高二新数学文(4)
- 格式:doc
- 大小:529.00 KB
- 文档页数:9
高二数学必修四知识点归纳【导语】知识掌控的巅峰,应当在一轮复习之后,也就是在你把所有知识重新捡起来之后。
这样看来,应对高二这一变化的较优挑选,是在高二还在学习新知识时,成心识地把高一内容从头捡起,自己计划进度,提早复习。
下面是作者为大家整理的《高二数学必修四知识点归纳》,期望对你有所帮助!1.高二数学必修四知识点归纳1.解三角形(1)正弦定理和余弦定理掌控正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)运用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何运算有关的实际问题.2.数列(1)数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式).了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列知道等差数列、等比数列的概念.掌控等差数列、等比数列的通项公式与前项和公式.能在具体的问题情境中,辨认数列的等差关系或等比关系,并能用有关知识解决相应的问题.了解等差数列与一次函数、等比数列与指数函数的关系.3.不等式与不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(1)一元二次不等式会从实际情境中抽象出一元二次不等式模型.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(2)二元一次不等式组与简单线性计划问题会从实际情境中抽象出二元一次不等式组.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.会从实际情境中抽象出一些简单的二元线性计划问题,并能加以解决.(3)基本不等式:了解基本不等式的证明进程.会用基本不等式解决简单的(小)值问题圆的辅助线一样为连圆心与切线或者连圆心与弦中点2.高二数学必修四知识点归纳空间角问题(1)直线与直线所成的角两平行直线所成的角:规定为.两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为.平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三运算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意发掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角二面角的定义:从一条直线动身的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角求二面角的方法定义法:在棱上挑选有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角3.高二数学必修四知识点归纳空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)4.高二数学必修四知识点归纳空间直线与直线之间的位置关系(1)异面直线定义:不同在任何一个平面内的两条直线(2)异面直线性质:既不平行,又不相交.(3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范畴是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线相互垂直.(4)求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特别的位置,顶点选在特别的位置上.B、证明作出的角即为所求角C、利用三角形来求角(5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(6)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aaα(7)平面与平面之间的位置关系:平行——没有公共点;αβ相交——有一条公共直线.α∩β=b5.高二数学必修四知识点归纳1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程:(1)标准方程,圆心,半径为r;(2)一样方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一样都采取待定系数法:先设后求.肯定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一样方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来肯定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情形:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来肯定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线。
学年第一学期阶段性考试 高二数学(文科)试卷第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项符合题目要求. 1.已知命题2015log ,:2=∈∀x R x p ,则p ⌝为( )A .2015log ,2=∉∀x R xB .2015log ,2≠∈∀x R xC .2015log ,020=∈∃x R xD .2015log ,020≠∈∃x R x2.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .5,6,7,8,9D .6,16,26,36,46 3.如果一个家庭有两个小孩,则两个孩子是一男一女的概率为( ) A .14 B .13 C .12 D .234.双曲线1222=-y x 的渐近线方程为( ) A. 02=±y x B. 02=±y x C .02=±y x D .02=±y x5.甲、乙两名学生五次数学测验成绩(百分制)如图所示. ①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分与乙同学的平均分相等; ③甲同学成绩的方差大于乙同学成绩的方差. 以上说法正确的是( ) A .①②B .②③C .①③D .①②③6.用秦九韶算法求多项式7234)(234++++=x x x x x f 的值,则)2(f 的值为( ) A .98 B .105 C .112 D .119 7.运行如右图的程序后,输出的结果为( ) A .6053 B .54 C .65 D .76 8.已知椭圆221164x y +=过点)1,2(-P 作弦且弦被P 平分,则此弦 所在的直线方程为( )7 90 1 38 90 1 289甲乙ENDS PRINT WEND i i i i S S i WHILE S i 1))1(/(1601+=+*+=<==A .032=--y xB .012=--y xC .042=--y xD .042=+-y x9.已知)(x g 为函数)0(1232)(23≠--=a ax ax ax x f 的导函数,则它们的图象可能是( )A .B .C .D .10.已知倾斜角为︒45的直线l 过抛物线x y 42=的焦点,且与抛物线交于B A ,两点,则OAB ∆(其中O 为坐标原点)的面积为( ) A .2B .22C .23D .811.已知(),()f x g x 都是定义在R 上的函数,且满足以下条件:①()()xf x ag x =⋅(0,a >1)a ≠且;②()0g x ≠;③)(')()()('x g x f x g x f ⋅<⋅. 若(1)(1)5(1)(1)2f fg g -+=-,则实数a 的值为 ( )A .21 B .2 C .45 D .2或21 12.如图,直线m x =与抛物线y x 42=交于点A ,与圆4)1(22=+-x y 的实线部分(即在抛物线开口内 的圆弧)交于点B ,F 为抛物线的焦点,则ABF ∆的 周长的取值范围是( ) A .()4,2 B .()6,4 C .[]4,2 D . []6,4第Ⅱ卷二、填空题:本大题共四小题,每小题5分.13.将十进制数)10(2016化为八进制数为 . 14.已知变量x 与y 的取值如下表:x 23 5 6y 7a -8 a +9 12从散点图可以看出y 对x 呈现线性相关关系,则y 与x 的线性回归直线方程a bx y+=ˆ必经过的定点为 .15.已知P 为圆4)2(:22=++y x M 上的动点,)0,2(N ,线段PN 的垂直平分线与直线PM 的交点为Q ,点Q 的轨迹方程为 .16.已知函数xxe x f =)(,现有下列五种说法:①函数)(x f 为奇函数;②函数)(x f 的减区间为()-1∞,,增区间为()1+∞,;频率组距50 55 60 65 70 75 80体重(kg)O0.070.060.050.040.030.020.01③函数)(x f 的图象在0x =处的切线的斜率为1; ④函数)(x f 的最小值为1e-. 其中说法正确的序号是_______________(请写出所有正确说法的序号).三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设命题p :12>-x ;命题q :0)1()12(2≥+++-a a x a x .若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.18.(本小题满分12分)某校对高二年段的男生进行体检,现将高二男生的体重()kg 数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[)65,60的人数为200.根据一般标准,高二男生体重超过65kg 属于偏胖,低于55kg 属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[)6560,内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.19. (本小题满分12分)(1)执行如图所示的程序框图,如果输入的[]3,1-∈t ,若输出的s 的取值范围记为集合A ,求集合A ;(2)命题p :A a ∈,其中集合A 为第(1)题中的s 的取值范围;命题q :函数a x ax x x f +++=2331)(有极值; 若q p ∧为真命题,求实数a 的取值范围.20.(本小题满分12分)已知双曲线C :)00(12222>>=-,b a by a x .(1)有一枚质地均匀的正四面体玩具,玩具的各个面上分别写着数字1,2,3,4.若先后两次投掷玩具,将朝下的面上的数字依次记为b a ,,求双曲线C 的离心率小于5的概率;(2)在区间[]61,内取两个数依次记为b a ,,求双曲线C 的离心率小于5的概率.21.(本小题满分12分)已知椭圆C:)0(12222>>=+b a by a x 的中心在坐标原点O ,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形. (1)求椭圆C 的标准方程;(2)若斜率为k 的直线l 经过点)0,4(M ,与椭圆C 相交于A ,B 两点,且21>⋅OB OA ,求k 的取值范围.22. (本小题满分12分)已知函数)(2ln )(2R a x xa x a x f ∈++-=. (1)当1=a 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(2)当0>a 时,若函数()f x 在[1,]e 上的最小值记为)(a g ,请写出)(a g 的函数表达式.高二数学(文科)试卷参考答案一、DDCD BBCD ABAB二、13.)8(3740 14.()9,4 15.)0(1322<=-x y x 16.③④ 三、17.解:由p :12>-x 解得1<x 或3>x .……………………………… 3分由q :0)1()12(2≥+++-a a x a x 得[]0)1()(≥+--a x a x ,解得a x ≤或1+≥a x .……………………………… 6分∵p ⌝是q ⌝的必要不充分条件,∴p 是q 的充分不必要条件. …………………… 8分 ∴⎩⎨⎧≤+≥311a a ,则21≤≤a .∴实数a 的取值范围是[]21,.……………………………… 10分 18.解:(1)体重在[)65,60内的频率2.05)01.002.003.007.003.0(1=⨯++++-=04.052.0==组距频率 补全的频率分布直方图如图所示. ……………4分 (2)设男生总人数为n ,由2.0200=n,可得1000=n 体重超过kg 65的总人数为30010005)01.002.003.0(=⨯⨯++在[)70,65的人数为1501000503.0=⨯⨯,应抽取的人数为33001506=⨯, 在[)70,65的人数为1001000502.0=⨯⨯,应抽取的人数为23001006=⨯, 在[)80,75的人数为501000501.0=⨯⨯,应抽取的人数为1300506=⨯. 所以在[)70,65 ,[)75,70,[]80,75三段人数分别为3,2,1.…………………… 8分 (3)中位数为60kg 平均数为(52.50.0357.50.0762.50.0467.50.0372.50.0277.50.01)561.75⨯+⨯+⨯+⨯+⨯+⨯⨯=(kg)…12分19.解:(1)由程序框图可知,当11<≤-t 时,t s 2=,则[)2,2-∈s . 当31≤≤t 时,()322+--=t s组距kg)O0.0.0.0.0.0.0.∵该函数的对称轴为2=t ,∴该函数在[]21,上单调递增,在[]3,2上单调递减. ∴2,3min max ==s s ∴[]3,2∈s综上知,[]3,2-∈s ,集合[]3,2-=A ……………………………… 4分 (1)函数a x ax x x f +++=2331)(有极值,且12)(2'++=ax x x f , 0)('=x f 有两个不相等的实数根,即04)2(2>-=∆a 解得1-<a 或1>a即命题p :1-<a 或1>a .……………………………… 8分q p ∧为真命题,则⎩⎨⎧≤≤->-<3211a a 或a ,解得3112≤<-<≤-a 或a ;∴实数a 的取值范围是[)(]2,113--⋃,.……………………………… 12分20.解:双曲线的离心率22221ab ac a c e +===. 因为5e <a b ab 20422<<∴<∴.……………………………… 2分 (1) 因玩具枚质地是均匀的,各面朝下的可能性相等,所以基本事件),(b a 共有16个:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).设“双曲线C 的离心率小于5”为事件A ,则事件A 所包含的基本事件为(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有12个. 故双曲线C 的离心率小于5的概率为431612)(==A P .…………………………… 7分(2) ∵[][]6,1,6,1∈∈b a∴⎪⎩⎪⎨⎧<<≤≤≤≤a b b a 206161 所以以a 为横轴,以b 为纵轴建立直角坐标系,如图所示,21422155=⨯⨯-⨯=阴影S ,由几何概型可知,双曲线C 的离心率小于5的概率为2521=P .……………………………… 12分21.解:(1)∵椭圆的上顶点与两个焦点构成边长为2的正三角形,32,22222=-=∴==∴c a b a c∴椭圆C 的标准方程为13422=+y x .……………………………… 4分 (2) 设直线l 的方程为)4(-=x k y ,设A (x 1,y 1),B (x 2,y 2)联立⎩⎨⎧=+-=1243)4(22y x x k y ,消去y 可得(0126432)43(2222=-+-+k x k x k∵直线l 与椭圆C 相交于A ,B 两点,∴0>∆由0)1264)(43(4)32(2222>-+-=∆k k k 解得412<k 设),(11y x A ,),(22y x B则34322221+=+k k x x ,3412642221+-=k k x x ……………………………… 7分211643324431264)1(16)(4)1()4()4(2222222221221221212121>++-+-+=++-+=--+=+=⋅k k k k k k k k x x k x x k x k x k x x y y x x OB OA解得196272>k ∴41196272<<k所以k 的取值范围是211433143321<<-<<-k 或k .……………………………… 12分22.解:(1)∵)(2ln )(2R a x x a x a x f ∈++-=,∴12)(22'+--=xa x a x f 当1=a 时,121)(,2ln )(2'+--=++-=xx x f x x x x f 2)1(,3)1('-===f k f曲线)(x f y =在点))1(,1(f 处的切线方程为)1(23--=-x y 即052=-+y x .……………………………… 3分(2)222222'))(2(212)(x a x a x x a ax x x a x a x f +-=--=+--=0,0>>x a ,由0)('>x f 得a x 2>,由0)('<x f 得a x 20<<)(x f ∴在(]a 2,0上为减函数,在()+∞,2a 上为增函数.……………………………… 5分①当210120≤<≤<a 即a 时,)(x f 在[]e ,1上为增函数. 12)1()(2+==∴a f a g 在(]a 2,0上为减函数,在()+∞,2a 上为增函数.…………… 7分②当22121ea e 即a <<<<时,)(x f 在[]a 2,1上为减函数,在(]e a ,2上为增函数. a a a a f a g 3)2ln()2()(+-==∴……………………………… 9分③当22ea e 即a ≥≥时,)(x f 在[]e ,1上为减函数. e ea a e f a g ++-==∴22)()(……………………………… 11分综上所述,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥++-<<+-≤<+=)2(2)221(3)2ln()210(12)(22e a e e a a e a a a a a a a g ……………………………… 12分。
2020-2021学年河南省天一大联考高二阶段性测试(四)(5月)数学(文)试题一、单选题1.已知集合{}2,1,0,1,2A =--,{}21B x x =-<<,则A B =( )A .{}1,0-B .{}0,1C .{}21x x -<<D .{}10x x -<<【答案】A【分析】由交集定义可直接得到结果. 【详解】由交集定义可知:{}1,0A B ⋂=-. 故选:A.2.若复数z 满足14iz i+=-,则z 的共轭复数z 为( ) A .11616i -+ B .131414i - C .21515i -+D .351717i - 【答案】D【分析】由复数的运算法则化简得到351717iz =+,结合共轭复数的定义,即可求解. 【详解】由复数的运算法则,可得()()141354171717i i i iz i +++===+-,所以351717iz =-. 故选:D.3.函数()22log 6y x x =--的定义域为 ( )A .()2,3-B .()3,2-C .()(),32,-∞-+∞D .()(),23,-∞-+∞【答案】D【分析】对数函数的定义域为真数大于0,解不等式即可.【详解】解:函数()22log 6y x x =--的定义域为:260x x -->,即3x >或2x <-,所以定义域为:()(),23,-∞-+∞.故选:D.4.若在ABC 中,AB AC AB AC ACAB=,且2AB =,6AC =,则ABC 的面积为( ) A .6 B .8 C .12 D .20【答案】A【分析】根据向量的数量积公式化简可以得到cos cos AB BAC AC BAC ∠=∠,代入数值计算可知2BAC π∠=,根据直角三角形面积公式计算面积即可.【详解】解:因为cos AB AC AB AC BAC ⋅=∠,所以有cos cos AB AC BACAB AC BACACAB∠∠=,即cos cos AB BAC AC BAC ∠=∠,得4cos 0BAC ∠=,即2BAC π∠=,所以ABC 的面积为12662S =⨯⨯=. 故选:A. 5.已知()tan202ααπ=<<,则sin 2α= ( )A .2425 B .1516C .1516-D .2425-【答案】D【分析】首先根据二倍角公式求得4tan 3α=-,接着利用同角三角函数关系化简得到22tan sin 21tan ααα=+,最后代入4tan 3α=-计算结果即可.【详解】因为()tan202ααπ=<<,所以22tan42tan 31tan 2ααα==--,又2222422sin cos 2tan 243sin 22sin cos sin cos 1tan 25413ααααααααα-⨯=====-++⎛⎫+- ⎪⎝⎭, 故选:D【点睛】(1)给值求值问题一般是正用公式将所求“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入展开式即可. (2)通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则: ①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是0,2π⎛⎫⎪⎝⎭,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,22ππ⎛⎫- ⎪⎝⎭,选正弦较好.6.中国古代数学专著《算法统宗》中有这样的记载:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本.意思为:现有《毛诗》、《春秋》、《周易》3种书共94册,若干人读这些书,要求每个人都要读到这3种书,若3人共读一本《毛诗》,4人共读一本《春秋》,5人共读一本《周易》,则刚好没有剩余.现要用分层抽样的方法从中抽取47册,则要从《毛诗》中抽取的册数为( ) A .12 B .14C .18D .20【答案】D【分析】设《毛诗》有x 册,《春秋》有y 册,《周易》有z 册,学生人数为m ,根据已知条件可得出关于x 、y 、z 、m 的方程组,解出这四个未知数的值,再利用分层抽样可求得结果.【详解】设《毛诗》有x 册,《春秋》有y 册,《周易》有z 册,学生人数为m ,则94345x y z m x m y m z ++=⎧⎪=⎪⎨=⎪⎪=⎩,解得120403024m x y z =⎧⎪=⎪⎨=⎪⎪=⎩, 因此,用分层抽样的方法从中抽取47册,则要从《毛诗》中抽取的册数为47402094⨯=. 故选:D.7.在圆2216x y +=内随机取一点P ,则点P 落在不等式组40400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,表示的区域内的概率为 ( ) A .14πB .34πC .1πD .43π【答案】C【分析】首先由画出不等式表示的可行域,根据可行域的形状求出其面积,再求出圆2216x y +=的面积,最后根据几何概型公式求解即可.【详解】根据不等式组40400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,如图做出点P 的可行域:由图可知:点P 的可行域为等腰三角形ABC , 所以1162ABCSAB OC =⨯⨯=, 圆2216x y +=的面积为16π, 由几何概型可知,圆2216x y +=内随机取一点P ,则点P 落在不等式组40400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的区域内的概率为:16116P ππ==, 故选:C【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.8.已知在ABC 中,,,a b c 分别为内角,,A B C 的对边,120A =,2b a c =+,且4a b -=,则b =( )A .6B .10C .12D .16【答案】B【分析】用b 表示出,a c ,代入余弦定理中,解方程求得b . 【详解】由42a b b a c -=⎧⎨=+⎩得:44a b c b =+⎧⎨=-⎩,在ABC 中,由余弦定理得:222222cos a b c bc A b c bc =+-=++,即()()()222444b b b b b +=+-+-,解得:10b =.故选:B.9.已知函数()21x f x x=+的定义域为[)2,+∞,则不等式()()22228f x f x x +>-+的解集为 ( )A .5,42⎡⎫⎪⎢⎣⎭B .[)2,3C .(),3-∞D .()3,+∞【答案】C【分析】先判断函数()f x 的单调性,再根据单调性解不等式即可. 【详解】因为()2111x f x x x x==++,可知()f x 在[)2,+∞上单调递减,所以不等式()()22228f x f x x +>-+成立,即2222222823228x x x x x x x ⎧+≥⎪-+≥⇒<⎨⎪+<-+⎩. 故选:C.10.已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭><<的相邻的两个零点之间的距离是6π,且直线18x π=是()f x 图象的一条对称轴,则12f π⎛⎫= ⎪⎝⎭( )A. B .12-C .12D【答案】D【分析】由相邻两个零点的距离确定周期求出6ω=,再由对称轴确定6π=ϕ,代入12x π=可求出结果. 【详解】解:因为相邻的两个零点之间的距离是6π,所以26T π=,23T ππω==,所以6ω=, 又sin 6sin 118183f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且02πϕ<<,则6π=ϕ, 所以()sin 66f x x π⎛⎫=+⎪⎝⎭,则sin 612126f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选:D.【点睛】思路点睛:确定()()sin f x A x =+ωϕ的解析式,一般由周期确定ω,由特殊值确定ϕ,由最值确定A .11.已知过点()4,0M 的直线l 与抛物线2:2y x Ω=交于A ,B 两点,52BF =(F 为抛物线Ω的焦点),则AB = ( ) A .63 B .62C .6D .42【答案】B【分析】首先利用定义得出(2,2)B ±,进而得到直线:4AB y x =-将直线与抛物线联立得出2280y y --=,利用弦长公式即得.【详解】2:2y x Ω=的焦点为1,02F ⎛⎫ ⎪⎝⎭,1,02H ⎛⎫- ⎪⎝⎭是1,02F ⎛⎫ ⎪⎝⎭关于y 轴的对称点,过1,02H ⎛⎫- ⎪⎝⎭作直线l 垂直于x 轴,作BP l ⊥ ,故52BF BP == 设()1122,(,)B x y A x y 故1115222x x +=⇒=故12y =±不妨设()2,2B -, ()4,0M 故直线:4AB y x =-由212242802,4(8,4)2y x y y y y A y x=-⎧⇒--=⇒=-=⇒⎨=⎩故62AB = 故选:B12.已知函数()()20ax bf x a x c-=≠+是定义在R 上的奇函数,1x =是()f x 的一个极大值点,()11f =,则()f x =( )A .221xx + B .232xx + C .22xx -- D .221x x-【答案】A【分析】根据()f x 为奇函数先求解出b 的值,然后根据1x =是极值点计算出c 的值,再根据()11f =计算出a 的值,然后进行验证.【详解】因为()f x 为定义在R 上的奇函数,所以()00f =且0c ≠,所以0b =,所以()2axf x x c=+, 因为()()()()22222222a x c ax ac ax f x xc xc +--'==++,又1x =是极大值点,所以()()2101ac af c -'==+且0a ≠,所以1c =,所以()21ax f x x =+,又因为()11f =,所以12a =,所以2a =,所以()221x f x x =+,所以()()()()222211x xf x f x x x --==-=-+-+,定义域为R 关于原点对称,所以()f x 为奇函数, 又()()()()22222221222211x x xx f x xx+-⋅-'==++,当(),1x ∈-∞-时,()0f x '<,()1,1x ∈-时,()0f x '>,()1,x ∈+∞时,()0f x '<; 所以1x =是极大值点, 所以()221xf x x =+满足条件, 故选:A.【点睛】易错点睛:利用函数奇偶性、极值点求解参数时需注意:(1)已知函数为定义在R 上的奇函数,若根据()00f =求解参数值,要注意将参数值带回原函数进行验证是否为奇函数; (2)已知x a =为函数极值点,若根据0f a 求解参数值,要注意将参数值带回原函数进行验证是否为极值点.二、填空题13.已知双曲线()2222:10,0x y C a b a b-=>>,点(),a b 在直线2y x =,则双曲线C 的离心率为__________.【分析】由点(),a b 在直线上,求出2b a =,用c a =求出离心率即可. 【详解】因为点(),a b 在直线2y x =上,则有2b a =,即2ba=,则离心率为c a ==14.若命题“0x R ∃∈,使得200420x x a -+<”为假命题,则实数a 的取值范围为__________. 【答案】[)2,+∞【分析】根据原命题为假命题得到“2,420x R x x a ∀∈-+≥”为真命题,根据∆与0的关系求解出a 的取值范围.【详解】由已知条件可知:2,420x R x x a ∀∈-+≥为真命题,记168a ∆=-, 所以1680a ∆=-≤,所以2a ≥, 故答案为:[)2,+∞.【点睛】关键点点睛:解答本题的关键在于转化思想的运用,根据特称命题的真假得到全称命题的真假,然后再结合不等式的思想完成求解.15.如图所示,在四棱锥P ABCD -中,底面是边长为ACBD O =,且PA ⊥平面ABCD ,M 为PC 上的动点,若OM 的最小值为4,则当OM 取得最小值时,四棱锥M ABCD -的体积为__________.【答案】40【分析】根据OM PC ⊥,OM 最小,设点M 到平面ABCD 的距离为h ,由h 也为Rt OMC △中边OC 上的高,然后由1122OMCSOM MC OC h =⋅=⋅,求得h ,再由13M ABCD ABCD V S h -=⋅正方形求解.【详解】由题意得:当OM PC ⊥时,OM 最小, 则在正方形ABCD 中, 52AB BC ==, 则2210AC AB BC =+=,故5OC =,在Rt OMC △中,223MC OC OM =-=, 设点M 到平面ABCD 的距离为h , 则h 也为Rt OMC △中边OC 上的高,1122OMCSOM MC OC h =⋅=⋅, 即1143522h ⨯⨯=⨯⨯, 解得125h =,又(25250ABCD S ==正方形,所以11125040335M ABCD ABCD V S h -=⋅=⨯⨯=正方形, 故答案为:4016.已知直线():40l ax y a R +-=∈是圆22:2610C x y x y +--+=的对称轴.过点()4,A a -作圆C 的一条切线,切点为B ,有下列结论:①1a =; ②25AB =③切线AB 535535+- ④对任意的实数m ,直线1y mx m =-+与圆C 的位置关系都是相交.其中所有正确结论的序号为__________. 【答案】①②④【分析】由已知可得直线过圆心即得1a =;利用勾股定理可得切线段长度,利用圆心到直线的距离为半径即得斜率;因为直线恒过的定点在圆内,可得直线与圆相交. 【详解】2222:2610(1)(3)9C x y x y x y +--+=⇒-+-=则圆心为()1,3C 半径为3,():40l ax y a R +-=∈是圆的对称轴,故直线过圆心()1,3C ,故1a =,()4,1A -,故ACAB ==;设直线AB 的斜率为k ,则:41410AB y kx k kx y k =++⇒-++= 因为直线AB 为圆C 的一条切线, 故圆心()1,3C到直线AB3=解得k = ;直线1(1)1y mx m m x =-+=-+即对任意的实数m ,直线恒过(1,1), 代入(1,1)得22(11)(13)49(1,1)-+-=<∴在圆内, 即直线1y mx m =-+与圆C 的位置关系都是相交. 故答案为:①②④三、解答题17.某小区准备在小区广场安装运动器材,为了解男女业主对安装运动器材的意愿情况,随即对该小区100名业主做了调查,得到如下2×2列联表:(Ⅰ)判断能否有0095的把握认为“是否愿意安装运动器材与业主性别有关”; (Ⅱ)从不愿意安装运动器材的业主中按性别用分层抽样的方法抽取5人,了解不愿意安装运动器材的原因,再从这5人中选2人参观其他小区的运动场所,求这2人中恰好有1人为女业主的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【答案】(Ⅰ)没有;(Ⅱ)35. 【分析】(Ⅰ)由已知求得2K 的值,与临界值比较可得结论;(Ⅱ)分别列举从5人中选2人的事件,得到2人中恰好有1人为女业主的事件,再由古典概型概率计算可得.【详解】(Ⅰ)由表中数据可得2K 的观测值()210030104515 3.030 3.84145557525k ⨯⨯-⨯=≈⨯⨯⨯<,∴没有0095的把握认为“是否愿意安装运动器材与业主性别有关”.(Ⅱ)∵不愿意安装运动器材的业主中,男业主与女业主的人数之比为3:2, ∴抽取的5人中男业主有3人,女业主有2人.设这3名男业主分别为A ,B ,C ,这2名女业主分别为a ,b ,从5人中选2人有,,,,,,,,,AB AC Aa Ab BC Ba Bb Ca Cb ab ,共10种选法, 其中恰有1名女业主的选法有,Aa Ab Ba Bb Ca Cb ,,,,,共6种, ∴所求概率为63105P ==. 18.已知数列{}n a 的前n 项和22n n S a =-. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 的前n 项和为n T ,且2211log log n n n n b a a a +=+⋅,证明:1n T >-.【答案】(Ⅰ)2n n a =;(Ⅱ)证明见解析.【分析】(Ⅰ)利用n a 与n S 关系可证得{}n a 为等比数列,由等比数列通项公式可得结果;(Ⅱ)由(Ⅰ)可得n b ,采用分组求和的方式,分别对通项中的两个部分采取等比数列求和、裂项相消法,可求得n T ,根据11201n n +->+可得结论. 【详解】(Ⅰ)当1n =时,11122a S a ==-,解得:12a =;当2n ≥时,()111222222n n n n n n n a S S a a a a ---=-=---=-,整理得:12n n a a -=,∴数列{}n a 是以2为首项,2为公比的等比数列,2n n a ∴=.(Ⅱ)由(Ⅰ)知:()1221111222log 2log 211n n nn n n b n n n n +=+=+=+-⋅++,()21111122212231n n T n n ⎛⎫∴=++⋅⋅⋅++-+-+⋅⋅⋅+- ⎪+⎝⎭()1212111211211n n n n +-=+-=---++ 当n *∈N 时,1121n n +>+,11201n n +∴->+,1n T ∴>-. 【点睛】方法点睛:本题第二问中,考查了分组求和的方法,在分组求和过程中,涉及了裂项相消法求解数列的前n 项和的问题,裂项相消法适用于通项公式为()()m f n f n d ⋅+⎡⎤⎣⎦形式的数列,即()()()()11m m d f n f n d f n f n d ⎛⎫=- ⎪ ⎪+⋅+⎡⎤⎝⎭⎣⎦,进而前后相消求得结果.19.如图所示,在直三棱柱111ABC A B C -中,ABC 是面积为23的等边三角形,13BB =,点M 、N 分别为线段AC 、11AC 的中点,点P 是线段1CC 上靠近C 的三等分点.(1)求证:BP NP ⊥;(2)求点M 到平面BNP 的距离.【答案】(1)证明见解析;(2【分析】(1)证明出NP ⊥平面BMP ,利用线面垂直的性质定理可证得结论成立; (2)在平面BMP 内作MD BP ⊥,垂足为D ,证明出MD ⊥平面BNP ,利用等面积法计算出DM ,即为所求.【详解】(1)因为1AA ⊥平面ABC ,BM ⊂平面ABC ,所以1AA BM ⊥. 因为ABC 为等边三角形,M 为边AC 的中点,所以BM AC ⊥. 又1AA AC A =,故BM ⊥平面1ACC ,又NP ⊂平面1ACC ,故BM NP ⊥.因为ABC 的面积为2AB =,故AB =因为四边形11AAC C 为平行四边形,则11//AC AC 且11AC AC =,M 、N 分别为AC 、11AC 的中点,则1//AM A N 且1AM AN =, 故四边形1AA NM 为平行四边形,则113MN AA BB ===,在MNP △中,NP ==,MP ,满足222MN MP NP =+,故NP MP ⊥.又BMMP M =,故NP ⊥平面BMP ,又BP ⊂平面BMP ,故BP NP ⊥;(2)如图,作MD BP ⊥,垂足为D ,NP ⊥平面BMP ,MD ⊂平面BMP ,MD NP ∴⊥,MD BP ⊥,BP NP P =,DM ∴⊥平面BNP ,所以DM 即为点M 到平面BNP 的距离.在BMP 中,sin3BM AB π==MP =,3BP ==,满足222BP BM MP =+,可知BM MP ⊥,故BM MPDM BP⋅==即点M 到平面BNP【点睛】方法点睛:求点A 到平面BCD 的距离,方法如下:(1)等体积法:先计算出四面体ABCD 的体积,然后计算出BCD △的面积,利用锥体的体积公式可计算出点A 到平面BCD 的距离;(2)定义法:过点A 作出平面BCD 的垂线,计算出垂线段的长,即为所求; (3)空间向量法:先计算出平面BCD 的一个法向量n 的坐标,进而可得出点A 到平面BCD 的距离为AB n d n⋅=.20.已知椭圆()2222:10x y C a b a b+=>>的一个顶点恰好是抛物线243x y =的焦点,椭圆C 的离心率为22. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)从椭圆C 在第一象限内的部分上取横坐标为2的点P ,若椭圆C 上有两个点A ,B 使得APB ∠的平分线垂直于坐标轴,且点B 与点A 的横坐标之差为83,求直线AP 的方程.【答案】(Ⅰ)22163x y +=;(Ⅱ)12y x =.【分析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP 的斜率为k ,联立方程结合韦达定理可得A 点坐标,同理可得B 点坐标,结合横坐标之差为83,可得直线方程. 【详解】(Ⅰ)由抛物线方程243x =可得焦点为(03,,则椭圆C的一个顶点为(0,即23b =.由c e a ===,解得26a =. ∴椭圆C 的标准方程是22163x y +=;(Ⅱ)由题可知点()2,1P ,设直线AP 的斜率为k ,由题意知,直线BP 的斜率为k -,设()11,A x y ,()22,B x y ,直线AP 的方程为()12y k x -=-,即12y kx k =+-.联立方程组2212,1,63y kx k x y =+-⎧⎪⎨+=⎪⎩ 消去y 得()()222214128840k x k k x k k ++-+--=.∵P ,A 为直线AP 与椭圆C 的交点,∴212884221k k x k --=+,即21244221k k x k --=+. 把k 换成k -,得22244221k k x k +-=+. ∴21288213k x x k -==+,解得112k k ==或,当1k =时,直线BP 的方程为3y x =-,经验证与椭圆C 相切,不符合题意;当12k =时,直线BP 的方程为122y x =-+,符合题意. ∴直线AP 得方程为12y x =. 【点睛】关键点点睛:两条直线关于直线x a =()或y=b 对称,两直线的倾斜角互补,斜率互为相反数.21.已知函数()cos xf x e x =.(Ⅰ)求()f x 的单调递减区间; (Ⅱ)若当0x >时,()()()2cos 111xf x e x x a x ≥-++-+恒成立,求实数a 的取值范围.【答案】(Ⅰ)单调递减区间为52,2,44k k k Z ππππ⎛⎫++∈ ⎪⎝⎭;(Ⅱ)(],1a e ∈-∞-. 【分析】(Ⅰ)求函数()f x 的导函数,求()'0f x <的区间即为所求减区间;(Ⅱ)化简不等式,变形为11x e a x x x ≤--+,即求min 1(1)x e a x x x≤--+,令()()110x e h x x x x x=--+>,求()h x 的导函数判断()h x 的单调性求出最小值,可求出a 的范围.【详解】(Ⅰ)由题可知()'cos sin sin 4xxxf x e x e x x π⎛⎫=-=-⎪⎝⎭. 令()'0f x <,得sin 04x π⎛⎫-⎪⎝⎭>,从而522,44k x k k Z ππππ++∈<<, ∴()f x 的单调递减区间为52,2,44k k k Z ππππ⎛⎫++∈ ⎪⎝⎭. (Ⅱ)由()()()2cos 111xf x ex x a x ≥-++-+可得21x ax e x x ≤-+-,即当0x >时,11x e a x x x≤--+恒成立.设()()110x e h x x x x x =--+>,则()()()()2221111'xx x e x e x x h x x x -----+==.令()1xx e x ϕ=--,则当()0,x ∈+∞时,()'10xx e ϕ=->. ∴当()0,x ∈+∞时,()x ϕ单调递增,()()00x ϕϕ=>, 则当()0,1x ∈时,()'0h x <,()h x 单调递减; 当()1,x ∈+∞时,()'0h x >,()h x 单调递增. ∴()()min 11==-h x h e , ∴(],1a e ∈-∞-.【点睛】思路点睛:在函数中,恒成立问题,可选择参变分离的方法,分离出参数转化为()min a h x ≤或()max a h x ≥,转化为求函数()h x 的最值求出a 的范围.22.在直角坐标系xOy 中,曲线C的参数方程为3cos sin x y αα⎧+=⎪⎨=⎪⎩(α为参数,0m >),以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,曲线C '的极坐标方程为cos 04πρθ⎛⎫++= ⎪⎝⎭. (Ⅰ)求曲线C 的普通方程以及曲线C '的直角坐标方程; (Ⅱ)若曲线C 与C '交于,P Q 两点,且84,33A ⎛⎫- ⎪⎝⎭为线段PQ 的一个三等分点,求m 的值.【答案】(Ⅰ)2260x y x m ++-=,40x y -+=;(Ⅱ)4.【分析】(Ⅰ)由曲线C 的参数方程消掉α即可得到普通方程;根据极坐标与直角坐标互化原则可直接化简得到C '的直角坐标方程;(Ⅱ)由C '的直角坐标方程可确定C '的参数方程,将其代入C 的普通方程可得韦达定理的形式,根据t 的几何意义知122t t =-,由此可构造方程求得m .【详解】(Ⅰ)由3cos sin x y αα⎧+=⎪⎨=⎪⎩得:()2239x y m ++=+,∴曲线C 的普通方程为2260x y x m ++-=.曲线C '的极坐标方程可化为0ρθθ⎫+=⎪⎪⎝⎭,即cos sin 40ρθρθ-+=,∴曲线C '的直角坐标方程为:40x y -+=.(Ⅱ)曲线C '的参数方程可写为83243x y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),代入2260x y x m ++-=中,可得:264039t m +--=; 设,P Q 所对应得参数分别为12,t t,则123t t +=-,12649t t m=--,由题意不妨设122t t =-,则1223t t t +=-=-,即23t =212264100299t t t m ∴=-=--=-,解得:4m =,符合0m >,∴4m =.【点睛】结论点睛:若直线l 参数方程为00cos sin x x t y y t θθ=+⎧⎨=+⎩(t 为参数),其中θ为直线l的倾斜角,则t 具有几何意义:当参数t t =0时,0t 表示直线l 上的点()0000cos ,sin x t y t θθ++到点()00,x y 的距离.23.已知函数()26f x x x =+--. (1)解不等式()4f x <;(2)若不等式()2af x <恒成立,求a 的取值范围.【答案】(1){}4x x <;(2)()3,+∞.【分析】(1)将函数()f x 表示为分段函数的形式,分2x -≤、26x -<<、6x ≥三种情况解不等式()4f x <,综合可得出原不等式的解集;(2)求出()max f x ,可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】(1)由题意知()8,22624,268,6x f x x x x x x -≤-⎧⎪=+--=--<<⎨⎪≥⎩.当2x -≤时,不等式()4f x <恒成立,当26x -<<时,由()244f x x =-<,解得4x <,此时24x -<<; 当6x ≥时,不等式()4f x <不成立. 所以,不等式()4f x <的解集为{}4x x <; (2)由(1)可知()max 8f x =,要使()2a f x <恒成立,则需28a >,解得3a >.所以,实数a 的取值范围为()3,+∞.【点睛】方法点睛:x a x b c -+-≥、()0x a x b c c -+-≤>型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论法具有普遍性,但较麻烦;几何法与图象法比较直观,但只适用于数据较简单的情况.。
二十三等差数列的概念等差数列的通项公式(15分钟30分)1.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.45【解析】1,公差为d,a1=1,d=(-1)-1=-2,故a n=a1+(n-1)d=3-2n,令-89=3-2n,解得n=46.n∈N*,且a5=10,a7=14,则2.已知数列{}a n满足a n+2-a n+1=a n+1-a n()a2 020-a2 019=()A.2 B.1 C.-2 D.-1【解析】选A.由题意可知,数列{}a n为等差数列,故设数列{}a n的公差为d,则a7-a5=4=2d,所以a2 020-a2 019=d=2.3.(2021·某某高二检测)若数列{a n}满足a n+1=a n+4且a1=1,a n>0,则a n=() A.4n-1 B.4n-3C.(4n-3)2D.(4n-1)2【解析】a n+1=a n+4,所以a n+1-a n=4,所以a n=a1+4(n-1)=4n-3,所以a n =(4n -3)2.4.等差数列20,17,14,11,…中第一个负数项是第________项.【解析】设等差数列的首项为a 1,公差为d ,因为a 1=20,d =-3,所以a n =20+(n -1)×(-3)=23-3n ,所以a 7=2>0,a 8=-1<0.故数列中第一个负数项是第8项.答案:85.(2021·威海高二检测)《周髀算经》里提到:在周城的平地立八尺高的周髀(表竿),日中测影,在二十四节气中,冬至影长1丈3尺5寸,以后每一节气递减9寸9分(以10寸计算),那么9尺5寸应是二十四节气中的哪个节气?【解析】用{a n }表示从冬至开始的“影长”组成的等差数列,则a 1=135,a n =95,公差d =-10,所以由a n =a 1+(n -1)d ,得n =a n -a 1d +1=5.所以9尺5寸应是二十四节气中的雨水.(30分钟 60分)一、单选题(每小题5分,共20分)1.(2021·某某高二检测)已知数列{}a n 是无穷数列,则“2a 2=a 1+a 3”是“数列{}a n 为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】选B.若“数列{}a n 为等差数列”成立,必有“2a 2=a 1+a 3”,而仅有“2a 2=a 1+a 3”成立,不能断定“数列{}a n 为等差数列”成立,必须满足对任何的n ∈N *,都有2a n +1=a n +a n +2成立才可以,故“2a 2=a 1+a 3”是“数列{}a n 为等差数列”的必要不充分条件.2.(2021·某某高二检测)已知数列{}a n 对于任意正整数m ,n ,有a m +n =a m +a n ,若a 20=1,则a 2 020=( )A .2 020B .1C .20D .101【解析】m +n =a m +a n ,令m =1得a n +1-a n =a 1,所以数列{}a n 是以a 1为首项,a 1为公差的等差数列,从而a n =na 1.因为a 20=1,所以a 1=120 ,a 2 020=101.3.(2021·高二检测)在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( )A .40B .42C .43D .45【解析】{}a n 中,设公差为d ,已知a 1=2,a 2+a 3=13,所以d =3,a 4=11,a 5=14,a 6=17,从而a 4+a 5+a 6=42.4.一个等差数列的前4项是a ,x ,b ,2x ,则a b 等于( )A .14B .12C .13D .23【解析】选C.因为b 是x ,2x 的等差中项,所以b =x +2x 2 =3x 2 ,又因为x 是a ,b 的等差中项,所以2x =a +b ,所以a =x 2 ,所以a b =13 .二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.(2021·某某高二检测)已知数列{}a n 是等差数列,数列{}b n 分别满足下列各式,其中数列{}b n必为等差数列的是( )A .b n =3a nB .b n =a 2nC .b n =1a nD .b n =-a n 2 【解析】{}a n 的公差为d ,选项A 中b n -b n -1=3a n -3a n -1=3d , 同理可证B ,C 都不满足b n -b n -1=同一常数,所以选项都是错误的;对于选项D ,b n -b n -1=-a n 2 +a n -12 =a n -1-a n 2 =-d 2 ,所以数列{}b n 必为等差数列. 6.在数列{a n }中,已知a 2=2,a 6=0,且数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +1 是等差数列,公差为d ,则( ) A .a 4=12 B .a 3=1C .d =14D .d =16【解析】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +1 的公差为d ,则1a 6+1 -1a 2+1 =4d , 代入数据可得d =16 .因此1a 4+1 =1a 2+1+2d =23 , 故a 4=12 ,1a 3+1 =1a 2+1 +16 =12+1+16 =12 ,解得a 3=1. 三、填空题(每小题5分,共10分)7.若a≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1,d 2,则d 1d 2的值为________.【解析】由题意,得b =a +3d 1=a +4d 2,所以3d 1=4d 2,所以d 1d 2=43 . 答案:438.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为________.【解析】a n =2+(n -1)×3=3n -1, b n =-2+(n -1)×4=4n -6,令a n =b n , 得3n -1=4n -6,所以n =5.答案:5四、解答题(每小题10分,共20分)9.已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,求b n 及b 15.【解析】设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧a 2=a 1+d =6,a 5=a 1+4d =15, 解得⎩⎪⎨⎪⎧a 1=3,d =3.所以a nn =a 2n =3×2n =6n.所以b 15=6×15=90.10.已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N *). (1)证明:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2 是等差数列; (2)求数列{a n }的通项公式.【解析】(1)由1a n +1-2 =16a n -4a n +2-2 =a n +2(6a n -4)-2(a n +2) =a n +24a n -8=(a n -2)+44(a n -2) =1a n -2+14 , 得1a n +1-2 -1a n -2=14 ,n ∈N *, 故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2 是等差数列.(2)由(1)知1a n -2 =1a 1-2 +(n -1)×14 =n +34 , 所以a n =2n +10n +3,n ∈N *.1.等差数列{a n }的首项为a ,公差为1,数列{b n }满足b n =a na n +1 .若对任意n ∈N *,b n ≤b 6,则实数a 的取值X 围是( )A .(-8,-6)B .(-7,-6)C .(-6,-5)D .(6,7)【解析】选B.因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1.所以b n =a n a n +1 =1-1n +a. 又因为对任意的n ∈N *,都有b n ≤b 6成立,可知16+a ≤1n +a,则必有7+a -1<0且8+a -1>0, 所以-7<a<-6.2.数列{a n }满足a 1=2,a n +1=(λ-3)a n +2n (n ∈N *).(1)当a 2=-1时,求λ及a 3的值;(2)是否存在λ的值,使数列{a n }为等差数列?若存在求其通项公式;若不存在说明理由.【解析】(1)因为a 1=2,a 2=-1,a 2=(λ-3)a 1+2,所以λ=32 ,所以a 3=-32 a 2+22,所以a 3=112 .(2)因为a 1=2,a n +1=(λ-3)a n +2n , 所以a 2=(λ-3)a 1+2=2λ-4.a 3=(λ-3)a 2+4=2λ2-10λ+16.若数列{a n}为等差数列,则a1+a3=2a2.即λ2-7λ+13=0.因为Δ=49-4×13<0,所以方程无实数解.所以λ值不存在.所以不存在λ的值使{a n}成等差数列.。
普通高中课程标准实验教科书——数学 [人教版](选修1-1、1-2)高中学生学科素质训练新课标高二数学文同步测试(4)—1-1第三章(1)说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷50分,第Ⅱ卷100分,共150分;答题时间120分钟。
第Ⅰ卷(选择题 共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。
1.两曲线3212xy y b ax x y +-=++=与相切于点(1,-1)处,则a ,b 值分别为( ) A .0,2 B .1,-3C .-1,1D .-1,-1 2.()()x f xxx f 则设函数,122+-=( )A .在(-∞,+∞)单调增加B .在(-∞,+∞)单调减少C .在(-1,1)单调减少,其余区间单调增加D .在(-1,1)单调增加,其余区间单调减少 3.当x ≠0时,有不等式( )A .x e x+<1B .x e x +>1C .x e x x e x x x +><+<>10,10时当时当D .x e x x e x x x +>>+<<10,10时当时当 4.若连续函数在闭区间上有惟一的极大值和极小值,则 ( )A .极大值一定是最大值,极小值一定是最小值B .极大值必大于极小值C .极大值一定是最大值,或极小值一定是最小值D .极大值不一定是最大值,极小值也不一定是最小值5.()()()等于则可导在设x x x f x x f x x f x 3lim ,0000--+→( )A .()02x f 'B .()0x f 'C .()03x f 'D .()04x f ' 6.下列求导运算正确的是( )A .(x +211)1x x +=' B .(log 2x )′=2ln 1x C .(3x )′=3x log 3e D .(x 2cos x )′=-2x sin x7.函数f (x )= a x 2+x +1有极值的充要条件是( )A .a >0B .a ≥0C .a <0D .a ≤0 8.设f (x )、g(x )分别是定义在R 上的奇函数和偶函数,当x <0时,)()()()(x g x f x g x f '-'>0. 且g(3)=0.则不等式f (x )g(x )<0的解集是( ) A .(-3,0)∪(3,+∞) B .(-3,0)∪(0, 3)C .(-∞,- 3)∪(3,+∞)D .(-∞,- 3)∪(0, 3) 9.f (x )是定义在区间[-c,c]上的奇函数,其图象如图所示:令g (x )=af (x )+b ,则下列关于函数g (x )的叙述正确的是( )A .若a <0,则函数g (x )的图象关于原点对称.B .若a =-1,-2<b <0,则方程g (x )=0有大于2的实根.C .若a ≠0,b =2,则方程g (x )=0有两个实根.D .若a ≥1,b <2,则方程g (x )=0有三个实根10.已知函数f (x )的导数为,44)(3x x x f -='且图象过点(0,-5),当函数f (x )取得极大值-5时,x 的值应为 ( )A .-1B .0C .1D .±1第Ⅱ卷(非选择题 共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分)。
11.函数f (x )=x +2cos x 在区间⎥⎦⎤⎢⎣⎡π2,0上的最大值为_________;在区间[0,2π]上最大值为___________.12.已知x R ∈,奇函数32()f x x ax bx c =--+在[1,)+∞上单调,则字母,,a b c 应满足的条件是 。
13.两个和为48的正整数,第一个数的立方与第二个数的平方之和最小,则这两个正整数分别为__________。
14.()()()()().____________0,100021='---=f x x x x x f 则设 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分)。
15.(12分)设函数y =x 3+ax 2+bx +c 的图象如图所示,且与y =0在 原点相切,若函数的极小值为-4,(1)求a 、b 、c 的值;(2)求函数的递减区间。
16.(12分)是否存在这样的k 值,使函数21232)(2342++--=x kx x x k x f 在(1,2)上递减,在(2,-∞)上递增。
17.(12分)设函数()(1)(),(1)f x x x x a a =-->(1)求导数/()f x ; 并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤成立,求a 的取值范围.18.(12分)讨论函数()[]2,0|,27184|23∈+-=x x x x f 的单调性,并确定它在该区间上的最大值最小值.19.(14分)如图,把边长为a 的正六边形纸板剪去相同的六个角,做成一个底面为正六边形的无盖六棱柱盒子,设高为h 所做成的盒子体积V(不计接缝). (1)写出体积V 与高h 的函数关系式;(2)当h a 为多少时,体积V20.(14分)已知过函数f (x )=123++ax x 的图象上一点B (1,b )的切线的斜率为-3。
(1)求a 、b 的值;(2)求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; 令()()132++--=tx x x f x g 。
是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有最大值1?参考答案一、 1.D ; 2.C ; 3.B ; 4.D ;5.D 提示:这里插入()0x f ,因为题目假定f (x )在0x 点可导,所以分成两项的极限都存在.()()()()[]()()[]()()()()()()().43 33lim3lim 3lim 3lim00000000000000000x f x f x f xx f x x f x x f x x f xx x f x f x f x x f xx x f x x f x x x x '='+'=---+-+=--+-+=--+→→→→即 t 3x 则x t,3x 错误做法:令x 注意:本题有个常见的00+==-()()()()()()().43lim 4lim 44lim lim0000000x f x x f t f x t f x t f x x x f x x f x x x x '=-'='=-+=--+→→→→ 因为题中只设f (x )在0x 可导,没说在0x 及其邻域内可导,更没假定()x f '在0x 点连续,所以上面的做法是无根据的. 6.D ;7.C ;8.D ;9.B ;10.B 二、 11.()12,36+π+π;提示:,sin 21x y -='得f (x )的驻点为ππππk k 265,26++,当在区间⎥⎦⎤⎢⎣⎡π2,0内考虑时,仅有一个驻点(),22,20,366,6πππππ=⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛f f f 比较后得知,f (x )在⎥⎦⎤⎢⎣⎡π2,0上的最大值为36+π,而当考虑区间[0,2π]上的最大值时,需比较f (0), f (2π),⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛65,6ππf f 四个值的大小. 12.0,3a c b ==≤;解析:(0)00f c =⇒= ;()()00f x f x a +-=⇒=.2'()3f x x b =- ,若()f x [1,)x ∈+∞上是增函数,则'()0f x ≥恒成立,即2min (3)3b x ≤=; 若()f x [1,)x ∈+∞上是减函数,则'()0f x ≤恒成立,这样的b 不存在.; 综上可得:0,3a c b ==≤ 13.5与43;14.1000!;提示:()()()()()()!.10001000x 2x 1x lim 0x 0f x f lim 0f 0x 0x =---=--='→→三、15.解析:(1)函数的图象经过(0,0)点∴ c=0,又图象与x 轴相切于(0,0)点,'y =3x 2+2ax +b ∴ 0=3×02+2a ×0+b ,得b =0 ∴ y =x 3+ax 2,'y =3x 2+2ax当a x 32-<时,0'y <,当a x 32->时,0'y > 当x =a 32-时,函数有极小值-4∴ 4)32()32(23-=+-aa a ,得a =-3 (2)'y =3x 2-6x <0,解得0<x <2 ∴ 递减区间是(0,2)点拨:1、如果函数f (x )在点x =x 0的一个δ区域:(x 0-δ,x 0+δ)内有定义,对任意的x ∈(x 0-δ,x 0)∪(x 0,x 0+δ)总有f (x )<f (x 0)(f (x )>f (x 0)),则称f (x 0)为函数f (x )的极大(小)值,x 0称为极大(小)值点;2、注意极值与最值的区别,极值是相对于领域而言,它仅是极值点附近的局部范围内的相对大小,而最值是相对于闭区间而言,它是函数在给定的闭区间上的全部函数值中最大(小)的值。
16.解析:f (x )=4k 2x 3-2x 2-2kx +2,由题意,当x ∈(1,2)时,)('x f <0当x ∈(2,+∞)时,)('x f >0 由函数)x ('f 的连续性可知)2('f =0 即32k 2-8-3=0得21k =或83k -=验证:当21k =时,)2)(1)(1(22)('23--+=+--=x x x x x x x f若1<x <2,0)('<x f , 若x >2,0)('>x f ,符合题意当83k -=时,)91937)(2)(91937(1692432169)('23+----=++-=x x x x x x x f显然不合题意综上所述,存在21k =,满足题意 点拨:利用导数处理单调性问题,讨论的区间是开区间,注意递增与递减区间的交界处的导数为0,本题求出k 值后还需讨论验证。
17.(1).)1(23)(2a x a x x f ++-=')(,;0)(,;0)(,:)())((3)(,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令 因此1x 是极大值点,2x 是极小值点. (II )因故得不等式,0)()(21≤+x f x f.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x 代入前面不等式,两边除以(1+a ),并化简得 .0)()(,2,)(212.0252212成立不等式时当因此舍去或解不等式得≤+≥≤≥≥+-x f x f a a a a a 18.解:设(),2718423+-=x x x ϕ则()()312-='x x x ϕ,于是当0<x ≤2时,(),0<'x ϕ而只有x =0时,()0='x ϕ,故在[0,2]上()x ϕ为单调减少, 而()(),132,023,270-=ϕ=⎪⎭⎫⎝⎛ϕ=ϕ所以()()()⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=+-= 2.23 ,230 |27184|23x x x x x x x f ϕϕ 在⎥⎦⎤⎢⎣⎡23,0为单调减少,在⎥⎦⎤⎢⎣⎡2,23为单调增加,因而在[0,2]上f (x )的最大值f (0)=27,最小值.023=⎪⎭⎫ ⎝⎛f19.解:(1)六棱柱的底边长(h a 332- )cm ,底面积为(2332436⎪⎪⎭⎫⎝⎛-⋅h a )cm 2∴体积V =h h a ⋅⎪⎪⎭⎫ ⎝⎛-233223 =⎪⎭⎫ ⎝⎛+-h a ah h 223433332(2)V ′=0433*******=⎪⎭⎫ ⎝⎛+-a ah h 得a h 63=或a h 23=(舍去)∴当a h 63=cm 时V 有最大值33a cm 3 20.解:(1)()x f'=ax x 232+依题意得k =()1'f =3+2a =-3, ∴a =-3()1323+-=∴x x x f ,把B (1,b )代入得b =()11-=f∴a =-3,b =-1 (2)令()x f'=3x 2-6x =0得x =0或x =2∵f (0)=1,f (2)=23-3×22+1=-3f (-1)=-3,f (4)=17∴x ∈[-1,4],-3≤f (x )≤17要使f (x )≤A -1987对于x ∈[-1,4]恒成立,则f (x )的最大值17≤A -1987 ∴A ≥2004。