为()A.(﹣6,4)B.(,)C.(﹣6,5)D.(,4)5、在平面直角坐标系中,点P(-8,2012)在第( )象限.A.一B.二C.三D.四6、如图是一所学校的部分平面示意图,在同一平面直角坐标系中,若体育馆A 的坐标为,科技馆B的坐标为,则教学楼C的坐标为()A. B. C. D.7、如图,点在函数的图象上,且,过点作轴于点,则的周长为()A. B. C. D.8、如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A,C两点的坐标分别为(2,0),(1,2),点B在第一象限,将直线沿y轴向上平移m个单位.若平移后的直线与边BC有交点,则m的取值范围是( )A. B. C. D.9、已知点P(a+1,﹣+1)关于y轴的对称点在第一象限,则a的范围在数轴上表示正确的是()A. B. C.D.10、在平面直角坐标系中,点P(﹣2,﹣3)到y轴的距离为()A.3B.﹣3C.2D.﹣211、在平面直角坐标系中,点A(2,5)与点B关于y轴对称,则点B的坐标是()A.(-5,-2)B.(-2,-5)C.(-2,5)D.(2,-5)12、点(,5)在()A.第一象限B.第二象限C.第三象限D.第四象限13、将点向左平移个单位长度,在向上平移个单位长度得到点,则点的坐标是()A. B. C. D.14、如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5C.2D.315、已知|x-2|+ =0,则点P(x,y)在直角坐标系中()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如图所示,线段,,的长度分别为,,,且平分.若将点表示为,点表示为,则点可表示为________.17、平面直角坐标系xOy中,点A(4,3),点B(3,0),点C(5,3),点E在x轴上.当CE=AB时,点E的坐标为________.18、点P(m−1,m+3)在平面直角坐标系的y轴上,则P点坐标为________.19、若点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),则(3a+b)2020=________.20、如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则的最小值为________.21、如图,是象棋盘的一部分,若“帅”位于点(2,﹣1)上,“相”位于点(4,﹣1)上,则“炮”所在的点的坐标是________.22、坐标平面内的点与________ 是一一对应的.23、点P(2-a,a+1)在y轴上,则a=________。
第11讲图形与坐标1一、知识建构1.确定位置常用的方法:一般由两种:1、2、.2.平面直角坐标系:(1)定义:具有的两条的数轴组成平面直角坐标系,两条数轴分别称轴轴或轴轴,这两系数轴把一个坐标平面分成的四个部分,我们称作是四个(2)有序数对:在一个坐标平面内的任意一个点可以用一对来表示,如A (a.b),(a.b)即为点A的其中a是该点的坐标,b是该点的坐标平面内的点和有序数对具有的关系.(3)平面内点的坐标特征:①P(a .b):第一象限第二象限第三象限第四象限X轴上Y轴上②对称点:P(a ,b)关于y轴的对称点,关于y轴的对称点,关于原点的对称点。
③特殊位置点的特点:P(a .b)若在一、三象限角的平分线上,则若在二、四象限角的平分线上,则④到坐标轴的距离:P(a .b)到x轴的距离到y轴的距离到原点的距离⑤坐标平面内点的平移:将点P(a .b)向左(或右)平移h个单位,对应点坐标为(或),向上(或下)平移k个单位,对应点坐标为(或).二、经典例题例1.某船从A港出发,先向正东行驶3千米到达B港,再向北航行3千米到达C港,求船只相对于A港的方位和距离.例2.小兰上学路上看见小雪,她一口气追上小雪,对小雪说:“刚才你在我的北偏西300方向”。
小雪说:“那你在我的西偏北300方向”。
小雪说得对吗?例3.如果规定行写在前面,列号写在后面,试用数对的方法表示出图中各点的位置.例4. 在平面直角坐标系中画出点A(0,-2),B(1 ,2) ,C(-1,2),D(-3,0)然后用线段把各点顺次连结起来.例5. 点P(3a-9,a+1)在第二象限,则a的取值范围为是多少?若a是整数请写出所有满足条件的点的坐标.例6.已知P(m,n)在第二象限,有序数对(m,n)中的整数m,n满足m-n=-6,写出所有符合条件的点坐标,并在平面直角坐标系中表示出来.三、基础演练1.(1)在教室里从讲台开始从前往后、从左往右数你的位置是4排3座,用有序实数对记作。
八年级数学下册第三章《图形与坐标》测试题-湘教版(含答案)一.选择题1.当2<m<3时,点P(m﹣2,m﹣3)在第()A.一象限B.二象限C.三象限D.四象限2.在直角坐标系中,M(﹣3,4),M到x、y轴的距离与M′到x、y轴的距离相等,则M′的坐标不可能为()A.(﹣3,﹣4)B.(3,4)C.(3,﹣4)D.(3,0)3.若点(a,﹣3)与点(2,b)关于y轴对称,则a,b的值为()A.a=2,b=3B.a=2,b=﹣3C.a=﹣2,b=﹣3D.a=﹣2,b=3 4.在平面直角坐标系中,点Q(﹣1,3)向右平移3个单位长度后的坐标为()A.(﹣1,0)B.(﹣1,6)C.(2,3)D.(2,6)5.如果点A(2,﹣3)和点B关于原点对称,则点B的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)6.如图,一个动点P在平面直角坐标系中按箭头所示方向做折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是()A.(2012,1)B.(2012,2)C.(2013,1)D.(2013,2)7.在y轴上,与点A(3,﹣2)的距离等于3的点有()A.1个B.2个C.4个D.0个8.如图,在直角坐标系中,▱OABC的顶点A为(1,3)、C为(5,0),则B的坐标为()A.(6,3)B.(5,5)C.(4,3)D.无法确定9.如图,△AOB关于x轴对称图形△A′OB,若△AOB内任意一点P的坐标是(a,b),则△A′OB中的对应点Q的坐标是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)10.根据指令[s,A](s≥0,0°≤A<360°)机器人在平面上能完成如下动作:先在原地顺时针旋转角度A,再朝其面对的方向沿直线行走距离s.现在机器人在平面直角坐标系的原点,且面对y轴的负方向,为使其移动到点(﹣3,0),应下的指令是()A.[3,90°]B.[90°,3]C.[﹣3,90°]D.[3,270°]二.填空题11.已知点A(2,3)在第一象限,则与点A关于x轴对称的点的坐标为,与点A 关于y轴对称的点的坐标为,与点A关于原点对称的点的坐标为.12.若点A(﹣1,a),B(b,2)两点关于y轴对称,则a=,b=.13.点P(1,2)关于点Q(﹣1,1)的对称点的坐标为.14.定义:在平面直角坐标系内,对于点P(x,y),我们把Q(﹣y+1,x+3)叫做它的伴随点.如点(2,1)的伴随点为(﹣1+1,2+3),即(0,5).若点M的伴随点坐标为(﹣5,3),则点M的坐标为.15.将点N(﹣1,2)向右平移3个单位,再向下平移4个单位后,其坐标变为.16.坐标系中M(﹣3,2),N(3,2)之间距离是.17.点M(﹣3,5)关于直线x=1对称的点M′的坐标为.18.如图,规定列号写在前面,行号写在后面,如用数对的方法,棋盘中“帅”与“卒”的位置可分别表示为(e,4)和(g,3),则“马”的位置可表示为.19.在x轴上与点(0,﹣2)距离是4个单位长度的点有.20.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1,△A2A3B2,△A3A4B3,…,△A n A n+1B n均为等边三角形,点A1,A2,A3,…,A n+1在x轴的正半轴上依次排列,点B1,B2,B3,…,B n在直线OD上依次排列,那么B2020的坐标为.三.解答题21.自然数按如图规律排列,14这个数位于第4行,第3列,记作(4,3),那么124这个数记作什么?…12510……43611……98712….…16151413………………….22.已知平面直角坐标系中,点P(1﹣a,2a﹣5)到两坐标轴的距离相等,求a值并确定点P的坐标.23.已知A(0,0)、D(4,2)、E(6,6)、C(2,4),依次连接各点得到四边形ADEC,按要求绘制下列图形.(1)横坐标、纵坐标都乘以﹣1;(2)纵坐标不变,横坐标扩大为原来的2倍;(3)横坐标都加2,同时纵坐标都减5;(4)如果坐标不变,纵坐标都扩大为原来的2倍,同时再加上3,不画图,你能叙述图形的变化吗?24.点P(x+1,2x﹣1)关于原点的对称点在第一象限,试化简:|x﹣3|﹣|1﹣x|25.如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?26.当m为何值时,点P(3m﹣1,m﹣2)到y轴的距离是到x轴距离的3倍?求出此时点P到原点的距离.27.已知在平面直角坐标系中,点A、B的坐标分别为:A(﹣3,4),B(4,﹣2).(1)求点A、B关于y轴对称的点的坐标;(2)在平面直角坐标系中分别作出点A、B关于x轴的对称点M、N,顺次连接AM、BM、BN、AN,求四边形AMBN的面积.参考答案一.选择题1.解:∵2<m<3时,∴m﹣2>0,m﹣3<0,∴点P在第四象限.故选:D.2.解:∵M点的坐标为(﹣3,4),∴M到x、y轴的距离分别为4,3,而M到x、y轴的距离与M′到x、y轴的距离相等,∴M′到x、y轴的距离也为4,3,结合各选项A、B、C到x、y轴的距离分别为4,3,D到x、y轴的距离分别为0,3,故D符合题意.故选:D.3.解:∵点(a,﹣3)与点(2,6)关于y轴对称,∴a=﹣2,b=﹣3,故选:C.4.解:点Q(﹣1,3)向右平移3个单位长度后的坐标为(2,3).故选:C.5.解:∵点A(2,﹣3)和点B关于原点对称,∴点B的坐标为(﹣2,3).故选:A.6.解:∵第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,∴按这样的运动规律,第几次横坐标即为几,纵坐标为:1,0,2,0,1,0,2,0 (4)个一循环,∵=503…1,∴经过第2013次运动后,动点P的坐标是:(2013,1).故选:C.7.解:在y轴上,与点A(3,﹣2)的距离等于3的点有(0,﹣2),即只有1个点.故选:A.8.解:由题意得AB∥x轴,那么点A和B的纵坐标相等为3,∵OC=5,那么点B的横坐标为1+5=6.故选:A.9.解:∵△AOB与△A'OB关于x轴对称,∴点P(a,b)关于x轴的对称点为(a,﹣b),∴点P的对应点Q的坐标是(a,﹣b).故选:D.10.解:根据点(0,0)到点(﹣3,0),即可知机器人先顺时针转动90°,再向左平移3个单位,于是应下指令为[3,90°].故选:A.二.填空题11.解:∵点A(2,3)在第一象限,∴与点A关于x轴对称的点的坐标为:(2,﹣3),与点A关于y轴对称的点的坐标为:(﹣2,3),与点A关于原点对称的点的坐标为:(﹣2,﹣3).故答案为:(2,﹣3),(﹣2,3),(﹣2,﹣3).12.解:∵点A(﹣1,a),B(b,2)两点关于y轴对称,∴b=1,a=2,故答案为:2;1.13.解:设点P(1,2)关于点Q(﹣1,1)的对称点的坐标为(a,b),则=﹣1,=1,解得:a=﹣3,b=0,∴点P(1,2)关于点Q(﹣1,1)的对称点的坐标为(﹣3,0),故答案为:(﹣3,0).14.解:设点M(m,n),则它的伴随点为(﹣n+1,m+3),∵点M的伴随点坐标为(﹣5,3),∴﹣n+1=﹣5,m+3=3,解得,m=0,n=6,∴M(0,6).故答案为(0,6).15.解:点N(﹣1,2)向右平移3个单位,再向下平移4个单位后,其坐标为(﹣1+3,2﹣4),即:(2,﹣2),故答案为:(2,﹣2).16.解:∵M(﹣3,2),N(3,2),∴MN∥x轴,∴MN=3﹣(﹣3)=3+3=6.故答案为:6.17.解:∵点M(﹣3,5)与点N关于直线x=1对称,而1×2﹣(﹣3)=5,∴点M(﹣3,5)关于直线x=1对称的点N的坐标是(5,5),故答案为(5,5).18.解:根据题意知“马”的位置可表示为(c,3),故答案为:(c,3).19.解:∵点在x轴上,∴点的纵坐标为0,∵距离(0,﹣2)的距离是4,∴所求点的横坐标为±=±2,∴所求点的坐标是(2,0)或(﹣2,0).故答案填:(2,0)或(﹣2,0).20.解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,∴OA2=2OA1=2,同理可得,OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°,∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2),∴点B2020的坐标为(3×22018,×22018).故答案为(3×22018,×22018).三.解答题21.解:第一单元是:1,第二单元是:2,3,4,第三单元是:5,6,7,8,9,第四单元是:10,11,12,13,14,15,16,第五单元是:17,18,19,20,21,22,23,24,25,…,所以,124在第12单元,第3个数,即第3行第12个数,∴124这个数记作(3,12).22.解:∵点P(1﹣a,2a﹣5)到两坐标轴的距离相等,∴符合题的点P的横、纵坐标相等或互为相反数,∴|1﹣a|=|2a﹣5|,∴1﹣a=±(2a﹣5)解得:a=2或a=4,则1﹣2=﹣1,2×2﹣5=﹣1,1﹣4=﹣3,2×4﹣5=3,所以P的坐标为(﹣1,﹣1)或(﹣3,3).23.解:(1)如图所示:四边形A′D′E′C′即为所求;(2)如图所示:四边形A″D″E″C″即为所求;(3)如图所示:四边形A1D1E1C1即为所求;(4)图形在原基础上各点向上平移纵坐标个单位后,再将整体图形向上平移3个单位.24.解:∵点P(x+1,2x﹣1)关于原点的对称点P′的坐标为(﹣x﹣1,﹣2x+1),而P′在第一象限,∴﹣x﹣1>0,且﹣2x+1>0,∴x<﹣1,∴|x﹣3|﹣|1﹣x|=﹣(x﹣3)﹣(1﹣x)=﹣x+3﹣1+x=2.25.解:(1)→(2)纵坐标不变,横坐标都加1,(2)→(3)横坐标不变,纵坐标都加1,(3)→(4)横、纵坐标都乘以﹣1,(4)→(5)横坐标不变,纵坐标都乘以﹣1.26.解:根据题意得到|3m﹣1|=3|m﹣2|,两边平方,解得m=因而P的坐标是(,﹣),则OP=.27.解:(1)根据轴对称的性质,得A(﹣3,4)关于y轴对称的点的坐标是(3,4);点B(4,﹣2)关于y轴对称的点的坐标是(﹣4,﹣2).(2)根据题意:点M、N与点A、B关于x轴对称,可得M(﹣3,﹣4),N(4,2);进而可得四边形AMBN为梯形,且AM=8,BN=4.故四边形AMBN的面积为•(8+4)×7=42.。
第26课时图形与坐标【基础知识梳理】 1.位置的确定一般地,在平面内确定物体的位置需要个数据. 2.平面直角坐标系 在平面内,两条互相垂直有的数轴组成平面直角坐标系。
通常把其中水平的一条数轴叫做(或),取为正方向;铅直的数轴叫做(或),取为正方向;x 轴和y 轴统称为,它们的公共原点O 叫做直角坐标系的。
3.a 、b 分别叫做点P 4._______x (3)(4)点点点5.(1)x (2)y (3). 6.(1). (2)关于(3)横向拉长(压缩)坐标不变,坐标分别乘以1(1)n n n〉或;纵向拉长(压缩)坐标不变,坐标分别乘以1(1)n n n 〉或.【基础诊断】1、在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为() A .(3-,5-)B .(3,5)C .(3.5-)D .(5,3-)2、在平面直角坐标系中,将点A(-2,1)向左平移2个单位到点Q ,则点Q 的坐标为A.(-2,3) B.(0,1) C.(-4,1) D.(-4,-1)3、如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为()A.(1,2).B.(2,1).C.(2,2).D.(3,1).【精典例题】例1如果点P(-3,2m-1)关于原点的对称点在第四象限,求m的取值范围;如果Q(m+1,3m-5)到x轴的距离与到y轴的距离相等,求m的值。
号为正,的值。
要例2、(为.【点拨】并1,纵例3△ABC①把△②以原点平【1A2(A)(-3图23、若点P(a,a﹣2)在第四象限,则a的取值范围是()A 、﹣2<a <0B 、0<a <2C 、a >2D 、a <04、在平面直角坐标系中,?AB CD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4.2),则顶点D 的坐标为()A.(7,2)B.(5,4)C.(1,2)D.(2,1)5、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是() A 、(3,3)B 、(5,3)C 、(3,5)D 、(5,5)6则点A A .(-47.已知点8.点(1P 9.已知点5,那么点N 10.三、解答题11、△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于x 轴对称的的坐标; (22C .12的中心在直角坐标系的原点,一条边AD 与x 轴平行,已知点的坐标分别是(-13、(夹角为B 提升训练 一、选择题1、点P (m -1,2m +1)在第二象限,则m 的取值范围是()A.121>->m m 或B.121<<-m C.m<1D.21->m第6题图第10题图第10题2、点M (﹣sin60°,cos60°)关于x 轴对称的点的坐标是() A.12)B.(12-)C.(12)D.(12-, 3、在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为()??三、解答题11、如图,已知平行四边形ABCD 的对角线AC 、BD 相交于坐标原点O ,AC 与x 轴夹角∠COF =30°,DC ∥x 轴,AC =8,BD =6.求平行四边形ABCD 的四个顶点的坐标.12.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在点D 的位置,若B (1,2),求点D 的坐标. 13、【阅读】 第8题图 第10题第9题图在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).【运用】(1)如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为______;(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C 第261、B2、7、-1811、12、B(13.∵矩形BE=2∴则点B,)B提升训练一、选择题1、B2、B3、B4、D5、D二、填空题6、-4或67、18、(3,4)9、(12,)10、210三、解答题11、55,-2) 12、过点D 作DF⊥OA 于F ,∵四边形OABC 是矩形,∴OC∥AB 。
【高效培优】2022—2023学年八年级数学上册必考重难点突破必刷卷(浙教版)【单元测试】第4章 图形与坐标(夯实基础过关卷)(考试时间:90分钟 试卷满分:120分)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.若电影院中“5排8号”的位置,记作(5,8),丽丽的电影票是“3排l 号”,则下列有序数对表示丽丽在电影院位置正确的是( ).A .(3,1)B .(1,3)C .(13,31)D .(31,13)2.下列关于确定一个点的位置的说法中,能具体确定点的位置的是( ).A .东北方向B .东经35°10′,北纬12°C .距点A100米D .偏南40°,8000米3.如图所示,在直角梯形OABC 中,CB∥OA ,CB =8,OC =8,∥OAB =45°,则点A 的坐标为( ).A .(16,0)B .(0,16)C .(14,0)D .(0,14)4.在平面直角坐标系中,点A 的坐标为(43)-,,AB y ∥轴,5AB =,则点B 的坐标为( ). A .(1,3)B .(4,8)-C .(1,3)或(9,3)-D .(4,8)-或(4,2)-- 5.点()2021,2022P -所在象限为( ).A .第一象限B .第二象限C .第三象限D .第四象限6.如图的坐标平面上有A 、B 、C 、D 四点.根据图中各点位置判断,哪一个点在第二象限( ).A .AB .BC .CD .D7.在平面直角坐标系中,对于点(2,3)P -,下列叙述错误..的是( ). A .点P 在第二象限B .点P 关于y 轴对称的点的坐标为(2,3)C .点P 到x 轴的距离为2D .点P 向下平移4个单位的点的坐标为(2,1)--8.∥ABC 的顶点分别位于正方形网格的格点上,建立如图所示的平面直角坐标系,已知点C (﹣1,1),将∥ABC 先沿x 轴方向向右平移3个单位长度,再沿y 轴方向向下平移2个单位长度,得到∥A ′B ′C ′,则点A 的对应点A ′的坐标是( ).A .(﹣6,6)B .(0,2)C .(0,6)D .(﹣6,2)9.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向上平移,再向左平移得到四边形1111D C B A ,已知11(3,5)(4,3)(3,3)A B A --,,,则点B 坐标为( ).A .(1,2)B .(2,1)C .(1,4)D .(4,1)10.如图所示,在平面直角坐标系中,A (0,0),B (2,0),I AP B △是等腰直角三角形且190P ∠=︒,把I AP B △绕点B 顺时针旋转180°,得到2BP C △,把2BP C △绕点C 顺时针旋转180°,得到3CP D △,依此类推,得到的等腰直角三角形的直角顶点2022P 的坐标为( ).A .(4043,-1)B .(4043,1)C .(2022,-1)D .(2022,1)二、填空题(本大题共8个小题,每题3分,共24分)11.电影票上“6排8号”,记作()6,8,则“2排3号”记作_________.12.如图,一个机器人从点O 出发,向正东方向走3m 到达点1A ,再向正北方向走6m 到达点2A ,再向正西方向走9m 到达点3A ,再向正南方向走12m 到达点4A ,再向正东方向走15m 到达点5A ,按如此规律走下去,当机器人走到点6A 时,点6A 的坐标是________.13.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B 是x 轴正半轴上的整点,记∥AOB 内部(不包括边界)的整点个数为m .当点B 的横坐标为4时,m 的值是_____.当点B 的横坐标为4n (n 为正整数)时,m =_____(用含n 的代数式表示)14.如图,在平面直角坐标系xOy 中,点A 的坐标为(0,6),点B 为x 轴上一动点,以AB 为边在直线AB 的右侧作等边三角形ABC .若点P 为OA 的中点,连接PC ,则PC 的长的最小值为_____.15.在直角坐标系中,点A (11,12)与点B (﹣11,12)关于_______轴对称.16.如图为一张藏宝图,已知秘密宝藏藏在图中的某个黑点标示的位置.建立适当的平面直角坐标系,现知道Rt ABC 的直角顶点C 的位置的坐标为()1,1,B 点位置的坐标为()2,0.经过调查,秘密宝藏的位置P 满足为条件:PAB 为非等腰的锐角三角形.A 点位置的坐标为______,符合条件的P 点的个数为______个.17.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为___________.18.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n +1(n 为自然数)的坐标为_____(用n 表示)三、解答题(本大题共8小题,共66分;第19-22每小题6分,第23-24每小题8分,第25小题12分,第26小题14分)19.如图,如果“象”的位置表示为()9,3.(1)用同样的方式表示“将”与“帅”的位置;(2)“马”走“日”字对角线.在图上标出“马3进4”(即第3列的马前进到第4列)后的位置.20.如图,国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图1,是一个44⨯的小方格横盘,图中的“皇后”能控制图中虚线所经过的每一个小方格.在图2中的小方格棋盘中有一“皇后Q ”,她所在的位置可用“()2,3”来表示,请说明“皇后Q ”所在的位置“()2,3”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q ”所控制的四个位置.21.在平面直角坐标系中,ABC ∆的顶点都在格点上.(1)点A 的坐标为 ;(2)画出ABC ∆关于y 轴对称的△111A B C (点A ,B ,C 的对应点分别为1A ,1B ,1C ),并直接写出点1B 的坐标.22.八年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,-200),王励说他的坐标是(-200,-100),李华说他的坐标是(-300,200).(1)请你据此写出坐标原点的位置;(2)请你写出这三位同学所在的景点.23.如图所示,在平面直角坐标系中,已知()0,1A 、()2,0B 、()4,3C .(1)在平面直角坐标系中画出ABC △;则ABC △的面积是___________;(2)若将点A 、B 、C 的纵坐标不变,横坐标分别乘1-,得到A B C ''',在图中画出A B C ''';此时A B C '''与ABC△的位置关系是___________;(3)已知P 为y 轴上一点,若ABP △的面积为4,则点P 的坐标是___________.24.如图,ABC 在平面直角坐标系中,点A 、B 、C 的坐标分别为()2,1A -,()4,5B -,()5,2C -.(1)画出ABC 关于y 对称的111A B C △,其中,点A 、B 、C 的对应点分别为1A 、1B 、1C ;(2)直接写出点1A 、1B 、1C 的坐标:1A ______,1B ______,1C ______.(3)求111A B C △的面积.25.如图,∥ABC 的三个顶点都在方格纸的格点上,其中点A 的坐标是(-2,0),点B 的坐标是(-6,2),点C 的坐标是(-4,6).(1)在图(1)中作∥ABC 关于y 轴的对称图形∥DEF ,其中A ,B ,C 的对应点分别是D ,E ,F ;(2)动点P 的坐标为(0,t ),在图(1)上画出点P ,使P A +PC 的值最小,根据画出的图直接写出t 的值,并写出P A +PC 的最小值.(3)在(1)的条件下,点Q 为x 轴上的动点,当∥QDE 为等腰三角形时,请直接写出Q 点的坐标.26.通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,90,BAD AB AD ∠︒==,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ≌.进而得到AC =_______,BC =______.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;【模型应用】(2)①如图2,90,,BAD CAE AB AD AC AE ∠=∠=︒==,连接,BC DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.若AOB △是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.。
2022-2023学年浙教版数学八上期末复习专题图形与坐标一、单选题(每题3分,共30分)1.(2021八上·鄞州期末)根据下列表述,能够确定位置的是()A.甲地在乙地的正东方向上B.一只风筝飞到距A处20米处C.某市位于北纬30°,东经120°D.影院座位位于一楼二排2.(2022八上·西安月考)如果把电影票上3排6座记作(3,6),那么(6,5)表示()A.5排6座B.5排5座C.6排5座D.6排6座3.(2022八上·新城月考)2021年9月15日,中华人民共和国第十四届运动会开幕式在西安奥体中心举行,如图,如果将西安钟楼的位置记为直角坐标系的原点,下列哪个点的位置可以表示奥体中心的位置()A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 4.(2020八上·历下期中)如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是()A.D7,E6B.D6,E7C.E7,D6D.E6,D75.已知点A的坐标为(a+1,3−a),下列说法正确的是()A.若点A在y轴上,则a=3B.若点A在一三象限角平分线上,则a=1C.若点A到x轴的距离是3 ,则a=±6D.若点A在第四象限,则a的值可以为-26.(2021八上·晋中期末)如图是一只蝴蝶标本,已知表示蝴蝶两“翅膀尾部”A,B 两点的坐标分别为(-2,-3),(2,-3),则表示蝴蝶身体“尾部”C 点的坐标为()A.(0,-1)B.(1,-1)C.(-1,0)D.(2,-1)7.(2022八上·长清期中)若点P(2−m,5)在y轴上,则m的值等于()A.2B.7C.−2D.−38.(2021八上·扶风期末)已知图形A全部在x轴的上方,如果将图形A上的所有点的纵坐标都乘以-1,横坐标不变得到图形B,则()A.两个图形关于x轴对称B.两个图形关于y轴对称C.两个图形重合D.两个图形不关于任何一条直线对称9.(2021八上·川汇期末)点A(2,m)向上平移2个单位后与点B(n,−1)关于y轴对称,则m n=().A.1B.12C.−18D.1 910.(2021八上·瑞安月考)在平面直角坐标系中,将点A(a,1-a)先向左平移3个单位得点A1,再将A1向上平移1个单位得点A2,若点A2落在第三象限,则a的取值范围是() A.2 <a<3B.a <3C.a >2D.a <2或a >3二、填空题(每题4分,共24分)11.(2022八上·城阳期中)如图是一台雷达探测相关目标得到的结果,若记图中目标A的位置为(2,90°),目标B 的位置为(4,30°),现有一个目标C的位置为(3,m°),且与目标B的距离为5,则目标C的位置为.12.(2022八上·城阳期中)已知点M(2m−1,−3),点N(5,2),直线MN∥y轴,则m的值为.13.(2022八上·西安月考)点A(m−1,2m−3)在第一、三象限夹角的角平分线上,则m的值为.14.(2021八上·巴彦期末)点P(a,−3)与Q(2,b)关于y轴对称,则a b的值为.15.(2020八上·深圳期中)如图,已知A1(0,1),A2(√32,−12),A3(−√32,−12),A4(0,2),A5(√3,-1),A6(−√3,-1),A7(0,3),A8(3√32,−32),A9(−3√32,−32)……则点A2010的坐标是16.(2021八上·永吉期末)若(x+2)(x−3)=x2+bx+c,其中b,c为常数,则点P(b,c)关于x 轴的对称点的坐标为.三、解答题(共8题,共66分)17.(2021八上·平远期末)小明和朋友到人民公园游玩,回到家后,利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x轴、y轴,只知道游乐园D的坐标为(1,﹣3),请你帮他画出平面直角坐标系,并写出其他各景点的坐标.18.(2021八上·莲湖期中)已知点A(m﹣2,5)和B(3,n+4),A,B两点关于y轴对称,求m﹣n 的值.19.(2021八上·横县期中)如图,利用关于坐标轴对称的点的坐标的特点,画出与△ABC关于x轴对称的图形.20.(2021八上·海曙期末)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).⑴请在如图所示的网格平面内作出平面直角坐标系;⑴请作出⑴ABC关于y轴对称的⑴A′B′C′;⑴写出点B′的坐标.21.已知点P(3a−15,2−a).(1)若点P位于第四象限,它到x轴的距离是4 ,试求出a的值:(2)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.22.(2022八上·台州月考)如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(1,0)作x轴的垂线l.(1)作出⑴ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在⑴ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).23.(2021八上·黑山期中)如图回答下列问题:(1)如图①所示,请用有序数对写出棋盘上棋子“帅、黑车、炮”的位置(把列号写在前面,行号写在后面).(2)如图②所示把O点移动到棋子“仕”的位置时,用有序数对写出棋子“仕、相、黑马”的位置(把列号写在前面,行号写在后面)(3)如图②,已知棋子“将”的位置是(2,8),棋子“黑马”的位置是(4,3),规定列在前,行在后,请你在棋盘上确定A(0,0)点的位置,棋子“红马”的位置是什么?24.(2021八上·佛山月考)在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请在图中的网格平面内建立平面直角坐标系,并将△ABC画出来.(2)在图中找一点D,使AD=√26,CD=√13,并将点D标记出来.(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.(4)在y轴上是否存在点Q,使得S△AOQ=12S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由.答案解析部分1.【答案】C【知识点】用坐标表示地理位置【解析】【解答】解:根据题意可得,A.甲地在乙地的正东方向上,无法确定位置,故答案为:A不合题意;B.一只风筝飞到距A处20米处,无法确定位置,故答案为:B不合题意;C.某市位于北纬30°,东经120°可以确定一点的位置,故答案为:C符合题意;D.影院座位位于一楼二排,无法确定位置,故答案为:D不合题意.故答案为:C.【分析】根据在平面内要确定一个点的位置,必须是一对有序数对,再对各选项逐一判断即可. 2.【答案】C【知识点】有序数对【解析】【解答】解:把3排6号的电影票记作(3,6),那么(6,5)表示的电影票号是:6排5号.故答案为:C.【分析】根据题意可得数对中的第一个数表示排,第二个数表示号,据此解答.3.【答案】B【知识点】用坐标表示地理位置【解析】【解答】解:由题意可得:奥体中心的位置可以为(2,3).故答案为:B.【分析】由于奥体中心在第一象限,而第一象限的坐标符号为正正,据此解答即可.4.【答案】C【知识点】有序数对【解析】【解答】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故答案为:C.【分析】直接利用已知网格得出“故宫”、“颐和园”所在的位置。
第 12 讲 《图形与坐标》(叶胤均)一、知识要点: 1.平面内表示点的位置有两种方法:一是有序实数对,二是距离加方向,这两种方法都需要两个量. 2.平面直角坐标系由两条有公共原点、且互相垂直的数轴构成.点的坐标表示为(x,y) 3.各个象限的符号:(+,+);(-,+);(-,-);(+,-).坐标轴上的点不在象限内. 4.点(x,y)到 x 轴的距离:∣y∣,到 y 轴的距离:∣x∣点 M(x,y)到原点的距离:OM= x2 y2x 轴上 M(x1,0),N(x2,0)之间的距离:MN=∣x1-x2∣平面内任意两点 A(x1,y1)、B(x2,y2)之间的距离:AB= x1 x2 2 y1 y2 25.如果 M(x1,a),N(x2,a),则 MN∥x 轴;反之成立.6.点 M(x,y)①关于 x 轴的对称点的坐标为(x,-y);②关于 y 轴的对称点的坐标为(-x,y);③关于原点的对称点的坐标为(-x,-y);7、①一、三象限的角平分线上的点的坐标为(a,a);②二、四象限的角平分线上的点的坐标为(a,-a)8、坐标平面内点的平移:方向加距离.9、坐标平面内的点与有序实数对一一对应.10、关于一、三象限的角平分线,二、四象限的角平分线对称的点的坐标.二、例题精选:例 1、在如图所示的正方形网格(小正方形的边长为 1) A 中,△ABC 的顶点 A,C 的坐标分别为(-4,5),(-1,3).(1)画出相应的直角坐标系;C(2)作出△ABC 关于 y 轴对称的△A′B′C′;(3)写出点 B′的坐标. B例 2、根据给出的已知点的坐标求四边形 ABCO 的面积.yA(-2,8) B(-11,6)1/7C(-14,0) 例 2Ox例 3、平面直角坐标系中有两点 M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d), 则称点 Q(a+c,b+d)为 M,N 的“和点”,若以坐标原点 O 与任意两点及它们的和点为顶点能组 成四边形,则称这个四边形为和点四边形.现在点 A(2,5),B(-1,3),若以 O,A,B,C 四点为 顶点的四边形是“和点四边形”,求点 C 的坐标.例 4.(1)已知 A(2,4),B(-3,-8),求 A,B 两点间的距离. (2)已知△ABC 各顶点坐标为 A(0,6),B(-3,2),C(3,2),你能判定此三角形的形状吗? 说明理由.例 5、平面直角坐标系中,点 A 的坐标是(3a-5,a+1) (1)若点 A 在 y 轴上,求点 A 的坐标; (2)若点 A 到 x 轴的距离与到 y 轴的距离相等,求点 A 的坐标.例 6、平面直角坐标系中,等腰△ABC 的两个顶点的坐标 分别为 A(1,0),B(4,4),如果第三个顶点在坐标轴 上,那么点 C 可能的不同位置有多少个(画图说明)?2/7例 7、已知点 A(2a-b,5+a),B(2b-1,-a+b). (1)若点 A,B 关于 x 轴对称,求 a,b 的值; (2)若点 A,B 关于 y 轴对称,求(4a+b)2017 的值例 8、如图,平面直角坐标系中,一颗棋子从点 P 处开始 依次关于点 A,B,C 作循环对称跳动,即第一次跳到点 P 关于点 A 的对称点 M 处,接着跳到点 M 关于点 B 的对 称点 N 处,第三次再跳到点 N 关于点 C 的对称点处...... 如此下去. (1)在图中画出点 M,N,并写出点 M,N 的坐标; (2)求经过第 2017 次跳动后,棋子的落点与点 P 的距离.yB• C•OxA••P例 9.平面直角坐标系中,点 M 的坐标是(a,-2a).将点 M 向左平移 2 个单位,再向上平移 1 个 单位后得到点 N.若点 N 在第三象限,求 a 的取值范围.例 10、如图①,将射线 Ox 按逆时针方向旋转β,得到射线 Oy,如果 P为射线 Oy 上一点,且 OP=a,那么我们规定用(a,β)表示点 P 在平面内的位置,并记为(a,β).例如,图②中,如果 OM=8,∠xOM=110°,那么点 M 在平面内的位置记为 M(8,110°),根据图形,解答下列问题:(1)如图,如果点 N 在平面内的位置记为(6,30°),那么 ON=,∠xON=.(2)如果点 A,B 在平面内的位置分别记为 A(5,30°),B(12,120°),求 A,B 两点之间的距离.yaPβ O 图① xM(8,110°) •110° O 图② xN(6•,30°)3/7O 图③x三、学生练习:(一)选择题(每小题 3 分,共 30 分)1. 若点 P(a,-b)在第三象限,则 M(ab,-a)应在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 在 x 轴上到点 A(3,0)的距离为 4 的点是( ).A. (7,0) B. (-1,0) C. (7,0)或(-1,0) D. 以上都不对3. 点 M 到 x 轴的距离为 3,到 y 的距离为 4,则点 A 的坐标为( ).A. (3,4)B. (4,3)C. (4,3),(-4,3)D. (4,3),(-4,3)(-4,-3),(4,-3)4. 如果点 P(m+3,2m+4)在 y 轴上,那么点 P 的坐标为( ).A. (-2,0) B. (0,-2) C. (1,0)D. (0,1)5. 点 M 在 x 轴的上方,距离 x 轴 5 个单位长度,距离 y 轴 3 个单位长度,则 M 点的坐标为( ).A. (5,3) B. (-5,3)或(5,3) C. (3,5) D. (-3,5)或(3,5)6. 平面直角坐标系中,一个四边形各顶点坐标分别为 A(1, 2) ,B((4, 2) ,C(4,3) ,D((1,3) ,则四边形 ABCD 的形状是( ).A. 梯形B. 平行四边形C. 正方形D. 无法确定7. 设点 A(m,n)在 x 轴上,位于原点的左侧,则下列结论正确的是( ).A. m=0,n 为一切数B. m=O,n<0C. m 为一切数,n=0D. m<0,n=08. 在坐标轴上与点 M(3,-4)距离等于 5 的点共有( ).A. 4 个B. 3 个C. 2 个D. 1 个9. 直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数 a(a>1),那么所得的图案与原来图案相比( ).A. 形状不变,大小扩大到原来的 a2 倍B. 图案向右平移了 a 个单位C. 图案向上平移了 a 个单位D. 图案沿纵向拉长为 a 倍10. 若 y 0 ,则点 P(x,y)的位置是( ). xA. 在横轴上B. 在去掉原点的横轴上C. 在纵轴上D. 在去掉原点的纵轴上(二)填空题(每小题 3 分,共 30 分)11. 如果将电影票上“6 排 3 号”简记为(6,3),(7,1)表示的含义是.12. 点(-4,0)在轴上,距坐标原点个单位长度.13. 点 P 在 y 轴上且距原点 1 个单位长度,则点 P 的坐标是.14. 已知点 M(a,3-a)是第二象限的点,则 a 的取值范围是.15. 点 A、点 B 同在平行于 x 轴的一条直线上,则点 A 与点 B 的坐标相等.16. 点 M(-3,4)与点 N(-3,-4)关于对称.17. 点 A(3,b)与点 B(a,-2)关于原点对称则 a=,b=.18. 若点 P(x,y)在第二象限角平分线上,则 x 与 y 的关系是.4/719. 已知点 P(-3,2),则点 P 到 x 轴的距离为,到 y 轴的距离为20. 已知点 A(x,4)到原点的距离为 5,则点 A 的坐标为.(三)解答题(计 60 分)21.等腰梯形 ABCD 的上底 AD=2,下底 BC=4,底角 B=45°,A建立适当的直角坐标系,求各顶点的坐标.B.D C22.正方形的边长为 2,建立适当的直角坐标系,使它的一个顶点的坐标为( 2 ,0),并写出另外三个顶点的坐标.23. 四边形 ABCD 在直角坐标中的位置如图 1 所示,按下列步骤操作并画出变化后的图形:(1)将四边形 ABCD 各点的横纵坐标都乘以12 ,把得到的四边形 A1B1C1D1 画在图 2 的坐标系中; (2)将四边形 A1B1C1D1 各点的横坐标都乘以-1,纵坐标都乘以-1 后再加上 1,把得到的四边形 A2B2C2D2 画在图 3 的坐标系中.(图中每个方格的边长均为 1)yADyyoxoBCxox(图 1)(图 2)24.如图所示,OA=8,OB=6,∠XOA=45°,∠XOB=120°, 求 A、B 的坐标.(图 3)5/725. 根据指令[S,A](S≥0,0°<A<180°,机器人在平面上能完成下列动作:先原地逆时针旋转角度 A,再朝其面对的方向沿直线行走距离 S,现机器人在直角坐标系坐标原点,且面对 x 轴正方向.(1)若给机器人下了一个指令[4,60],则机器人应移动到点;(2)请你给机器人下一个指令,使其移到点(-5,5).26. 观察图形由(1)→(2)→(3)→(4)的变化过程,写出每一步图形是如何变化的,图形中各顶点的坐标是如何变化的.y A(1,2)y A(2,2)yOxO B(2,0) OB(4,0)x(1)(2)B(4,0) xA(2,- 2) (3)yO (0,-1)x B(4,-1)(4) A(2,-5)4)27、如图,在平面直角坐标系中,长方形 OABC 的顶点 A, C 的坐标分别为(10,0),(0,4),D 为 OA 的中点,P 为 BC 边上一点.若△POD 为等腰三角形,求所有满足条件的 点 P 的坐标.yC •P•ODB Ax6/7八年级上四章《图形与坐标》第 12 讲答案例 1、(1)(2)略;(3)坐标是(2,1)例 2、作 BD⊥x 轴,AE⊥x 轴,面积为 80例 3、(1,8)或(-3,-2)或(3,2)例 4、(1)AB=13;(2)AB=AC=5,BC=6 等腰三角形例 5、(1)(0, 8 );(2)a=3,(4,4)或 a=1,(-2,2) 3例 6、如图,9 个点 例 7、(1)a=-8,b=-5;(2)-1•• • • C1 • OAB C•2 C• 5 C7例 8、(1)M(-2,0),N(4,4) (2)PM=2 2例 9、 1 a 2 2例 10.(2)画出图形,得∠AOB=90°,∴AB=13 学生练习:•例6BCDB DCDB AB 11、7 排 1 号; 12、x 的负半轴, 4; 13、(0,1),(0,-1); 14、a<0; 15 纵; 16、y 轴; 17、a=-3,b=2; 18、x+y=0; 19、2,3; 20、(3,4)或(-3,4)21、略; 22、(0, 2 ),(- 2 ,0),(0,- 2 );23、(1,2),(1,0),(2,0),(3,2)(2)(-2,-4),(-2,0),(-4,0),(-6,-4)24、A(4 2 ,4 2 ),B(-3,3 3 ); 25、(1)(2,2 3 );(2)[5 2 ,135]横×2纵×(-1)纵-126、(1)(2)(3)(4)27(1)当 PO=PD 时,P(2.5,4); y (2)当 OP=OD=5 时,P(3,4); C(3)当 DP=OD=5 时,分两种情况:如图 P(2,4)或 P(8,4)O•P•D图(1)B AxyC •P•OD图(2)B AxyC •P45•OD图(3)①B AxyCP• B54•ODAx图(3)②7/7。
1、已知点在轴的左侧,且到轴,轴的距离分别是3和5,则点的坐标是 .【答案】【解析】点M在第二象限或者在第三象限,在第二象限时坐标是(-5,3),在第三象限时坐标为(-5,-3).2、若点P的坐标是(m,n),且m<0,n>0,则点P在象限.【答案】二【解析】坐标系中,四个象限点的坐标的特点:一(+,+),二(-,+),三(-,-),四(+,-)。
因为m<0,n>0,故点P在第二象限3、点 P(-3,2)关于Y轴对称的点的坐标是: .【答案】(3,2)【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点P(-3,2)关于y轴对称的点的坐标为(-3,-2)4、点M(-1,5)向下平移4个单位得N点坐标是 .【答案】(-1,1)【解析】点M(-1,5)向下平移4个单位得N点坐标是(-1,5-4),即为(-1,1).5、若P(X,Y)的坐标满足XY>0,且X+Y<0,则点P在第象限。
【答案】三【解析】∵xy>0,∴x,y同号,又∵x+y<0,∴x<0,y<0,∴点P在第三象限。
6、若点M(a+5,a-3)在y轴上,则点M的坐标为。
【答案】(0,-8)【解析】∵点M(a+5,a-3)在y轴上,∴a+5=0,即a=-5,∴a-3=-8,∴点M 的坐标为(0,-8).7、点A在x轴上,距离原点4个单位长度,则A点的坐标是【答案】(4,0)或(-4,0)【解析】由题意点A的横坐标为0,纵坐标为4或-4,即点A(4,0)或(-4,0)8、如图,在矩形ABCD中,已知A(— 4,1),B(0,1),C(0,3),则点D的坐标为 __________ .【答案】(—4,3)【解析】利用矩形的对边相等和平移思想可得D点纵坐标和C点纵坐标相同,横坐标和A点横坐标相同。
所以为(—4,3)。
9、点A(2,3)关于y轴的对称点是,点A到x轴的距离等于________.【答案】(-2,3);3【解析】关于谁对称谁不变,另一个坐标互为相反数,是坐标系中的点对称的关键。
所以点A对称点坐标的纵坐标不变,横坐标互为相反数为(-2,3);点到坐标轴的距离是到x轴的距离是y的绝对值;到y 轴的距离是x的绝对值。
所以点A到x轴的距离等于是3。
10、已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为【答案】(4,6)或(4,0)【解析】B点可能在A点上方,也可能在A点下方,故B点坐标为(4,6)或(4,0)11、点A的坐标为(1,-2),则点A到x轴的距离为,点A到y轴的距离为 .【答案】2,1【解析】∵在平面直角坐标系中,点A的坐标为(1,-2),∴点A到x轴的距离等于其纵坐标的绝对值即为2,点A到y轴的距离等于其横坐标的绝对值即为1.故填2,1.12、请写出一个在第二象限内且到两坐标轴的距离都相等的点的坐标____________.【答案】(-1,1)答案不唯一【解析】根据题意,该点在第一象限内且到两坐标轴的距离都相等,则这个点在第二象限的角平分线上即这个点的横坐标和纵坐标互为相反数且横坐标为负即可,因此答案不唯一,如(-1,1).13、P(m-4,1-m)在x轴上,则m= 。
【答案】1【解析】:∵点P(m-4,1-m)在直角坐标系的x轴上,∴这点的纵坐标是0,∴1-m =0,解得,m=114、点P(-1,2)关于轴对称的点的坐标是.【答案】(-1,-2)【解析】关于轴对称的点的坐标特点是横坐标不变,纵坐标互为相反数,所以点P关于轴对称的点的坐标是(-1,-2)15、点(-2,1)所在的象限是__________象限.【答案】二【解析】x=-2<0,y=1>0,故点在第二象限16、如图,若在象棋盘上建立直角坐标系,使“帥”位于点(0,0),“馬”位于点(3,0),则“兵”位置的坐标是;【答案】【解析】由题意可知“帥”所在的横轴为X轴,所在的纵轴为Y轴,“兵”在第二象限,坐标为17、如果电影院中“5排7号”记作(5 ,7),那么(3,4)表示的意义是。
【答案】3排4号【解析】考查有序数对的意义。
18、点M(-2,3)到x轴的距离是 .【答案】3【解析】平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值,所以点M(-2,3)到x轴的距离是纵坐标的绝对值3.19、点P( 3, )到y轴的距离是▲.【答案】3【解析】一点到y轴的距离就是它的横坐标的绝对值,∴|3|=3.20、若点(-a ,b)在第二象限, 则点(a ,-b)在第________象限.【答案】四【解析】:∵点(-a,b)在第二象限,∴-a<0,b>0,∴a>0,-b<0,所以点(a,-b)在第四象限.故填四.21、在平面直角坐标系中,点P(-4,5)到x轴的距离为______,到y轴的距离为________.【答案】5 4【解析】在平面坐标系中,点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值.22、如果P(m+3,2m+4)在y轴上,那么点P的坐标是________.【答案】(0,-2)【解析】点P(m+3,2m+4)在y轴上,则横坐标为0,所以。
,所以P的坐标是(0,-2)答案(0,-2)23、如果点在第二象限,那么在第________象限.【答案】一【解析】方法一:∵点在第二象限,∴,∴,∴点在第一象限方法二:∵点与关于轴对称,点在第二象限,∴点在第一象限24、点A的坐标(4,-3),它到x轴的距离为.【答案】3【解析】考点;点的坐标与点到坐标轴的距离的关系。
一个点到x轴的距离等于这个点的纵坐标的绝对值,到y轴的距离等于这个点的横坐标的绝对值。
因此A到x轴的距离为|-3|=325、(5分)(-7,3)在第象限(填“一”、“二”、“三”、“四”)【答案】二【解析】此题考查直角坐标系区域的划分。
横坐标为负,纵坐标为正,属于第二限象。
答案二26、如果“2街5号”用坐标(2,5)表示,那么(3,1)表示___ _.【答案】3街1号【解析】根据有序数对的两个数表示的含义解答即可.解答:解:∵“2街5号”用坐标(2,5)表示,∴(3,1)表示“3街1号”.故答案为:3街1号.27、如果电影票上的“3排4号”记作(3,4),那么(4,3)表示______排_________号。
【答案】4,3【解析】由“3排4号”记作(3,4)可知,有序数对与排号对应,(4,3)的意义为第4排3号.解答:解:根据题意知:前一个数表示排数,后一个数表示号数.所以(4,3)表示的座位是4排3号.故答案填:4排3号.28、将点P(-3,4)先向下平移3个单位,再向左平移2个单位后得到点Q,则点Q的坐标是_____________。
【答案】(-6,2)【解析】(-5,1)让P的横坐标减2,纵坐标减3即可得到点Q的坐标.解答:解:根据题意,点Q的横坐标为:-3-2=-5;纵坐标为4-3=-1;∴点Q的坐标是(-5,1).故答案填:(-5,1).29、点P(-2,3)在第象限.【答案】二【解析】点P(-2,3)横坐标为负,纵坐标为正,根据象限内点的坐标符号,确定象限.解答:解:∵-2<0,3>0,∴点P(-2,3)在第二象限,故答案为:二.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).30、有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3)(4,1),(4,4),请你把这个英文单词写出来或者翻译成中文为----------。
【答案】STUDY ;(或:学习)【解析】根据每一个点的坐标确定其对应的位置,最后写出答案.解答:解:(5,3)对应的字母是S,(6,3)对应的字母是T,(7,3)对应的字母是U,(4,1)对应的字母是D,(4,4)对应的字母是Y故答案为STUDY.中文意思是学习31、平面直角坐标系中点A的坐标为(5,2),将A点水平向右移动2个单位得到点B,则点B的坐标为________,又将B点向下平移5个单位得到点C,则点C的坐标为。
【答案】(7,2), (7,-3);【解析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.解答:解:由题意可知:将A点水平向右移动2个单位得到点B的坐标为(7,2);又将B点向下平移5个单位得到点C的坐标为(7,-3).故答案为:(7,2);(7,-3).32、点P(-2,0)在________轴上,点Q(0,2)在________轴上.【答案】x,y;【解析】考点:点的坐标.分析:根据x轴上的点的纵坐标是0进行求解;根据y轴上的点的横坐标是0进行求解.解:点P(-2,0)在x轴上,点Q(0,2)在y轴上.故答案为:x,y.33、已知:点A(m,2)与点B(3,n)关于y轴对称,则。
【答案】1【解析】根据题意,点A(m,2)与点B(3,n)关于y轴对称,由关于y轴对称的点的性质,可得m、n的值,进而可得m+n的值,由指数幂的性质,可得答案.解答:解:根据题意,点A(m,2)与点B(3,n)关于y轴对称,则m=-3,n=2,则m+n=-1,则(m+n)2010=(-1)2010=1;故答案为1.34、已知(2,),(2,4),那么线段的长为 .【答案】8。
【解析】如图所示,因为,所以AB平行于y轴,所以。
35、在直角坐标系中,点的坐标为(3,),则点到轴的距离为 . 【答案】4【解析】36、已知x轴上点P到y轴的距离是1,则点P的坐标是__________。
【答案】(1,0),(-1,0)【解析】此题考查平面直角坐标系中点的坐标的几何意义;平面直角坐标系中点的横坐标的绝对值就是点到y轴的距离,点的纵坐标的绝对值就是点到x轴的距离;因为x轴上点P到y轴的距离是1,所以此点有可能在x的正半轴或负半轴上,所以P的坐标有两种情况,分别是(1,0),(-1,0)37、在平面直角坐标系中,已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2011的值为______▲_____.【答案】【解析】解:由点P1(a-1,5)和P2(2,b-1)关于x轴对称得a-1=2且b-1=-5 解得a=3,b=-4所以 (a+b)2011=(3-4)2011=-1故答案为-138、点M(-3,-1)向右平移3个单位后,得到点M′的坐标为(,). 【答案】3,-1【解析】(0,-1)根据点向右平移,横坐标加,纵坐标不变进行求解即可.解:∵-3+3=0,∴点M(-3,-1)向右平移3个单位,得到点M′的坐标为(0,-1).故答案为:(0,-1).39、在电影院内,若将“12排5座”简单记做(12,5),则“8排17座”可以表示为_______。