必修五不等式练习题
- 格式:doc
- 大小:550.50 KB
- 文档页数:4
不等式恒成立问题一、利用根的判别式1. 若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(-∞,-1)C.⎝⎛⎭⎫-∞,-1311 D.⎝⎛⎭⎫-∞,-1311∪(1,+∞)2. 已知不等式22230ax ax a -++>的解集为R,则a 的取值范围是( )A.a ≥0B.a >0C.a ≥-3D.a >-33. 若关于的不等式的解集为,则实数的取值范围为__________.4. 若关于x 的不等式2224< 24ax ax x x +-+对一切x R ∈恒成立,则a 的取值范围是____.5. 若不等式x 2-4x +3m <0的解集为空集,则实数m 的取值范围是________.6. 若不等式x 2+mx +m2>0恒成立,则实数m 的取值范围是( )A .(2,+∞)B .(-∞,2)C .(-∞,0)∪(2,+∞)D .(0,2)7. 若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]8. 已知f (x )=x 2+2(a -2)x +4,如果对一切x ∈R ,f (x )>0恒成立,求实数a 的取值范围.9. 已知函数f (x )=mx 2-2x -m +1,是否存在实数m 对所有的实数x ,f (x )<0恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.10. 不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.11. 若函数f (x )=log 2(x 2-2ax -a )的定义域为R ,则a 的取值范围为________.12. 定义在R 上的运算:()*1x y x y =-,若不等式()()*1x y x y -+<对一切实数x 恒成立,则实数y 的取值范围是______.13. 设0πα≤≤,不等式()288sin cos20x x αα-+≥对x ∈R 恒成立,则α的取值范围为 .14. 已知函数)()lgf x x x =+,若不等式()()33920x x x f m f ⋅+--<对任意x ∈R恒成立,求实数m 的取值范围.二、转化为函数最值问题1. 若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为( )A .1B .-1C .-3D .32. 当x ∈(1,2)时,不等式240x mx ++<恒成立,则m 的取值范围是_______________.3. 设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.4. 对一切实数x ,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是________.5. 已知函数()221f x x ax =-+对任意0 1]x ∈(,恒有()0f x ≥成立,则实数a 的取值范围是( )A .[1 +∞,)B .[1 2∞-+,)C .1] -∞(,D .12]∞--(,6. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ).A .[]5,3--B .96,8⎡⎤--⎢⎥⎣⎦C .[]6,2--D .[]4,3--7. 已知()()()()23 22x f x m x m x m g x =-++=-,.若任意() < 0x R f x ∈,或()< 0g x ,则m 的取值范围是________.三、变更主元1. 对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m ≥0恒成立,求x 的取值范围.2. 已知函数y =x 2+2(a -2)x +4,对任意a ∈[-3,1],y <0恒成立,试求x 的取值范围.3. 对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)4. 已知不等式mx 2-2x +m -2<0.(1)若对于所有的实数x 不等式恒成立,求m 的取值范围;(2)设不等式对于满足|m |≤2的一切m 的值都成立,求x 的取值范围.5. 设函数21f x mx mx =--() (1)若对一切实数() < 0x f x ,恒成立,求m 的取值范围. (2)若对一切实数 2 [ 2]m ∈-,,()< 5f x m -+恒成立,求x 的取值范围.四、存在问题1. 存在实数x ,使得243< 0x bx b -+成立,则b 的取值范围是________.2. 若不存在整数x 使不等式()()2440kx k x <---成立,则实数k 的取值范围是____.3. 关于x 的不等式()21< 0x a x a -++的解集中恰有3个整数解,则a 的取值范围是________.4. 已知f(x)=x2+2(a-2)x+4,是否存在实数a,使得对任意x∈[-3,1],f(x)<0恒成立.若存在求出a的取值范围;若不存在说明理由.5. 已知函数f(x)=2kxx2+6k(k>0).(1)若f(x)>m的解集为{x|x<-3或x>-2},求不等式5mx2+kx+3>0的解集;(2)若存在x>3,使得f(x)>1成立,求k的取值范围.参考答案 不等式恒成立问题一、利用根的判别式1. 解析:选C ①当m =-1时,不等式为2x -6<0,即x <3,不符合题意.②当m ≠-1时,则⎩⎪⎨⎪⎧m +1<0,Δ<0,解得m <-1311,符合题意.故实数m 的取值范围为⎝⎛⎭⎫-∞,-1311. 2. 【答案】A 【解析】由题意可知当时,符合题意;当时,要求解得.综上所述a 的取值范围是a ≥0.. 3.【解析】当时,不等式变形为,解集为,符合题意; 当时,依题意可得,综上可得.4. 【答案】]2 2-(,【解析】不等式2224< 24ax ax x x +-+,可化为()()22224< 0a x a x -+--, 当20a -=,即2a =时,恒成立,合题意.当20a -≠时,要使不等式恒成立, 需020a ∆<⎧⎨-<⎩,解得2< < 2a -.所以a 的取值范围为]2 2-(,.故答案为:]2 2-(,5. 解析:由题意,知x 2-4x +3m ≥0对一切实数x 恒成立,所以Δ=(-4)2-4×3m ≤0,解得m ≥43. 答案:⎣⎡⎭⎫43,+∞ 6. 解析:选D ∵不等式x 2+mx +m2>0,对x ∈R 恒成立,∴Δ<0即m 2-2m <0,∴0<m <2.7. 解析:选D 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. 综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].8. [解] 由题意可知,只有当二次函数f (x )=x 2+2(a -2)x +4的图象与直角坐标系中的x 轴无交点时,才满足题意,则其相应方程x 2+2(a -2)x +4=0此时应满足Δ<0,即4(a -2)2-16<0,解得0<a <4.故a 的取值范围是(0,4).9. 已知函数f (x )=mx 2-2x -m +1,是否存在实数m 对所有的实数x ,f (x )<0恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.解:f (x )=mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方. 当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数f (x )=mx 2-2x -m +1为二次函数,需满足开口向下且方程mx 2-2x -m +1=0无解,即⎩⎪⎨⎪⎧m <0,Δ=4-4m-m <0,不等式组的解集为空集,即m 无解. 综上可知不存在这样的m .10. 解析:∵不等式x 2+ax +4<0的解集不是空集,∴Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.答案:(-∞,-4)∪(4,+∞)11. 解析:已知函数定义域为R ,即x 2-2ax -a >0对任意x ∈R 恒成立.∴Δ=(-2a )2+4a <0. 解得-1<a <0. 答案:(-1,0) 12.【答案】13 22⎛⎫- ⎪⎝⎭,【解析】由已知()()()()*11x y x y x y x y -+=---<对一切实数x 恒成立, 所以2210x x y y --++>对一切实数x 恒成立,所以()21410y y ∆=--++<,所以1322y -<<. 13. 分析 根据开口向上的二次函数定义域为R 时函数值非负的条件()0∆≤列式直接运算求解.解析 由题意,要使()288sin cos20x x αα-+≥对x ∈R 恒成立,需264sin32cos20∆αα=-≤,化简得1cos 22α≥.又0πα≤≤,所以π5π0222π33αα或≤≤≤≤,解得π5π0π66αα或≤≤≤≤. 答案:0,π5π⎡⎤⎡⎤,π⎢⎥⎢⎥66⎣⎦⎣⎦. 14. 略二、转化为函数最值问题1. 解析:选C 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立,又f (x )=x 2-4x 在(0,1]上为减函数,∴f (x )min =f (1)=-3,∴m ≤-3. 2. (],5-∞-3. 解:要使f (x )<-m +5在[1,3]上恒成立,则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一:令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)=m -6<0. 所以m <6,则m <0.综上所述,m 的取值范围是(-∞,0)∪⎝⎛⎭⎫0,67. 法二:因为x 2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1. 因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是(-∞,0)∪⎝⎛⎭⎫0,67.4. 解析:当x =0时,不等式恒成立,当x ≠0时,将问题转化为-a ≤1|x |+|x |,由1|x |+|x |≥2,故-a ≤2,即a ≥-2.所以实数a 的取值范围为[-2,+∞).答案:[-2,+∞)5. 【答案】C【解析】解法一:依题意可得2440a ∆=-≤,或0(0)0202f a ∆>⎧⎪-⎪-⎨≤≥⎪⎪⎩或1(1)0202f a ∆>⎧⎪-⎪-⎨≥≥⎪⎪⎩,解得11a ≤≤-,或01 1 10a a a ><-⎧≥⎪≤⎪⎨⎩或或111 1 a a a a ><-⎧≤⎪≥⎪⎨⎩或,即有11a ≤≤-,或1a <-或a ∈∅,故实数a 的取值范围是:1] -∞(,. 解法二:()221f x x ax -=+对任意0 1]x ∈(,恒有()0f x ≥成立,即有12a x x≤+在0 1]x ∈(,恒成立,由于12x x+≥,当且仅当1x =取最小值2,则22a ≤,即有1a ≤.故选C . 6. 略7.【答案】()4 0-,【解析】因为()22x g x =-,当1x ≥时,()0g x ≥,又因为任意x R ∈,()< 0f x 或()< 0g x , 所以此时()()()230f x m x m x m =-++<在1x ≥时恒成立.若()0 0m f x ==,恒成立,不符合,0m ≠故, 则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左面 则03121m m m <⎧⎪--<⎨⎪<⎩,所以40m -<<.故答案为: 4 0-(,).三、变更主元1. 解:由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4.由题意知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0, 解得x <1或x >3.故当x ∈(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零.2. 解:原函数可化为g (a )=2xa +x 2-4x +4,是关于a 的一元一次函数.要使对任意a ∈[-3,1],y <0恒成立,只需满足⎩⎪⎨⎪⎧ g<0,g -<0,即⎩⎪⎨⎪⎧x 2-2x +4<0,x 2-10x +4<0. 因为x 2-2x +4<0的解集是空集,所以不存在实数x ,使函数y =x 2+2(a -2)x +4,对任意a ∈[-3,1],y <0恒成立. 3. 解析:选B 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a ∈[-1,1]⇔⎩⎪⎨⎪⎧ g =x 2-3x +2>0,g-=x 2-5x +6>0⇔⎩⎪⎨⎪⎧x <1或x >2,x <2或x >3⇔x <1或x >3. 4. 解:(1)对所有实数x ,都有不等式mx 2-2x +m -2<0恒成立,即函数f (x )=mx 2-2x +m -2的图象全部在x 轴下方.当m =0时,-2x -2<0,显然对任意x 不能恒成立; 当m ≠0时,由二次函数的图象可知有⎩⎪⎨⎪⎧m <0,Δ=4-4mm -,解得m <1-2,综上可知,m 的取值范围是(-∞,1-2).(2)设g (m )=(x 2+1)m -2x -2,它是一个以m 为自变量的一次函数,由x 2+1>0,知g (m )在[-2,2]上为增函数,则只需g (2)<0即可,即2x 2+2-2x -2<0,解得0<x <1. 故x 的取值范围是(0,1).5. 【答案】(1)]( 4 0-,;(2)()1 2-,. 【解析】(1)当0m =时,()211f x mx mx =--=-,对一切实数x ,()< 0f x 恒成立; 当0m ≠时,若对一切实数x ,()< 0f x 恒成立,则有2040m m m <⎧⎪⎨+<⎪⎩,所以4< < 0m -,综上,m 的取值范围是]( 4 0-,. (2)因为()< 5f x m -+,所以21< 5mx mx m ---+,所以()216< 0x x m -+-, 因为对一切实数 2 [ 2]m ∈-,,()< 5f x m -+恒成立,且21>0x x -+,所以只需()2216< 0x x -+-,解得1< < 2x -.所以x 的取值范围是()1 2-,.四、存在问题1. 【答案】3> < 04b b 或【解析】因为存在实数x ,使得243< 0x bx b -+成立的等价说法是:存在实数x ,使得函数243y x bx b =-+的图象在x 轴下方,即函数与x 轴有两个交点,故对应的()23443>0< 0>4b b b b ∆=--⨯⇒或.故答案为:< 0b 或3>4b .2. 【答案】14k ≤≤【解析】设原不等式的解集为A ,当0k =时,则>4x ,不合题意,当>0k 且2k ≠时,原不等式化为[]44< 0x k x k -+-()(),因为4>4k k+,所以44 ()A k k =+,,要使不存在整数x 使不等式()()244< 0kx k x ---成立,需45k k+≤,解得:14k ≤≤;当2k =时,A =∅,合题意;当< 0k 时,原不等式化为44>[]0x k x k-+-()(),所以44 A k k=-∞++∞(,)(,),不合题意,故答案为:14k ≤≤.3. 【答案】 3 2 ]4 [5--,)(,【解析】由()21< 0x a x a -++,得()()1< 0x x a --,若1a =,则不等式无解. 若>1a ,则不等式的解为1< < x a ,此时要使不等式的解集中恰有3个整数解,则此时3个整数解为 2 3 4x =,,,则45a <≤.若1a <,则不等式的解为1a x <<,此时要使不等式的解集中恰有3个整数解,则此时3个整数解为0 1 2x =--,,,则3< 2a -≤-.综上,满足条件的a 的取值范围是 3 2 ]4 [5--,)(,.故答案为: 3 2 ]4 [5--,)(,.4. 解:若对任意,x ∈[-3,1],f (x )<0恒成立,则满足题意的函数f (x )=x 2+2(a -2)x +4的图象如图所示.由图象可知,此时a 应该满足⎩⎪⎨⎪⎧f-<0,f <0,即⎩⎪⎨⎪⎧25-6a <0,1+2a <0,解得⎩⎨⎧a >256,a <-12.这样的实数a 是不存在的,所以不存在实数a 满足:对任意x ∈[-3,1],f (x )<0恒成立.5. 解:(1)由不等式f (x )>m ⇔2kxx 2+6k>m ⇔mx 2-2kx +6km <0,∵不等式mx 2-2kx +6km <0的解集为{x |x <-3或x >-2}, ∴-3,-2是方程mx 2-2kx +6km =0的根,∴⎩⎪⎨⎪⎧ 2k m =-5,6k =6,解得⎩⎪⎨⎪⎧k =1,m =-25,故有5mx 2+kx +3>0⇔2x 2-x -3<0⇔-1<x <32, ∴不等式5mx 2+kx +3>0的解集为⎝⎛⎭⎫-1,32. (2)f (x )>1⇔2kxx 2+6k>1⇔x 2-2kx +6k <0⇔(2x -6)k >x 2.存在x >3,使得f (x )>1成立,即存在x >3,使得k >x 22x -6成立.令g (x )=x 22x -6,x ∈(3,+∞),则k >g (x )min .令2x -6=t ,则x =t +62,则t ∈(0,+∞),y =⎝⎛⎭⎫t +622t=t 4+9t+3≥2 t 4·9t+3=6, 当且仅当t 4=9t ,即t =6时等号成立.当t =6时,x =6,∴g (x )min =g (6)=6,故k 的取值范围为(6,+∞).。
《必修五》第三章不等式测试卷姓名:一、选择题(每题4分,共32分。
)( )1.若R c b a ∈,,,且b a >,则下列不等式一定成立的是A .c b c a +≥+B .bc ac >C .ba 11< D .0)(2≥-cb a ( )2.若41,21<<-<<b a ,则b a -的取值范围为A .60<-<b aB .02<-<-b aC .20-<-<b aD .33<-<-b a ( )3.不等式0)3)(1(>--x x 的解集为A. }1|{<x xB. }3|{>x xC. }31|{><x x x 或D. }31|{<<x x ( )4.不等式0322>-+x x 的解集是A .}31|{<<-x xB .}31|{>-<x x x 或C .}13|{<<-x x D. }13|{>-<x x x 或 ( )5.二次不等式20ax bx c ++>的解集是全体实数的条件是A.⎩⎨⎧>∆>00aB.⎩⎨⎧<∆>00aC.⎩⎨⎧>∆<00aD.⎩⎨⎧<∆<00a ( )6.下列结论正确的是 A .当2lg 1lg ,10≥+≠>xx x x 时且 B .21,0≥+>x x x 时当 C .x x x 1,2+≥时当的最小值为2 D .当xx x 1,42+<<时无最小值 ( )7.已知正数x 、y 满足811x y+=,则2x y +的最小值是 A.18 B.16 C .8 D .10( )8.一元二次不等式220ax bx ++>的解集是(21-,31),则a b +的值是 A .10 B .10- C .14 D .14-二、填空题(每小题4分,共16分)9. 已知10<<x ,则函数)21(x x y -=的最大值是_____ __.10.已知2>x ,则y =21-+x x 的最小值是_____ __. 11.已知0<x ,则x x y 4+=得最大值是_____ __. 12.14、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是_____ __.三、解答题(6小题,共52分,解答应写出文字说明,证明过程或演算步骤。
基本不等式(选择题:较难)1、若正数满足,且的最小值为18,则的值为()A.1 B.2 C.4 D.92、,动直线过定点A,动直线过定点,若与交于点(异于点),则的最大值为A. B. C. D.3、若函数在定义域上单调递增,则实数的取值范围为()A. B. C. D.4、若,,,则的最小值是A. B. C. D.5、如右图所示,已知点是的重心,过点作直线与两边分别交于两点,且,则的最小值为()A.2 B. C. D.6、若,,,则的最小值是A. B. C. D.7、已知实数满足,则的最大值为()A.1 B.2 C.3 D.48、如图,已知抛物线的焦点为,直线过且依次交抛物线及圆于点四点,则的最小值为()A. B. C. D.9、已知,则的最小值为()A. B. C. D.10、已知等差数列的公差,且成等比数列,若,为数列的前项和,则的最小值为()A.3 B.4 C. D.11、半圆的直径AB=4, O为圆心,C是半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值是()A.2 B.0 C. D.12、抛物线的焦点为,已知点为抛物线上的两个动点,且满足,过弦的中点作准线的垂线,垂足为,则的最大值为()A.1 B. C.2 D.13、抛物线的焦点为F,准线为,是抛物线上的两个动点,且满足.设线段的中点在上的投影为,则的最大值是()A. B. C. D.14、已知,且满足,那么的最小值为()A.3﹣ B.3+2 C.3+ D.415、曲线()在点处的切线的斜率为2,则的最小值是()A.10 B.9 C.8 D.16、函数的值域为()A. B. C. D.17、,动直线过定点A,动直线过定点,若与交于点 (异于点),则的最大值为A. B. C. D.18、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.19、已知等差数列的公差,且,,成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.20、已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.21、定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1拆为若干个不同的单位分数之和,如:,,,依此类推,可得:,其中,设,,则的最小值为()A. B. C. D.22、设且,则的最小值是A. B. C. D.23、已知,则的最小值是A.6 B.5 C. D.24、设正实数满足.则当取得最大值时,的最大值为() A.0 B. C.1 D.325、已知函数,若,,使得,则实数的取值范围是()A.(-∞,1] B.[1,+∞) C.(-∞,2] D.[2,+∞)26、已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.27、已知偶函数是定义在上的可导函数,其导函数为.当时,恒成立.设,记,,,则,,的大小关系为()A. B. C. D.28、已知函数,则不等式成立的概率是()A. B. C. D.29、在中,角所对的边分别为,若,则当角取得最大值时,的周长为()A. B. C. D.30、锐角三角形ABC的三边长成等差数列,且,则实数的取值范围是()A. B. C. D.(6,7]31、若,,,则的最小值为()A. B. C. D.32、在平面直角坐标系中,已知抛物线的焦点为是抛物线上位于第一象限内的任意一点,是线段上的点,且满足,则直线的斜率的最大值为()A. B. C. D.33、已知函数,若不等式对任意实数恒成立,则实数的取值范围是()A. B. C. D.34、正项等比数列{a n}中,存在两项a m,a n(m,n)使得a m a n=16a12,且a7=a6+2a5,则+的最小值为()A.5 B.6 C.7 D.835、已知圆的半径为1,为该圆上四个点,且,则的面积最大值为()A.2 B.1 C. D.36、长方体中,,,,点是平面上的点,且满足,当长方体的体积最大时,线段的最小值是( )A. B. C.8 D.37、若直线过点,则的最小值等于()A.6 B.3 C.7 D.438、若直线和直线相交于一点,将直线绕该点依逆时针旋转到与第一次重合时所转的角为,则角就叫做到的角,,其中分别是的斜率,已知双曲线:的右焦点为,是右顶点,是直线上的一点,是双曲线的离心率,,则的最大值为()A. B. C. D.39、中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A. B. C. D.40、若正数满足则的最小值是()A. B. C. D.41、已知函数,对任意的,恒成立,则的最小值为()A.3 B.2 C.1 D.042、已知为双曲线上不同三点,且满足(为坐标原点),直线的斜率记为,则的最小值为()A.8 B.4 C.2 D.143、中,为的中点,点在线段(不含端点)上,且满足,则的最小值为()A. B. C.6 D.844、圆:和圆:有三条公切线,若,,且,则的最小值为()A.1 B.3 C.4 D.545、在中,角,,的对边分别为,,,且,则角的最大值为()A. B. C. D.46、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.47、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.48、设正实数,满足,,不等式恒成立,则的最大值为()A. B. C. D.49、定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1拆为若干个不同的单位分数之和,如:,,,依此类推,可得:,其中,设,,则的最小值为()A. B. C. D.50、已知函数(且)的图象恒过定点,若点在直线上,其中,则的最小值为()A.3 B.C.4 D.851、若正实数满足,且不等式恒成立,则实数的取值范围是()A. B.C. D.52、已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为()A.1 B. C.2 D.53、已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为()A.1 B. C.2 D.54、设均为正实数,且,则的最小值为()A.4 B. C.9 D.1655、已知是内的一点,且,若的面积分别为,则的最小值为()A. B. C. D.56、已知直线ax+by=1(其中a,b为非零实数),与圆x+y2=1相交于A,B两点,O为坐标原点,且△AOB为直角三角形,则+的最小值为()A.4 B.2 C.5 D.857、设,则的最小值为()A.2 B.3 C.4 D.58、设,对于使成立的所有常数M中,我们把M的最小值1叫做的上确界.若,且,则的上确界为()A. B. C. D.59、已知x>0,由不等式x+≥2=2,x+=≥3=3,…,可以推出结论:x+≥n+1(n∈N*),则a=().A.2n B.3n C.n2 D.n n60、已知关于的不等式的解集是,且,则的最小值是()A. B.2 C. D.161、下列推理正确的是()A.如果不买彩票,那么就不能中奖.因为你买了彩票,所以你一定中奖B.因为a>b,a>c,所以a-b>a-cC.若a>0,b>0,则+≥D.若a>0,b<0,则62、对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1 B.2 C.3 D.463、已知,且,成等比数列,则xy( )A.有最大值e B.有最大值 C.有最小值e D.有最小值64、对于函数y=f(x)(x∈I),y=g(x)(x∈I),若对任意x∈I,存在x0使得f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则称f(x),g(x)为“兄弟函数”,已知f(x)=x2+px+q,g(x)=是定义在区间上的“兄弟函数”,那么函数f(x)在区间上的最大值为()A. B.2 C.4 D.65、已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值为()A.5 B.7 C.8 D.966、设第一象限内的点满足约束条件,若目标函数的最大值为40,则的最小值为()A. B. C.1 D.467、定义域为的函数的图象的两个端点为,是图象上任意一点,其中,向量,若不等式恒成立,则称函数在上“阶线性近似”. 若函数上“阶线性近似”,则实数的取值范围为( ) A. B. C. D.68、不等式x2+2x<+对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是( )A.(-2,0) B.(-∞,-2)∪(0,+∞)C.(-4,2) D.(-∞,-4)∪(2,+∞)69、已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC外接的球表面积等于().A.8π B.16π C.48π D.不确定的实数70、在直角坐标系中,定义两点之间的“直角距离”为,现给出四个命题:①已知,则为定值;②用表示两点间的“直线距离”,那么;③已知为直线上任一点,为坐标原点,则的最小值为;④已知三点不共线,则必有.A.②③ B.①④ C.①② D.①②④参考答案1、B2、B3、D4、B5、C6、B7、B8、B9、C10、B11、D12、D13、D14、B15、B16、C17、B18、D19、B20、B21、D22、A23、C24、C25、A26、B27、B28、B29、C30、C31、A32、D33、D34、B35、B36、B37、A38、C39、B40、D41、A42、B43、D44、A45、A46、D47、D48、C49、D50、D51、B52、D53、D54、D55、B56、A57、C58、D59、D.60、A61、D62、A63、C64、B65、B66、B67、C68、C69、B70、C【解析】1、由题意,应用基本不等式可得令则方程,所以是方程的根,所以选B.点睛:(1)应用基本不等式构造关于的不等式.(2)换元法将不等式转化为一元二次不等式.(3)结合二次函数图像知是一元二次方程的根.2、由题意可得:A(1,0),B(2,3),且两直线斜率之积等于﹣1,∴直线x+my﹣1=0和直线mx﹣y﹣2m+3=0垂直,则|PA|2+|PB|2=|AB|2=10≥.即.故选B.点睛:含参的动直线一般都隐含着过定点的条件,动直线,动直线l2分别过A(1,0),B(2,3),同时两条动直线保持垂直,从而易得|PA|2+|PB|2=|AB|2=10,然后借助重要不等式,得到结果.3、函数的定义域为,,由已知有,所以对于恒成立,恒成立,所以,而,当且仅当时等号成立,所以,选D.点睛:本题主要考查用导数研究函数的单调性,基本不等式等,属于中档题。
一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
一元二次不等式及其解法(选择题:一般)1、不等式组的解集是()A. B. C. D.或2、关于的不等式的解集为,且,则()A. B. C. D.3、已知不等式的解集为,则不等式的解集为()A. B.C. D.4、若不等式对一切恒成立,则实数取值的集合为()A. B. C. D.5、已知不等式的解集为,则不等式的解集为( ) A. B.C. D.6、已知集合则 ( )A. B. C. D.7、关于的不等式()的解集为,且,则()A. B. C. D.8、已知不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.9、不等式对于恒成立,则的取值范围是()A. B. C. D.10、对于任意实数,不等式恒成立,则实数的取值范围是( ) A. B. C. D.11、对于任意实数,不等式恒成立,则实数的取值范围是( ) A. B.(-∞,2] C. D.12、若关于的不等式的解集为,则实数的值是()A.1 B.2 C.3 D.413、若二次不等式在区间[2,5]上有解,则的取值范围是A. B. C. D.14、不等式的解集是()A. B.C. D.15、不等式的解为()A. B. C. D.16、已知不等式的解集是,则的值为()A. B. C. D.17、不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是( )A. B. C. D.18、关于的不等式的解集为,则不等式的解为()A. B. C. D.19、若不等式的解集为,则的值为 ( )A. B. C. D.20、不等式的解集是()A. B. C. D.21、对于任意实数x,不等式( a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是( )A.(-∞,2) B.(-∞,2]C.(-2,2) D.(-2,2]22、若不等式的解集为,则的值为 ( )A. B. C. D.23、设集合P={m|-1<m≤0,Q={m∈R|mx2+4mx-4<0对任意实数x成立,则下列关系中成立的是()A.P Q B.Q P C.P=Q D.P∩Q=φ24、若实数,且,满足,,则代数式的值为()A.-20 B.2 C.2或-20 D.2或2025、若实数,且满足,,则代数式的值为()A.-20 B.2 C.2或-20 D.2或2026、已知关于的不等式对任意恒成立,则有( )A. B. C. D.27、若为的解集,则的解集为()A.或 B.C. D.或28、若对任意实数x∈R,不等式恒成立,则实数m的取值范围是()A.[2,6] B.[-6,-2] C.(2,6) D.(-6,-2)29、用表示非空集合中的元素个数,定义,若,,且,则的取值范围是( ) A.或 B.或C.或 D.或30、已知集合,,则()A. B. C. D.31、已知方程组的解为非正数,为非负数,则的取值范围是()A. B. C. D.32、已知集合,,则A. B. C. D.33、已知集合,,则A. B. C. D.34、已知函数的值域为,若关于的不等式的解集为,则实数的值为( )A.6 B.7 C.9 D.1035、不等式组的解集是()A. B. C. D.或36、若“”是“不等式成立”的一个充分不必要条件,则实数的取值范围是()A. B. C. D.37、不等式的解集是()A. B. C. D.38、已知,则()A. B. C. D.39、若关于x的不等式ax2+bx+2<0的解集为,则a﹣b的值是()A.﹣14 B.﹣12 C.12 D.1440、对任意实数x,若不等式恒成立,则实数m的取值范围是()A. B. C. D.41、若不等式的解集为,则的值为 ( )A. B. C. D.42、不等式ax2+bx+2>0的解集是,则a-b等于()A.-10 B.10 C.-14 D.1443、当时,不等式恒成立,则k之的取值范围是()A. B. C. D.(0,4)44、若不等式和不等式的解集相同,则、的值为()A.=﹣8 =﹣10 B.=﹣4 =﹣9C.=﹣1 =9 D.=﹣1 =245、若{x|2<x<3}为x2+ax+b<0的解集,则bx2+ax+1>0的解集为()A.{x|x<2或x>3} B.{x|2<x<3}C. D.46、当时,不等式恒成立,则的取值范围是A. B.C. D.47、若不等式x2-kx+k-1>0对x∈(1,2)恒成立,则实数k的取值范围是()A.(-∞,2] B.(1,+∞) C.(-∞,2) D.[1,+∞)48、函数的定义域是()A.{x|x<-4或x>3} B.{x|-4<x<3}C.{x|x≤-4或x≥3} D.{x|-4≤x≤3}49、当|x|≤1时,函数y=ax+2a+1的值有正也有负,则实数a的取值范围是()A.a≥- B.a≤-1C.-1<a<- D.-1≤a≤-50、不等式的解集为()A.或 B. C. D.或51、当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A.(0,+∞) B.[0,+∞) C.[0,4) D.(0,4)52、已知关于x的不等式ax2-x+b≥0的解集为[-2,1],则关于x的不等式bx2-x+a≤0的解集为()A.[-1,2] B.[-1, ] C.[-,1] D.[-1,-]53、若关于的不等式的解集不是空集,则实数的取值范围是( )A.[2,+∞) B.(-∞,-6] C.[-6,2] D.(-∞,-6]∪[2,+∞)54、已知不等式的解集为,则不等式的解集为( ) A. B.C. D.55、若关于x的不等式在区间内有解,则实数a的取值范围是()A. B. C. D.56、不等式的解集为A. B. C.R D.57、当|x|≤1时,函数y=ax+2a+1的值有正也有负,则实数a的取值范围是()A.a≥- B.a≤-1C.-1<a<- D.-1≤a≤-58、二次函数的部分对应值如下表:则一元二次不等式的解集是A. B.C. D.59、对于任意实数,不等式恒成立,则实数的取值范围是()A. B. C. D.60、若关于的不等式的解集为,且,则()A. B. C. D.61、已知关于x的不等式ax2-x+b≥0的解集为[-2,1],则关于x的不等式bx2-x+a≤0的解集为()A.[-1,2] B.[-1, ] C.[-,1] D.[-1,-]62、不等式的解集是 ( )A. B.C. D.63、若关于的不等式在区间上有解,则实数的取值范围为()A. B. C. D.64、设,=,C U A=,则m的取值范围是()A.[0, ) B.{0} (,+)C.(-,0] D.( -,0] (,+)65、关于x的不等式ax-b>0的解集是(1,+),则关于x的不等式(ax+b)(x-2)>0的解集是()A.(1,2) B.(-1,2)C.(-,-1)(2,+) D.(-,1)(2,+)66、当x>0时,若不等式x2+ax+4≥0恒成立,则a的最小值为()A.-2 B.2 C.-4 D.467、若关于的不等式在区间上有解,则实数的取值范围为()A. B. C. D.68、若关于的不等式在区间上有解,则实数的取值范围为()A. B. C. D.69、函数的定义域为_______________.70、关于x的不等式的解集中,恰有个整数,则a的取值范围是()A. B. C. D.参考答案1、C2、A3、B4、D5、B6、C.7、A8、B9、A10、C11、D12、A13、A14、D15、C16、A17、B18、C19、B20、A21、D22、B23、C24、A25、A26、A27、D28、A29、D30、B31、D32、A33、A34、C35、C36、D37、D38、B39、A40、A41、B42、A43、C44、B45、D46、C47、A48、C49、C50、C51、C52、C53、D54、B55、A56、A57、C58、C59、A60、D61、C62、B63、A64、A65、C66、C67、A68、A69、70、D【解析】1、求解不等式:可得:;求解不等式:可得:;据此可得不等式组的解集是.本题选择C选项.点睛:解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.2、试题分析:原不等式等价于,,所以不等式的解集为:,所以,解得,故选A.考点:一元二次不等式3、由题意可知的两个根为,不等式即为,解不等式得解集为.考点:三个二次之间的关系.4、当时,恒成立;当时,有解得,所以.考点:不等式恒成立问题.5、试题分析:由已知可得是方程的两根.由根与系数的关系可知,,.代入不等式解得.考点:本题考查一元二次不等式的解法.6、试题分析:解得,,故选C.考点:1.一元二次不等式的解法;2.集合的运算.7、试题分析:由得,,所以.所以选A. 考点:1.含参的二次不等式的解法.8、不等式等价于,令,由得在上是减函数,时,取最大值,故选B.9、不等式对于恒成立,(1)时,不等式成立;当时,,;综上可知:的取值范围是.10、,即时,恒成立,时,则有,解得,故选C.11、首先讨论当二次项系数为0时,即a=2时,原不等式为-4<0,恒成立;当时,该函数是二次函数,则要求开口向下,判别式小于零,,且两种情况并到一起,得到a的范围为。
一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( ) A .2a ≤B .2a ≥C .52a ≥D .52a ≤3.已知x ,y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .3B .3-C .1D .324.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6545.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-6.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .68.已知0,0x y >>,且21x y +=,则xy 的最大值是( ) A .14B .4C .18D .89.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( )A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<10.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-11.已知集合{}24120A x x x =--≤,{}440B x x =->,则AB =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-12.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.设实数s ,t 满足0t >,且24s t +=,则128s s t+的最小值是____________. 15.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________. 16.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.17.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________. 18.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.19.实数,x y 满足2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则24z x y =+-的最大值是___.20.非负实数x ,y ,满足360x y +-≥,则521z x y =+-的最小值为__________.三、解答题21.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫-⎪⎝⎭万元.(1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由. 22.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 23.已知函数2()()f x x ax a R =-∈. (1)若2a =,求不等式()3f x ≥的解集;(2)若[1,)x ∈+∞时,2()2f x x ≥--恒成立,求a 的取值范围.24.已知函数2()12af x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围; (2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围. 25.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 26.已知函数2()(3)2f x ax a x =+-+(其中a ∈R ). (1)当a =-1时,解关于x 的不等式()0f x <; (2)若()1f x ≥-的解集为R ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭目标函数2z x y =+,化为2y x z =-+ 则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2.D解析:D 【分析】由题意得分离参数将不等式等价于不等式1a x x ≤+在区间[1,2]上有解,设()1f x x x =+,由函数()1f x x x=+在[1,2]上单调递增,可求得实数a 的取值范围.【详解】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x =+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤,所以实数a 的取值范围为52a ≤, 故选:D. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <. 3.A解析:A 【分析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可. 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:11y x y =-⎧⎨+=⎩,可得点A 的坐标为:()2,1A -,据此可知目标函数的最大值为:max 2213z =⨯-=. 故选:A【点睛】方法点睛:求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.4.A解析:A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n +的最小值. 【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=. 因为1161116116116()()(17)(17)5555n m n mm n m n m n m n m n+=++=++≥⋅+=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n +的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题.5.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大; 由图象可知,当133zy x =-过点A 时,在y 轴截距最大,由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()1349362743433325555255x y x y x y y x y x⎛⎫+=++=++≥+=⎪⎝⎭ 故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.8.C解析:C【分析】根据基本不等式求解即可得到所求最大值. 【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C . 【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;(,0)2a b ab a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.9.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的10.B解析:B 【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值. 【详解】根据题中约束条件1x y ax y +≥⎧⎨-≤-⎩可画出可行域如图所示,两直线交点坐标为:11,22a a A -+⎛⎫⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B.【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.11.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.12.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】变换得到利用均值不等式计算得到答案【详解】当且时即时等号成立故答案为:【点睛】本题考查了利用均值不等式求最值意在考查学生的计算能力和转化能力 解析:716【分析】变换得到22816132s t s s s t s s t+=++,利用均值不等式计算得到答案. 【详解】24s t +=,222178321163216162s s s s t s t s s t s s t t +=+=++≥-+=+, 当232t s s t =且0s <时,即23s =-,163t =时等号成立. 故答案为:716. 【点睛】本题考查了利用均值不等式求最值,意在考查学生的计算能力和转化能力. 15.9【分析】首先由已知确定然后利用基本不等式求最小值【详解】因为所以又所以所以当且仅当时等号成立所以的最小值为9故答案为:9【点睛】易错点睛:易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件 解析:9【分析】首先由已知确定1,1a b >>,然后利用基本不等式求最小值.【详解】因为a b x y xy ==,所以1a y x -=,1b x y -=,又1,1x y >>,所以10,10a b ->->, 111(1)(1)()b a b a b x y x x -----===,所以(1)(1)1a b --=,4(1)4(1)559a b a b +=-+-+≥=,当且仅当14(1)a b -=-时等号成立,所以4a b +的最小值为9.故答案为:9.【点睛】易错点睛:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必 解析:2【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=, 则2019x >,2020y >且4042x y +=, ∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y x x y⎛⎫=+++⋅ ⎪⎝⎭≥, 当且仅当y x x y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方17.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值.【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+,∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立,∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan C A C C A C C C A C C C-==++++-, 又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan 3C =等号成立, ∴ ()tan tan tan tan tan tan 1tan =213A C A C C C A C -≤++-=【点睛】 本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.18.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线 解析:78【分析】根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示, 目标函数3y x +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大联立2801x yx+-=⎧⎨=⎩,得172xy=⎧⎪⎨=⎪⎩即71,2A⎛⎫⎪⎝⎭所以此时斜率为()7072138-=--,故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.19.21【分析】画出满足的可行域当目标函数经过点时取得最大值求解即可【详解】画出满足的可行域由解得点则目标函数经过点时取得最大值为【点睛】本题考查的是线性规划问题解决线性规划问题的实质是把代数问题几何化解析:21【分析】画出,x y满足的可行域,当目标函数24z x y=+-经过点()7,9B时,z取得最大值,求解即可.【详解】画出,x y满足的可行域,由20250x yx y-+=⎧⎨--=⎩解得点()7,9B,则目标函数24z x y=+-经过点()7,9B时,z取得最大值为718421+-=.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.20.3【分析】作出不等式组对应的平面区域利用目标函数的几何意义即可得到结论【详解】解:解:不等式组为对应的平面区域为如图阴影所示由得平移直线由图象可知当直线经过点时直线的截距最小此时最小代入目标函数得即 解析:3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.【详解】解:解:不等式组为00360x y x y ⎧⎪⎨⎪+-≥⎩,对应的平面区域为如图阴影所示,由521z x y =+-得5122z y x +=-+,平移直线5122z y x +=-+, 由图象可知当直线5122z y x +=-+经过点()0,2时, 直线5122z y x +=-+的截距最小,此时z 最小. 代入目标函数521z x y =+-得02213z =+⨯-=.即目标函数521z x y =+-的最小值为3.故答案为:3【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法,属于中档题.三、解答题21.(1)最多75人;(2)存在,{}7m ∈.【分析】(1)根据题意直接列出不等式可求解;(2)由①可得2125x m ≥+,由②可得100325x m x ≤++,分别利用函数单调性和基本不等式即可求解.【详解】(1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元,则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >)解得075x ≤≤, 4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125x m ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭,两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥-⎪⎪⎝⎭⎝⎭, 整理得100325x m x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x 取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解.22.(1)3|2x x ⎧<-⎨⎩或}2x a >+;(2)112a <-或51325a <<. 【分析】(1)对一元二次不等式分解因式,通过72a >-得出322a +>-,可得不等式的解集; (2)关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,可得0∆>,设()22(32)38g x x a x a =+--+,则有()10g >且对称轴小于1,解不等式可得实数a 的取值范围.【详解】(1)∵()()()2346f x x a x x =-+>+∴22(12)3(2)0x a x a -+-+>,即()3202x x a ⎛⎫+--> ⎪⎝⎭ 73,222a a >-+>- 3|2x x ⎧∴<-⎨⎩或}2x a >+ (2)解法一:∵22(32)380x a x a +--+=在(–),1∞上有两个不相等实根∴2412550a a ∆=+->112a <-或52a > 设()22(32)38g x x a x a =+--+,则()10g >∴()232380a a +--+> ∴135a <, 又()g x 的对称轴为324a x -=-,∴3214a --<,∴72a < ∴综上112a <-或51325a <<. 解法二: ∵22(32)380x a x a +--+=在(,1)-∞上有两个不相等实根 ∴223823x x a x ++=+ 令2238()23x x g x x ++=+ 令()()23,00,5t x =+∈-∞ 则2316()2t t g t t-+=,即183()22g t t t =+- 由图象可知,该题转化为y a =与18322y t t =+-有两个不同的交点 ∴112a <-或51325a << 【点睛】方法点睛:本题考查一元二次不等式的解法,考查一元二次方程根的分布,考查了学生计算能力,不妨设一元二次方程所对应的二次函数()f x 开口向上,则两根都小于k 时,则()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩; 2.两根都大于k 时,则()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ 3.一根小于k ,一根大于k 时,则()0f k <.23.(1){|1x x ≤-或3}x ≥;(2)(,4]-∞.【解析】试题分析:(1)先对不等式移项并因式分解得()()310x x -+≥,再根据不等号方向得不等式解集,(2)先化简不等式,并分离12a x x ⎛⎫≤+ ⎪⎝⎭,转化为求对应函数最值:()min a h x ≤,其中()12h x x x ⎛⎫=+ ⎪⎝⎭,再根据基本不等式求()h x 最值,即得a 的取值范围.试题(1)若()2,3a f x =≥即()()2230,310x x x x --≥-+≥ 所以原不等式的解集为{|1x x ≤-或3}x ≥(2)()22f x x ≥--即12a x x ⎛⎫≤+ ⎪⎝⎭在[)1,x ∈+∞时恒成立, 令()12h x x x ⎛⎫=+⎪⎝⎭,等价于()min a h x ≤在[)1,x ∈+∞时恒成立,又()124h x x x ⎛⎫=+≥= ⎪⎝⎭,当且仅当1x x =即1x =等号成立,所以4a ≤. 故所求a 的取值范围是(],4-∞. 24.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x =-在区间[]1,2上的最大值求解即可.【详解】(1)由题意得()2102a f x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤, 解得44a -≤≤,∴实数a 的取值范围为[]4,4-.(2)由题意得[]21,2,122a x x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增,∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-.【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替.25.(1)[-4,1];(2)-3.【分析】(1)当m =﹣4时,利用十字相乘法解出不等式的解集;(2)()0f x <的解集为(b ,a ),等价于()0f x =的根即为a ,b ,根据韦达定理判断出a ,b 的符号,利用"1"的代换以及基本不等式求出最大值,并验证取等条件.【详解】(1)当m =﹣4时,不等式f (x )≤0,即为x 2+3x ﹣4≤0,可得:(x +4)(x ﹣1)≤0,即不等式f (x )≤0的解集为[﹣4,1].(2)由题()0f x =的根即为a ,b ,故a +b =-3,ab =m >0,故a ,b 同负,则14a b+=114141()5(53333a b a b a b b a ⎛⎫⎛⎫-++=-++≤-+=- ⎪ ⎪⎝⎭⎝⎭ 当且仅当1,2a b =-=- 等号成立.【点睛】本题考查一元二次不等式,基本不等式在求最值中的应用,使用时要注意“一正,二定,三相等”,属于中档题.26.(1)(2)(62)-∞--+∞,,;(2)99a -+≤【分析】(1)当0a =时,解一元二次不等式求得不等式()0f x <的解集.(2)化简不等式()1f x ≥-,对a 分成0a ≠和0a >两种情况进行分类讨论,结合一元二次不等式恒成立,求得实数a 的取值范围.【详解】(1)当1a =-时,由()0f x <得,2420x x --+<,所以2420x x +->,所以不等式的解集为(2)(62)-∞-+∞,,;(2)因为()1f x ≥-解集为R ,所以2(3)21ax a x +-+-≥在R 恒成立,当0a =时,得321x -+-≥,不合题意;当0a ≠时,由2(3)30ax a x +-+≥在R 恒成立,得()203120a a a >⎧⎪⎨--≤⎪⎩,所以99a -+≤【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题.。
不等式测试题一、选择题(本大题共12小题,每小题5分,共60分。
)1.设a <b <0,则下列不等式中不能成立的是( )A .1a >1bB .1a-b >1aC .a bD .a 2>b 22.设,a b R ∈,若||0a b ->,则下列不等式中正确的是( )A .0b a ->B .330a b +<C .220a b -<D .0b a +>3.假如正数a b c d ,,,满意4a b cd +==,那么( )A .ab c d +≤,且等号成立时a b c d ,,,的取值唯一B .ab c d +≥,且等号成立时a b c d ,,,的取值唯一C .ab c d +≤,且等号成立时a b c d ,,,的取值不唯一D .ab c d +≥,且等号成立时a b c d ,,,的取值不唯一4.已知直角三角形的周长为2,则它的最大面积为( )A .3-2 2B .3+2 2C .3- 2D .3+ 25.已知0,0a b >>,则11a b ++ )A .2B .C .4D .56.若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( )A .1122a b a b +B .1212a a bb +C .1221a b a b +D .127.当0<x <2π时,函数f (x )=x x x 2sin sin 82cos 12++的最小值为( ) A.2 B.23 C.4 D.438.下列不等式中,与不等式“x <3”同解的是( )A .x (x +4)2<3(x +4)2B .x (x -4)2<3(x -4)2C .x +x-4 <3+ x-4D .x +21-21x x +<3+2121x x -+ 9.关于x 的不等式(x-2)(ax-2)>0的解集为{x ︱x ≠2,x ∈R },则a=( )A .2B .-2C .-1D .110.不等式∣x 2-x-6∣>∣3-x ∣的解集是( )A .(3,+∞)B .(-∞,-3)∪(3,+∞)C .(-∞,-3)∪(-1,+∞)D .(-∞,-3)∪(-1,3)∪(3,+∞)11.设y=x 2+2x+5+2125x x ++,则此函数的最小值为( ) A .174 B .2 C .265D .以上均不对12.若方程x 2-2x +lg(2a 2-a)=0有两异号实根,则实数a 的取值范围是( )A .(12 ,+∞) ∪(-∞,0)B .(0,12) C .(-12 ,0) ∪(12,1) D .(-1,0) ∪(12 ,+∞)二、填空题:(本大题共4小题,每小题5分,共20分。
基本不等式的凑项技巧一、代数变换 1. 若x >0,求函数24xy x =+的取值范围. 若x <0,求函数24xy x =+的取值范围.2. 求函数2241y x x =++的最小值,并求出取得最小值时的x 值.3. 求函数2y =的最小值.4. 求y =的最大值.5. 求函数()23311x x y x x ++=>-+的最小值.6. 已知0,0a b >>,则11a b++ )A .2B .C .4D .57. 设0a b >>,则()211a ab a a b ++-的最小值是( ) A .1 B .2 C .3 D .48. 已知x ,y 为正实数,则4x x +3y +3yx的最小值为( )A.53B.103C.32 D .39. 已知x >y >0,求的最小值及取最小值时的x 、y 的值.10. 若b >a >1,且3log a b +6log b a =11,则a 3+2b -1的最小值为________.二、“1”的变换1. 已知a >0,b >0,a +b =2,则y =1a +4b的最小值是 ( )A. 72 B .4 C. 92 D .52. 已知第一象限的点(a ,b )在直线2x +3y -1=0上,则代数式2a +3b的最小值为( )A .24B .25C .26D .273. 已知直线2ax +by -2=0(a >0,b >0)过点(1,2),则1a +1b的最小值是( )A .2B .3C .4D .14. 若直线()10,0x ya b a b+=>>过点()1,1,则a b +的最小值等于( ). A .2 B .3 C .4 D .55. 若直线x a +yb=1(a >0,b >0)过点(1,2),则2a +b 的最小值为( )A .4B .3+2 2C .8D .4 26. 已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.7. 已知向量a =(3,2),b =(x,1-y )且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是( )A .24B .8 C.83 D.538. 已知x >0,y >0,且x +16y =xy ,则x +y 的最小值为________.9. 已知a >0,b >0,圆C :(x -2)2+(y +1)2=5关于直线ax -by -1=0对称,则3b +2a 的最小值为________.10. 若42log 34log a b a b +=+()的最小值是( ). A.326+ B.327+ C.346+ D.347+11. 若直线ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b 的最小值为( )A.32+ 2 B. 2 C.14 D.32+2 212. 已知x >0,y >0,且x +8y -xy =0.(1)当x ,y 分别为何值时,xy 取得最小值? (2)当x ,y 分别为何值时,x +y 取得最小值?13. 已知正数x ,y 满足x +y =1,则4x +2+1y +1的最小值为________.14. 若两个正实数x ,y 满足1x +4y =1,且不等式x +y4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)15. 设正项等差数列{a n }的前n 项和为S n ,若S 2 017=4 034,则1a 9+9a 2 009的最小值为________.16. 如图,动点A 在函数y =1x (x <0)的图象上,动点B 在函数y =2x (x >0)的图象上,过点A ,B 分别向x 轴,y 轴作垂线,垂足分别为A 1,A 2,B 1,B 2,若|A 1B 1|=4,则|A 2B 2|的最小值为________.三、转化思想与方程消元思想1. 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1122. 已知0,0,230,a b ab a b >>++=求y ab =的最大值.3. 若正数a,b 满足3ab a b =++,则:ab 的取值范围是____________;a+b 的取值范围是___________.4. 已知(),,0,1x y z ∈且2x y z ++=,求xy yz zx ++的最大值.5. 已知实数x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为________.6. 设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________.7. 若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2 B .2 C .2 2 D .4四、消元法1. 已知函数f (x )=|lg x |,a >b >0,f (a )=f (b ),则a 2+b 2a -b的最小值为________.2. 若正实数x ,y ,z 满足x 2+4y 2=z +3xy ,则当xy z 取最大值时,1x +12y -1z的最大值为( )A .2 B.32 C .1 D.12五、其他凑项技巧1. 设x >y >z ,且1x -y +1y -z ≥nx -z (n ∈N)恒成立,则n 的最大值为________.2. 若正实数x ,y 满足(2xy -1)2=(5y +2)(y -2),则x +12y的最大值为( )A .-1+322B .-1+332C .1+332D .-1-322参考答案 基本不等式的凑项技巧一、代数变换 1. 略2.【解析】224101x x +>+,,222244(1)111y x x x x =+=++-++2413≥-=, y 的最小值为3,当且仅当22411x x =++,即1x =±时取到此最小值. 3. 【解析】2222222541114,42,444x x y x x y t tx x x +++===+++≥=++++在[)2,+∞上递增,min 152.22y ∴=+=4.【解析】210x +>,222261614(1)3x x y x x ++===+++226311x x +++6323≤=,当且仅当22311x x +=+时,即22x =,2x =±时,取到等号,故y 的最大值为3.5. 【解析】()()22111331112131111x x x x y x x x x x ++++++===+++≥+=>-+++,当且仅当1101x x x +=⇒=+,时等号成立. 6. C 7. 【解析】()()()()()211111122 4.a ab a a b ab a a b ab a a b ab a a b ab a a b ++=+-++=++-+≥+=---当且仅当()()11,ab a a b ab a a b =-=-时等号成立,即22,2a b ==时等号成立. 选D 8. 解析:选D 由题意得x >0,y >0,4x x +3y +3y x =4xx +3y +x +3y x -1≥24x x +3y ·x +3yx-1=4-1=3(当且仅当x =3y 时等号成立). 9. 【解析】因为所以x -y >0,=8,其中“=”当且仅当,解得,故当且仅当时所求的最小值是8。
/不等式练习题一、选择题1、若a,b 是任意实数,且a>b,则( )A .22a b >B .1ba< C .11()()22a b<D .lg()0a b ->2、已知0,0,a b >>且2是2a 与b 的等差中项,则1ab的最小值为( )A .14 B. 12C .2D .43、已知函数()()()12440,cos 0,cos 2f x x x f x x x x x π⎛⎫=+≠=+<< ⎪⎝⎭()3f x =281xx + #()0x >,()()4922f x x x x =+≥-+,其中以4为最小值的函数个数是( )A .0B .1C .2D .34、已知向量a =),2,1(-x b =),4(y ,若a ⊥b ,则y x 39+的最小值为( )A .2B .32C .6D .95、若正数,x y 满足35x y xy +=,则34x y +的最小值是( )A .245B .285C .5D .66、已知第一象限的点(a,b)在直线2x+3y -1=0上,则代数式23a b+的最小值为( ) A .24B .25C .26D .27—7、已知实数y x ,满足1218y y x x y ≥⎧⎪≤-⎨⎪+≤⎩,则目标函数y x z-=的最小值为( )A .2-B .5C .6D .78、实数x,y 满足⎪⎩⎪⎨⎧≤->≤≥0)1(1y x a a y x ,若函数z=x+y 取得最大值4,则实数a 的值为( )A .2B .3C .4D .23 9、设x , y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z ax by =+(a .>0,b >0),最大值为12,则b a 32+ 的最小值为( ) A .724 B .625C .5D .410、设变量,x y 满足约束条件2201220,110x y y x y x x y --≤⎧+⎪-+≥⎨+⎪+-≥⎩则s=的取值范围是( )—A .31,2⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .1,22⎡⎤⎢⎥⎣⎦D .[]1,211、若实数x y 、满足2400 0x y x y +-≤⎧⎪≥⎨⎪≥⎩,则21y z x +=-的取值范围为( )A .2(,4][,)3-∞-⋃+∞B .2(,2][,)3-∞-⋃+∞C .2[2,]3-D .2[4,]3-12、已知2()4(0)f x ax ax b a =-+>,则不等式(25)(4)f x f x +<+的解集为( )A .5(,1)3--B .5(,)(1,)3-∞-⋃-+∞C .5(1,)3D .5(,1)(,)3-∞⋃+∞13、如果不等式57|1|x x ->+和不等式220ax bx +->有相同的解集,则( )A .8,10a b =-=-B .1,9a b =-=C .4,9a b =-=-D .1,2a b =-=14、设min{, }p q 表示p ,q 两者中的较小的一个,若函数221()min{3log , log }2f x x x ,则满足()1f x 的x 的集合为( )》A .(0, 2)B .(0, +) C .(0, 2)(16,) D .1(,)1615、不等式02ax +bx+c >的解集为{|24}x x,则不等式20cx bxa的解集为( ) A .11{|}24x x x 或 B .1{|}4x xC .1{|}2x xD .11{|}24x x二、填空题 1、不等式021xx <-的解为_________. 2、若函数141log (1)(0)1(),()22(0)x x x f x f x x -+≥⎧⎪=≤-⎨⎪<⎩则的解集为_________. 3、若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是___________.4、已知)(x f y =是偶函数,)(x g y =是奇函数,它们的定义域均为]3,3[-,且它们在]3,0[∈x 上的图像如图所示,则不等式0)()(<x g x f 的解集是___________. @5、已知0x >,则24xx +的最大值为_________________. 6、已知正数b a ,满足等式042=+-+ab b a ,则b a +的最小值为________. 7、若对任意0x >,231xa x x ≤++恒成立,则a 的取值范围是________________.8、若实数y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-,0,0,01x y x y x ,则yx z 23+=的值域是____________.9、不等式组2000x x y x y -≤⎧⎪+≥⎨⎪-≥⎩表示平面区域为Ω,在区域Ω内任取一点(),P x y ,则P 点的坐标满足不等式222x y +≤的概率为_________.}!:[【不等式练习题答案、一、选择题1、C2、B3、D 解:函数1()f x 中,当0x <时,10y <;2()f x 无最值;388()412f x x x=≤=+最大值为4;49()(2)223242f x x x =++-≥⋅-=+等号成立,所以选D 4、C 解:由题意知24(1)20,22,93236x y x y a b x yx y +⋅=-+=∴+=∴+≥=.故选C .5、C 解:由35x y xy +=,可得35x y xy xy +=,即135y x +=,所以13155y x+=.则139431213312131234(34)()2555555555555x y x y x y x y y x y x y x +=++=+++≥+⨯=+=,选 C . 6、B 解:因为第一象限的点(a,b)在直线2x+3y -1=0上,所以有2310,0,0a b a b +-=>>,即231a b +=,所以23236666()(23)4913225b a b a a b a b a b a b a b+=++=+++≥+⋅=,当且仅当66b a a b =,即15a b ==取等号,所以23a b+的最小值为25,选B . 7、A 解:由z x y =-得y x z =-.作出不等式对应的平面区域BCD,平移直线y x z =-,由平移可知,当直线y x z =-经过点C 时,直线的截距最大,此时z 最小.由218y x x y =-⎧⎨+=⎩,解得35x y =⎧⎨=⎩,即(3,5)C ,代入z x y =-得最小值为352z =-=-,选A .8、A 解: 由z x y =+得y x z =-+,作出不等式对应的区域,平移直线y x z =-+,由图象可知当直线经过点D 时,直线的截距最大为4,由40x y x y +=⎧⎨-=⎩,解得22x y =⎧⎨=⎩,即D(2,2),所以2a =,选A .】9、B 解:做出可行域,由z ax by =+得a zy x b b=-+,因为0,0a b >>,所以直线斜率0ab-<,直线截距越大,z 越大,做出直线a z y x b b =-+, ,由图象可知当直线a zy x b b =-+经过点B 时,截距做大,此时12z =,由36020x y x y --=⎧⎨-+=⎩得46x y =⎧⎨=⎩,代入直线z ax by =+得4612a b +=,即132a b+=.所以2323232325()()23232326a b a b a b a b b a +=++=+++≥++=,当且仅当a bb a=,即a b =时取等号,所以选B .10、C 解:做出约束条件表示的可行域如图,由图象可知(0,1),(1,0)B C .11y s x +=+的几何意义是区域内的任一点到定点(1,1)M --的斜率的变化范围,由图象可知,10111,211210MC MB k k ----====----,所以MC MB k s k ≤≤,即122s ≤≤,所以取值范围是1[,2]2,选C .11、A 解:做出不等式组对应的平面区域OBC.因为21y z x +=-,所以z 的几何意义是区域内任意一点(,)x y 与点(1,2)P -两点直线的斜率.所以由图象可知当直线经过点,P C 时,斜率最小,经过点,P B 时,直线斜率最大.由题意知(0,2),(4,0)B C ,所以22410PB k --==--,202143PC k --==-,所以21y z x +=-的取值范围为23z ≥或4z ≤-,即2(,4][,)3-∞-⋃+∞,选A @12、A 解:2()4(0)f x ax ax b a =-+>的对称轴为2x =,由0a >可知,距离对称轴越远函数值越大。
故(25)(4)|252||42|f x f x x x +<+⇔+-<+-22(23)(2)x x ⇔+<+23850x x ⇔++< 513x ⇔-<<-,故选答案A13、C 解:由不等式57|1|x x ->+可知50x ->,两边平方得22(5)49(1)x x ->+,整理得24920x x ++<,即24920x x --->.又两不等式的解集相同,所以可得4,9a b =-=-,选C .14、C15、A 解:因为不等式02ax +bx+c >的解集为{|24}x x ,所以0a <,且2,4是方程02ax +bx+c的两个根,所以246b a +=-=,248ca ⨯==,所以68b ac a =-=,,所以不等式20cx bx a等价为2860ax axa,即28610x x ,所以(21)(41)0x x -->,解得1124xx 或,所以不等式20cx bx a 的解集为11{|}24x xx 或,选A 二、填空题1、1(0,)22、(,1][1,)-∞-+∞3、24x -≤≤4、)3,2()1,0()1,2( --5、14 因为2144x x x x=++,又0x >时,4424x x x x +≥⨯=,当且仅当4x x=,即2x =取等号,所以11044x x <≤+,即24x x +的最大值为14. 6、4 7、15a ≥解析:因为0x >,所以12x x+≥(当且仅当1x =时取等号),所以有 21111312353x x x x x=≤=+++++,故15a ≥. 8、[1,9] 解:令2t x y =+,则122t y x =-+,做出可行域平移直线12y x =-,由图象知当直线经过O 点是,t 最小,当经过点(0,1)D 时,t 最大,所以02t ≤≤,所以19z ≤≤,即yx z 23+=的值域是[1,9].9、8π。