高中数学反 正 弦 函 数精品优质课教案
- 格式:docx
- 大小:145.12 KB
- 文档页数:7
142正弦、余弦函数的性质教目标:1、知识与技能掌握正弦函数和余弦函数的性质.2、过程与能力目标通过引导生观察正、余弦函数的图像,从而发现正、余弦函数的性质,加深对性质的理解.并会求简单函数的定义域、值域、最小正周期和单调区间.3、情感与态度目标渗透数形结合思想,培养生辩证唯物主义观点.教重点:正、余弦函数的周期性;正、余弦函数的奇、偶性和单调性。
教难点:正、余弦函数周期性的理解与应用;正、余弦函数奇、偶性和单调性的理解与应用。
正弦、余弦函数的性质(一)教过程:一、复习引入:1.问题:(1)今天是星期一,则过了七天是星期几?过了十四天呢?……(2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?2.观察正(余)弦函数的图象总结规律:自变2π-32π-π-2π-02ππ32π2π量x []函数值sin x10 1-0 1 01- 0[]正弦函数()sin f x x =性质如下:(观察图象) 1︒ 正弦函数的图象是有规律不断重复出现的;2︒ 规律是:每隔2π重复出现一次(或者说每隔2π∈重复出现)3︒ 这个规律由诱导公式sin(2π+)=sin 可以说明[] 结论:象这样一种函数叫做周期函数。
文字语言:正弦函数值按照一定的规律不断重复地取得; 符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==.– –π2π2π-2π5ππ-2π- 5π- Ox y 1 1-也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。
余弦函数也具有同样的性质,这种性质我们就称之为周期性。
二、讲解新课:1.周期函数定义:对于函数f (),如果存在一个非零常数T ,使得当取定义域内的每一个值时,都有:f (+T)=f ()那么函数f ()就叫做周期函数,非零常数T 叫做这个函数的周期。
高中数学优质课《正弦定理和余弦定理复习课》公开课教案教学目标:1、掌握正弦定理和余弦定理的推导,并能用它们解三角形.2、利用正、余弦定理求三角形中的边、角及其面积问题是高考考查的热点.3、常与三角恒等变换相结合,综合考查三角形中的边与角、三角形形状的判断等. 教学重点:①能充分应用三角形的性质及有关的三角函数公式证明三角形的边角关系式.②能合理地选用正弦定理余弦定理结合三角形的性质解斜三角形. ③能解决与三角形有关的实际问题.教学难点:①根据已知条件判定解的情形,并正确求解. ②将实际问题转化为解斜三角形. 教学过程 一、知识点回顾1、正弦定理CcB b A a sin sin sin ==2R = 变 形C R c B R b A R a sin 2,sin 2,sin 2===RcC R b B R a A 2sin ,2sin ,2sin ===sin sin sin ::::A B C a b c =面积公式:B ac C ab A bc S ABCsin 21sin 21sin 21===∆ 2、余弦定理 A bc c b a cos 2222-+=⇔bca cb A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=3、正、余弦定理的作用:解三角形(边角互化)二、随堂练习三、例题讲解例1、 (2012·广州模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.四、巩固练习1.在△ABC 中,a =15,b =10,A =60°,则cos B =( ) A.63 B.223 C .-63 D .-2232.(2011·课标全国卷)△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 例2、(2011·山东高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab . (1)求sin Csin A的值; (2)若cos B =14,b =2,求△ABC 的面积S .1.(教材改编题)已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c .若a =c =6+2,且∠A =75°,则b =( )A .2B .4+2 3C .4-2 3 D.6- 2五、课堂小结 正弦定理和余弦定理公式及变形 六、课后作业课堂新坐标1-10七、板书设计正弦定理和余弦定理1、正余弦定理2、正余弦定理3、正、余弦定理的作用4、例题讲解2.(2011·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( )A .-12 B.12 C .-1 D .13.在△ABC 中,b ,c 是角B 、C 的对边,且cos 2A2=b +c2c .试判定△ABC 的形状.4. (2012·河源质检)△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1213.(1)求AB →·AC →; (2)若c -b =1,求a 的值.。
1.4.2 正弦函数、余弦函数的性质整体设计教学分析对于函数性质的研究,在高一必修中已经研究了幂函数、指数函数、对数函数的图象与性质.因此作为高中最后一个基本初等函数的性质的研究,学生已经有些经验了.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想方法的应用.由于三角函数是刻画周期变化现象的重要数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期区间上的性质,那么就完全清楚它在整个定义域内的性质.正弦、余弦函数性质的难点,在于对函数周期性的正确理解与运用,以下的奇偶性,无论是由图象观察,还是由诱导公式进行证明,都很容易.单调性只要求由图象观察,不要求证明,而正弦、余弦函数的最大值和最小值可以作为单调性的一个推论,只要注意引导学生利用周期进行正确归纳即可.三维目标1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物.重点难点教学重点:正弦、余弦、正切函数的主要性质(包括周期性、单调性、奇偶性、最值或值域);深入研究函数性质的思想方法.教学难点:正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.课时安排2课时教学过程第1课时导入新课思路1.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这就是人体节律.这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课.思路2.取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针每经过一周就会重复,这是一种周期现象.我们这节课要研究的主要内容就是周期现象与周期函数.那么我们怎样从数学的角度研究周期现象呢?在图形上让学生观察正弦线“周而复始”的变化规律,在代数式上让学生思考诱导公式:sin(x+2kπ)=sinx又是怎样反映函数值的“周而复始”的变化规律的.要求学生用日常语言叙述这个公式,通过对图象、函数解析式的特点的描述,使学生建立在比较牢固的理解周期性的认知基础上,来理解“周而复始”变化的代数刻画,由此引出周期函数的概念.推进新课新知探究提出问题问题①正弦函数、余弦函数是周期函数吗?如果是,又是怎样周期性变化的? 问题②阅读教材并思考:怎样从代数的角度定义周期函数?活动:教师可先引导学生查阅思考上节学过的正弦函数图象,让学生观察正弦线的变化规律,有什么新的发现?再让学生描述这种规律是如何体现在正弦函数的图象上的,即描述正弦函数图象是如何体现“周而复始”的变化规律的.通过研究图象,学生很容易看出正弦函数、余弦函数是周期函数.怎样变化呢?从图1中也能看出是每隔2π就重复一次.对问题①,学生对正弦函数是周期函数是没有疑问的,至于怎样描述,学生一时很难回答.教师可引导学生思考讨论,正弦函数图象是怎样重复出现的?对于回答对的学生给予肯定,鼓励继续探究.对于找不到思路的学生给予提示,指导其正确的探究思路.图1问题②,从图象上能够看出,但关键是怎样对“周而复始”的变化规律作出代数描述,这对学生有一定的难度.在引入正式定义之前,可以引导学生先从不同角度进行描述.例如:对于函数f(x)自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,那么这个函数就叫做周期函数.教师也可以引导点拨学生从诱导公式进行描述.例如: sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,k ∈Z .这表明,正弦函数、余弦函数在定义域内自变量每增加(k>0时)或减少(k<0时)一个定值2kπ,它的函数值就重复出现,所以正弦函数、余弦函数都是周期函数.还可以通过类比奇函数、偶函数、周期函数的研究方法来加深理解周期性概念. 如果函数f(x)对于其定义域内的每一个值,都有: f(-x)=-f(x),那么f(x)叫做奇函数; f(-x)=f(x),那么f(x)叫做偶函数;f(x+T)=f(x),其中T 是非零常数,那么f(x)叫做周期函数.从上述定义可以看到,函数的性质是对函数的一种整体考察结果,反映了同一类函数的共同特点,它们可以从代数角度得到统一刻画.这种共同特点还可以从函数的图象上得到反映. 讨论结果:①正弦函数、余弦函数是周期函数,每隔2π就重复一次. ②略.定义:对于函数f(x),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T 叫做这个函数的周期.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.正弦函数是周期函数,2kπ(k ∈Z 且k≠0)都是它的周期,最小正周期是2π. 提出问题①怎样正确理解三角函数是周期函数的定义?并举例说明. ②通过探求思考怎样求一些简单三角函数的周期?活动:对问题①,学生一时可能难于理解周期的代数刻画.教师在引导学生阅读、讨论、思考问题时可多举些具体例子,以使抽象概念具体化.如常数函数f(x)=c(c 为常数,x ∈R )是周期函数,所有非零实数T 都是它的周期.同时应特别强调:(1)对周期函数与周期定义中的“当x 取定义域内每一个值时”这句话,要特别注意“每一个值”的要求.如果只是对某些x 有f(x+T)=f(x),那么T 就不是f(x)的周期.例如,分别取 x 1=2kπ+4π(k ∈Z ),x 2=6π,则由sin(2kπ+4π+2π)≠sin(2kπ+4π),sin(6π+2π)≠sin 6π,可知2π不是正弦函数的周期.又如sin(30°+120°)=sin30°,但不是对所有x 都有f(x+120°)=f(x),所以120°不是f(x)的周期.(2)从上述定义还可以看到周期函数的周期不唯一,例如2π,4π,6π,8π,……都是它的周期,有无穷多个,即2kπ(k ∈Z ,k≠0)都是正弦函数的周期.这一点可以从周期函数的图象上得到反映,也可以从代数上给以证明:设T 是函数f(x)的周期,那么对于任意的k ∈Z ,k≠0,kT 也是函数f(x)的周期.(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.但周期函数不一定存在最小正周期,例如,对于常数函数f(x)=c(c 为常数,x ∈R),所有非零实数T 都是它的周期,由于T 可以是任意不为零的常数,而正数集合中没有最小值,即最小正数是不存在的,所以常数函数没有最小正周期.(4)正弦函数中,正周期无穷多,2π是最小的一个,在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.对问题②,教师要指导学生紧扣定义,可先出一些简单的求周期的例子,如:若T 是f(x)的周期,那么2T 、3T 、…呢?怎样求?实际上,由于T 是f(x)的周期,那么2T 、3T 、…也是它的周期.因为f(x+2T)=f(x+T+T)=f(x+T)=f(x).这样学生就会明白,数学中的周期函数,其实就是在独立变量上加上一个确定的周期之后数值重复出现的函数. 讨论结果:①略.②定义法、公式法和图象法. 应用示例思路1例1 求下列函数的周期: (1)y=3cosx,x ∈R ; (2)y=sin2x,x ∈R ; (3)y=2sin(2x -6π),x ∈R . 活动:教师引导学生紧扣定义,一切从定义出发来求.(1)因为3cos(x+2π)=3cosx,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x+π)=-3cosx≠3cosx,所以π不是周期.(2)教师引导学生观察2x,可把2x 看成一个新的变量u,那么cosu 的最小正周期是2π,就是说,当u 增加到u+2π时,函数cosu 的值重复出现,而u+2π=2x+2π=2(x+π),所以当自变量x 增加到x+π且必须增加到x+π时函数值重复出现.因为si n2(x+π)=sin(2x+2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin [21(x+4π)-6π]=2sin [(2x -6π)+2π]=2sin(2x -6π). 所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π; (2)周期为π; (3)周期为4π.点评:通过本例我们看到函数周期的变化仅与自变量的系数有关,关键是让学生认识到,f(x+T)=f(x)中,T 是相对于自变量x 而言的,让学生总结归纳一下这些函数的周期与解析式中哪些量有关.一般地,函数y=Asin(ωx+φ)(其中A 、ω、φ为常数,A≠0,ω>0,x ∈R )的周期为T=ωπ2.可以按照如下的方法求它的周期: y=Asin(ωx+φ+2π)=Asin [ω(x+ωπ2)+φ]=Asin(ωx+φ).于是有f(x+ωπ2)=f(x),所以其周期为ωπ2.例如,在第(3)小题,y=2sin(21x-6π),x ∈R 中,ω=21,所以其周期是4π.由上述解法可以看到,思考的基本依据还是y=sinx 的周期为2π.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期.如例3中的第(3)小题:T=ωπ2=4π.这是求简单三角函数周期的最基本方法,即公式法.变式训练1.已知f(x)是周期为5的周期函数,且f(1)=2 007,求f(11). 解:因为5是函数f(x)在R 上的周期, 所以f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2 007.2.已知奇函数f(x)是R 上的函数,且f(1)=2,f(x+3)=f(x),求f(8). 解:由题意知,3是函数f(x)的周期,且f(-x)=-f(x), 所以f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2.思路2例1 判断函数f(x)=2sin 2x+|cosx |,x ∈R 的周期性.如果是周期函数,最小正周期是多少? 活动:本例的难度较大,教师可引导学生从定义出发,结合诱导公式,寻求使f(x+T)=f(x)成立的T 的值.学生可能会很容易找出4π,2π,这的确是原函数的周期,但是不是最小正周期呢?教师引导学生选其他几个值试试.如果学生很快求出,教师给予表扬鼓励;如果学生做不出,教师点拨学生的探究思路,主要让学生自己讨论解决. 解:因为f(x+π)=2sin 2(x+π)+|cos(x+π)| =2sin 2x+|cosx | =f(x).所以原函数是周期函数,最小正周期是π.点评:本题能很容易判断是周期函数,但要求的是“最小正周期”,那就要多加小心了.虽然将4π,2π带入公式后也符合要求,但还必须进一步变形,即f(x)中的x 以x+π代替后看看函数值变不变.为此需将π,2π等都代入试一试.实际上,在f(x)=2sin 2x+|cosx |,x ∈R 中,学生应看到平方与绝对值的作用是一样的,与负号没有关系.因而π肯定是原函数的一个周期. 变式训练1.求函数y=2sin31(π-x)的周期. 解:因为y=2sin 31(π-x)=-2sin(31x-3π),所以周期T=6π.2.证明正弦、余弦函数的最小正周期是2π.证明:(反证法)先证正弦函数的最小正周期是2π. 由于2π是它的一个周期,所以只需证明任意一个小于2π的正数都不是它的周期.假设T 是正弦函数的周期,且0<T<2π,那么根据周期函数的定义,当x 取定义域内的每一个值时,都有sin(x+T)=sinx. 令x=2π, 代入上式,得sin(2π+T)=sin 2π=1, 但sin(2π+T)=cosT,于是有cosT=1. 根据余弦函数的定义,当T ∈(0,2π)时,cosT<1. 这说明上述cosT=1是不可能的.于是T 必须等于2π,即正弦函数的最小正周期是2π. 同理可证,余弦函数的最小正周期也是2π. 知能训练 课本本节练习 解答:1.成立.但不能说12°是正弦函数的一个周期,因为此等式不是对x 的一切值都成立. 例如sin(20°+120°)≠sin20°.点评:理解周期函数概念中“当x 取定义域内每一个值时”的“每一个值”的含义. 2.(1)38π; (2)2π; (3)2π; (4)6π. 点评:利用周期函数的图象和定义求周期,体会周期与自变量x 的系数有关.3.可以先在一个周期的区间上研究函数的其他性质,再利用函数的周期性,将所研究的性质扩展到整个定义域.点评:了解如何利用函数的周期性来认识周期函数的其他性质.可让学生课堂讨论,然后归纳总结. 课堂小结由学生回顾本节所学的数学知识有哪些?〔周期函数的概念,最小正周期的定义,正弦、余弦函数的周期性,y=Asin(ωx+φ)(ω>0)的周期〕.并思考总结本节都用了哪些数学方法?(观察与归纳,特殊到一般,定义法,数形结合,辩证的观点) 作业1.课本习题 A 组3,B 组3.2.预习正弦函数、余弦函数的奇偶性.设计感想1.本节课的设计思想是:在学生的探究活动中突破正弦、余弦函数的周期性这个教学难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么,以后有些题就会很难做.通过探究让学生找出周期这个规律性的东西,并明确知识依附于问题而存在,方法为解决问题的需要而产生.将周期性概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更高的广度.2.本节设计的特点是从形到数、由特殊到一般、由易到难,这符合学生的认知规律.让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启导.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续探讨函数的周期性的规律及一般三角函数的周期的求法.3.根据本节课的特点可考虑分层推进、照顾全体.对优等生,重在引导他们进行一题多解,多题合一,变式思考的训练,培养他们求同思维、求异思维能力,以及思维的灵活性、深刻性与创造性,鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.(设计者:郑吉星)第2课时导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图象来研究.先让学生画出正弦函数、余弦函数的图象,从学生画图象、观察图象入手,由此展开正弦函数、余弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y=sinx,y=cosx是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数、余弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线和余弦曲线,观察它们的形状及在坐标系中的位置;②观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的定义域各是什么;③观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的值域各是什么;由值域又能得到什么;④观察正弦曲线和余弦曲线,函数值的变化有什么特点?⑤观察正弦曲线和余弦曲线,它们都有哪些对称?(1)(2)图2活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思考方向的学生,教师可参与到他们中去,并适时的给予点拨、指导.在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦、余弦函数性质时,教师要引导学生充分挖掘正弦、余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质. 对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势.对问题②,学生很容易看出正弦函数、余弦函数的定义域都是实数集R〔或(-∞,+∞)〕.对问题③,学生很容易观察出正弦曲线和余弦曲线上、下都有界,得出正弦函数、余弦函数的值域都是[-1,1].教师要引导学生从代数的角度思考并给出证明. ∵正弦线、余弦线的长度小于或等于单位圆的半径的长度, ∴|sinx |≤1,|cosx |≤1,即-1≤sinx≤1,-1≤cosx≤1.也就是说,正弦函数、余弦函数的值域都是[-1,1].对于正弦函数y=sinx(x ∈R ),(1)当且仅当x=2π+2kπ,k ∈Z 时,取得最大值1. (2)当且仅当x=-2π+2kπ,k ∈Z 时,取得最小值-1.对于余弦函数y=cosx(x ∈R ),(1)当且仅当x=2kπ,k ∈Z 时,取得最大值1. (2)当且仅当x=(2k+1)π,k ∈Z 时,取得最小值-1. 对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图3,通过学生充分讨论后确定,选图象上的[-2π,23π](如图4)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图3图4x -2π ... 0 (2)π... π (2)3π sinx-1↗↗1↘↘-1就是说,函数y=sinx,x ∈[-2,2]. 当x ∈[-2π,2π]时,曲线逐渐上升,是增函数,sinx 的值由-1增大到1; 当x ∈[2π,23π]时,曲线逐渐下降,是减函数,sinx 的值由1减小到-1.类似地,同样可得y=cosx,x ∈[-π,π]的单调变化情况.教师要适时点拨、引导学生先如何恰当地选取余弦曲线的一段来研究,如图5,为什么选[-π,π],而不是选[0,2π].图5x -π … -2π ... 0 (2)π … π cosx-1↗↗1↘↘-1结合正弦函数、余弦函数的周期性可知: 正弦函数在每一个闭区间[-2π+2kπ,2π+2kπ](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2kπ,23π+2kπ](k ∈Z )上都是减函数,其值从1减小到-1.余弦函数在每一个闭区间[(2k-1)π,2kπ](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2kπ,(2k+1)π](k ∈Z )上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出:正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.在R 上,y=sinx 为奇函数,y=cosx 为偶函数.教师要恰时恰点地引导,怎样用学过的知识方法给予证明?由诱导公式:∵sin(-x)=-sinx,cos(-x)=cosx, ∴y=sinx 为奇函数,y=cosx 为偶函数.至此,一部分学生已经看出来了,在正弦曲线、余弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x=2π对称,余弦曲线还关于点(2π,0)对称,等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习打下伏笔.讨论结果:①略. ②定义域为R .③值域为[-1,1],最大值都是1,最小值都是-1. ④单调性(略). ⑤奇偶性(略).当我们仔细对比正弦函数、余弦函数性质后,会发现它们有很多共同之处.我们不妨把两个图象中的直角坐标系都去掉,会发现它们其实都是同样形状的曲线,所以它们的定义域相同,都为R ,值域也相同,都是[-1,1],最大值都是1,最小值都是-1,只不过由于y 轴放置的位置不同,使取得最大(或最小)值的时刻不同;它们的周期相同,最小正周期都是2π;它们的图象都是轴对称图形和中心对称图形,且都是以图象上函数值为零所对应的点为对称中心,以过最值点且垂直于x 轴的直线为对称轴.但是由于y 轴的位置不同,对称中心及对称轴与x 轴交点的横坐标也不同.它们都不具备单调性,但都有单调区间,且都是增、减区间间隔出现,也是由于y 轴的位置改变,使增减区间的位置有所不同,也使奇偶性发生了改变. 应用示例思路1例1 数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.(1)y=cosx+1,x ∈R ;(2)y=-3sin2x,x ∈R .活动:通过这道例题直接巩固所学的正弦、余弦的性质.容易知道,这两个函数都有最大值、最小值.课堂上可放手让学生自己去探究,教师适时的指导、点拨、纠错,并体会对应取得最大(小)值的自变量为什么会有无穷多个.解:(1)使函数y=cosx+1,x ∈R 取得最大值的x 的集合,就是使函数y=cosx,x ∈R 取得最大值的x 的集合{x|x=2kπ,k ∈Z };使函数y=cosx+1,x ∈R 取得最小值的x 的集合,就是使函数y=cosx,x ∈R 取得最小值的x 的集合{x|x=(2k+1)π,k ∈Z }.函数y=cosx+1,x ∈R 的最大值是1+1=2,最小值是-1+1=0.(2)令Z =2x,使函数y=-3sin Z ,Z ∈R 取得最大值的Z 的集合是{Z |Z =-2π+2kπ,k ∈Z }, 由2x=Z =-2π+2kπ,得x=-4π+kπ. 因此使函数y=-3sin2x,x ∈R 取得最大值的x 的集合是{x|x=-4π+kπ,k ∈Z }. 同理,使函数y=-3sin2x,x ∈R 取得最小值的x 的集合是{x|x=4π+kπ,k ∈Z }.函数y=-3sin2x,x ∈R 的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但对应的自变量x 的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数、余弦函数的最大(小)值的性质,对于形如y=Asin(ωx+φ)+B 的函数,一般通过变量代换(如设Z =ωx+φ化归为y=Asin Z +B 的形式),然后进行求解.这种思想对于利用正弦函数、余弦函数的其他性质解决问题时也适用. 例2 函数的单调性,比较下列各组数的大小: (1)sin(-18π)与sin(-10π);(2)cos(523π-)与cos(417π-).活动:学生很容易回忆起利用指数函数、对数函数的图象与性质进行大小比较,充分利用学生的知识迁移,有利于学生能力的快速提高.本例的两组都是正弦或余弦,只需将角化为同一个单调区间内,然后根据单调性比较大小即可.课堂上教师要让学生自己独立地去操作,教师适时地点拨、纠错,对思考方法不对的学生给予帮助指导.解:(1)因为2π-<10π-<18π-<0,正弦函数y=sinx 在区间[2π-,0]上是增函数,所以sin(18π-)>sin(10π-).(2)cos(523π-)=cos 523π=cos 53π,cos(417π-)=cos 417π=cos 4π.因为0<4π<53π<π,且函数y=cosx,x ∈[0,π]是减函数,所以cos 4π>cos 53π,即cos(523π-)<cos(417π-).点评:推进本例时应提醒学生注意,在今后遇到的三角函数值大小比较时,必须将已知角化到同一个单调区间内,其次要注意首先大致地判断一下有没有符号不同的情况,以便快速解题,如本例中,cos4π>0,cos 53π<0,显然大小立判.例3 函数y=sin(21x+3π),x ∈[-2π,2π]的单调递增区间. 活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向:把21x+3π看成Z ,这样问题就转化为求y=sin Z 的单调区间问题,而这就简单多了. 解:令Z =21x+3π.函数y=sin Z 的单调递增区间是[2π-+2kπ,2π+2kπ].由-2π+2kπ≤21x+3π≤2π+2kπ,得35π-+4kπ≤x≤3π+4kπ,k ∈Z .由x ∈[-2π,2π]可知,-2π≤35π-+4kπ且3π+4kπ≤2π,于是121-≤k≤125,由于k ∈Z ,所以k=0,即35π-≤x≤3π,而[35π-,3π][-2π,2π],因此,函数y=sin(2x +3π),x ∈[-2π,2π]的单调递增区间是[35π-, 3π].点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x 的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.思路2例1 求下列函数的定义域: (1)y=xsin 11+;(2)y=cosx .活动:学生思考操作,教师提醒学生充分利用函数图象,根据实际情况进行适当的指导点拨,纠正出现的一些错误或书写不规范等. 解:(1)由1+sinx≠0,得sinx≠-1,即x≠23π+2kπ(k ∈Z ). ∴原函数的定义域为{x |x≠23π+2kπ,k ∈Z }. (2)由cosx≥0,得2π-+2kπ≤x≤2π+2kπ(k ∈Z ).∴原函数的定义域为[2π-+2kπ,2π+2kπ](k ∈Z ).点评:本例实际上是解三角不等式,可根据正弦曲线、余弦曲线直接写出结果.本例分作两步,第一步转化,第二步利用三角函数曲线写出解集. 例2 在下列区间中,函数y=sin(x+4π4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 活动:函数y=sin(x+4π)是一个复合函数,即y=sin[φ(x)],φ(x)=x+4π,欲求y=sin(x+4π)的单调增区间,因φ(x)=x+4π在实数集上恒递增,故应求使y 随φ(x)递增而递增的区间.也可从转化与化归思想的角度考虑,即把x+4π看成一个整体,其道理是一样的. 解:∵φ(x)=x+4π在实数集上恒递增,又y=sinx 在[2kπ-2π,2kπ+2π](k ∈Z )上是递增的,故令2kπ-2π≤x+4π≤2kπ+2π. ∴2kπ-43π≤x≤2kπ+4π. ∴y=sin(x+4π)的递增区间是[2kπ-43π,2kπ+4π]. 取k=-1、0、1分别得[411π-,47π]、[43π-,4π]、[45π,49π], 对照选择肢,可知应选B.答案:B点评:像这类题型,上述解法属常规解法,而运用y=Asin(ωx+φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图象变换等手段更快地解出. 解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y=f(t),t=φ(x);(3)根据函数f(t)的单调性确定φ(x)的单调性;(4)写出满足φ(x)的单调性的含有x 的式子,并求出x 的范围;(5)得到x 的范围,与其定义域求交集,即是原函数的单调区间.结论:对于复合函数的单调性,可以直接根据构成函数的单调性来判断.变式训练1.如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么( ) A.T=2,θ=2π B.T=1,θ=π C.T=2,θ=π D.T=1,θ=2π 解:T=ππ2=2,又当x=2时,sin(π·2+θ)=sin(2π+θ)=sinθ,要使上式取得最大值,可取θ=2π. 答案:A2.求函数y=21sin(4π-32x )的单调递减区间及单调递增区间. 解:y=21sin(4π-32x )=-21sin(32x -4π). 由2kπ-2π≤32x -4π≤2kπ+2π, 可得3kπ83π-≤x≤3kπ+89π(k ∈Z ),为单调减区间; 由2kπ+2π≤32x -4π≤2kπ+23π, 可得3kπ+89π≤x≤3kπ+821π(k ∈Z ),为单调增区间.。
1、正弦函数、余弦函数的图象和性质的一等奖说课稿一、教材分析1. 地位与重要性“正弦函数、余弦函数的图象和性质”一节是高中《数学》第一册(下)的重要内容,这一节共分为四个课时。
本课为第二课时,其主要内容是通过观察正弦线、余弦线及正、余弦曲线研究正、余弦函数性质中最基本的定义域与值域。
通过对这一节课的学习,既可加深学生对单位圆、正弦线、余弦线及正、余弦函数图象的认识,又可加强学生对三角函数概念的理解,还为后面其它性质的学习作好准备,起到承上启下的重要作用。
2. 教学目标:(1)能力目标:①培养学生的观察能力、分析能力、归纳能力、表达能力;②培养学生数形结合、类比等思想方法;③培养学生进行数学交流,获得数学知识的能力。
(2)情感目标:培养学生勇于探索,勤于思考的精神。
(3)知识目标:①使学生正确理解正、余弦函数的定义域、值域的意义;②会求简单函数的定义域、值域。
3. 教学重、难点:重点:正弦、余弦函数的定义域和值域。
理解并掌握正、余弦函数的定义域、值域是高中数学的重要内容,也是大纲的明确要求。
复习好三角函数定义及正弦线、余弦线等有关知识是解决问题的关键。
难点:有关函数定义域、值域的求解。
解三角函数问题时,学生普遍存在会而不对,对而不全,造成失误的很大原因来自定义域和值域问题,往往不注意角的范围,在求最值方面更为突出。
二、教法分析:根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化教学改革,确定本课主要的教法为:(1)讨论式教学:通过学生对图形的观察,让学生分组讨论、交流、总结,并发表意见,说出正弦、余弦函数的定义域与值域。
(2)讲议结合教学:教师适时指导、分析、讲解和提问,并及时对学生的意见进行肯定与评价。
(3)电脑多媒体辅助教学:借助电脑多媒体引导学生观察图形,使问题变得直观,易于突破;同时其灵活多样的形式可以极大地提高学生的学习兴趣;其软件交互功能可以帮助教师更好地实施教学,加大一堂课的信息量,使教学目标更好的实现。
反正弦函数数学说课稿高二
反正弦函数数学说课稿高二
反正弦函数数学说课稿1、地位与重要性
反正弦函数一节属高中代数(必修本)第一册中的选学内容,但属高考测试范围。
这一节课与反函数的基本概念、性质有着紧密的联系,通过对这一节课的学习,既可以让学生掌握反正弦函数的概念和题型的解法,又可使学生加深对反函数概念的理解,而且为其它反三角函数的学习做了充分准备,起到承上启下的重要作用。
2、教学目标
根据反正弦函数一节在高中代数教学中的地位与作用,我制订了如下教学目标:
(1)使学生理解反正弦函数的概念,能由正弦函数图象得出反正弦函数的定义及性质;
(2)用反正弦函数的概念解决相关问题;
(3)培养学生发现问题、观察问题、解决问题的能力。
高中数学正余弦函数教案
一、教学目标
1. 理解正弦函数和余弦函数的定义及其性质;
2. 掌握正弦函数和余弦函数的图像特征和变换规律;
3. 解决相关的实际问题。
二、教学重点和难点
1. 理解正弦函数和余弦函数的定义;
2. 掌握正弦函数和余弦函数的图像特征;
3. 运用正弦函数和余弦函数解决实际问题。
三、教学准备
1. 教材《高中数学》相关教学资料;
2. 教具准备:黑板、彩色粉笔、投影仪、计算器等。
四、教学步骤
1. 导入:通过提问引出正弦函数和余弦函数的定义;
2. 讲解:讲解正弦函数和余弦函数的定义及其性质;
3. 实例分析:通过几个实例,让学生掌握正弦函数和余弦函数的图像特征和变换规律;
4. 练习:让学生在课堂上进行练习,巩固所学知识;
5. 拓展:引导学生解决一些相关的实际问题;
6. 总结:对本节课内容进行总结,并进行反馈。
五、课后作业
1. 完成教材相关练习题;
2. 自己设计几个正弦函数和余弦函数的图像;
3. 思考一些实际问题,尝试用正弦函数和余弦函数进行建模。
六、教学反思
通过本节课的教学,学生应该基本掌握正弦函数和余弦函数的定义及其性质,能够运用所学知识解决相关问题,同时也能够培养学生的动手能力和解决实际问题的能力。
在教学中要注意启发学生思考,让他们自己发现规律。
1.4.2(2)正弦、余弦函数的性质(二) 教学目的: 知识目标:要求学生能理解三角函数的奇、偶性和单调性;能力目标:掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区间。
德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
教学重点:正、余弦函数的奇、偶性和单调性; 教学难点:正、余弦函数奇、偶性和单调性的理解与应用 教学过程: 一、复习引入:偶函数、奇函数的定义,反映在图象上,说明函数的图象有怎样的对称性呢?二、讲解新课:1. 奇偶性 请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?(1)余弦函数的图形当自变量取一对相反数时,函数y 取同一值。
例如:f(-3π)=21,f(3π)=21 ,即f(-3π)=f(3π);…… 由于cos(-x)=cosx ∴f(-x)= f(x). 以上情况反映在图象上就是:如果点(x,y )是函数y=cosx 的图象上的任一点,那么,与它关于y 轴的对称点(-x,y)也在函数y=cosx 的图象上,这时,我们说函数y=cosx 是偶函数。
(2)正弦函数的图形观察函数y=sinx 的图象,当自变量取一对相反数时,它们对应的函数值有什么关系? 这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。
也就是说,如果点(x,y )是函数y=sinx 的图象上任一点,那么与它关于原点对称的点(-x,-y )也在函数y=sinx 的图象上,这时,我们说函数y=sinx 是奇函数。
2.单调性从y =sin x ,x ∈[-23,2ππ]的图象上可看出: 当x ∈[-2π,2π]时,曲线逐渐上升,sin x 的值由-1增大到1. 当x ∈[2π,23π]时,曲线逐渐下降,sin x 的值由1减小到-1. 结合上述周期性可知: 正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z)上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z)上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z)上都是减函数,其值从1减小到-1.3.有关对称轴观察正、余弦函数的图形,可知y=sinx 的对称轴为x=2ππ+k k ∈Z y=cosx 的对称轴为x=πk k ∈Z练习1。
高中数学北师大版必修4第一章《5.3正弦函数的性质》优质课公开课教案教师资格证面试试讲教案
高中数学北师大版必修4第一章《5.3正弦函数的性质》优质课公开课教案教师资格证面试试讲教案
1教学目标
知识与技能
(1)熟练五点法画正弦函数的图像;
(2)利用图像进一步研究和理解正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性、对称性;
(3)能熟练运用正弦函数的性质解决相关问题,感受数形结合的思想,提高学生分析问题、解决问题的能力。
过程与方法
通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
体验数形结合。
情感态度与价值观
通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
2重点难点
重点: 正弦函数的性质,重点是单调性和最值。
难点: 正弦函数的性质应用。
3学法与教学用具
在正弦函数的图像中,直观判断出正弦函数的性质,并能上升到理性认识;理解掌握正弦函数的性质;以学生的自主学习和合作探究式学习为主。
教学用具:投影机、三角板
4教学过程
4.1.1教学活动
(一)【创设情境,引入新课】。
反 正 弦 函 数
教学目标
1.理解学习反正弦函数的必要性;理解反正弦函数sin y arc x =是函数
sin ,,22y x x ππ⎡⎤=∈-⎢⎥⎣⎦
的反函数而不是正弦函数的反函数;理解反正弦函数sin y arc x =的概念,掌握符号sin arc x 的含义,并会用以表示角;
2.知道反正弦函数的图像,并能形数结合掌握反正弦函数的性质;
3.会用数学思想分析和思考问题。
教学重点
在教师的引导下,让学生发现为什么要学习反正弦函数、怎样学习反正弦函数。
真正理解反正弦函数概念以及反正弦函数符号的本质。
教学难点
反正弦函数[]1,1,arcsin -∈=x x y 的产生和从本质上处理正弦函数
()R x x y ∈=sin 的反函数问题。
教学过程
一、 回顾复习
我们今天学习反正弦函数。
三角学起源于测量,天文测量、航海测量都是利用三角形之间的边角关系来测量的。
即利用比值与角之间的关系测量得到距离、高度和角度。
而在测量的实际计算过程中我们经常会遇到两类相反的问题。
一类是已知角值求比值,这是我们学习过的,例如,正弦函数x y sin =它就是一个角值函数,任意角x 都有唯一确定的正弦值y 与之对应,即已知某一个角值都可以通过正弦函数,将其正弦值表示出。
例如:6π
=x ,其正弦值y 可以表示为2
16sin ==π
y ;2=x ,其正弦值y 表示为2sin =y 。
而另一类相反的问题是已知比值求角值,例如:已知角x 的正弦值为21,那
么角x 如何表示呢? (可以表示为522()66
x k x k k z ππππ=+=+∈或;) 如果已知角的正弦值是3
1,那么角x 又如何表示呢? 这就产生了怎样用正弦值表示相应角的问题?
我们说正弦函数x y sin =研究的是角值如何确定正弦值,角值是自变量,正弦值是因变量,而现今要解决的是正弦值如何确定相应的角值?所以,我们要反过来,由正弦函数的因变量去确定自变量。
即需要我们考虑正弦函数的反函数。
二、 引入课题
我们学习过反函数,知道反函数的概念,也明确不是任何一个函数都存在反函数。
函数要存在反函数必须要求其自变量与因变量是一一对应的。
那么正弦函数是否存在反函数呢?
(学生作答:答案是否定的。
学生说出理由:因为对于任一正弦值y 都有无数个角值x 与之对应。
正弦函数的自变量与因变量是多对一的。
故而不存在反函数。
) 正弦函数不存在反函数,那么怎样利用正弦函数,由正弦值确定相应的角值呢?
通过一个例子来说明问题。
关于x 的式子21sin =
x ,x 可以表示的角有无数多个,为522()66
x k x k k z π
πππ=+=+∈或,那么这个结果从何而来? 首先你能写出的满足条件的x 是哪个?
6π,因为216sin =π,由6
π=x ,还可以写出哪些满足条件的x ,是2()6k k z π
π+∈,为什么?(因为根据三角比的定义具有相同终边的角其对应的三角比值相等)
还有其他满足条件的x 吗?
(有!,因为根据诱导公式2165sin 6sin 6sin
==⎪⎭⎫ ⎝
⎛-=ππππ,所以52()6x k k z ππ=+∈。
)
通过这个例子,我们说用正弦值表示相应角值时,只要能表示出一个相应的角值就可以了。
根据三角比的定义和诱导公式可以用它将其余的角值表示出。
所以正弦函数不存在反函数。
但只要选取某一区间使得x y sin =在该区间上存在反函数。
因变量可以确定自变量,正弦值可以表示相应的角值,并且将该区间上的角值用相应的正弦值表示就可以了。
那么选取怎样的区间,使得x y sin =存在反函数呢?
依据两个原则:
(1)所取区间x y sin =在该区间上存在反函数;
(2)能取到x y sin =的一切函数值[]1,1-。
依据这两个原则选择怎样的区间呢?
学生回答、讨论,不断补充完善。
(先选择⎥⎦
⎤⎢⎣⎡2,0π,因为它包含了所有的正锐角和零角,但不符合原则(2),补上⎪⎭⎫⎢⎣⎡-0,2π,因为⎥⎦⎤⎢⎣⎡-2,2ππ取到x y sin =的一切函数值,并且⎪⎭⎫⎢⎣⎡-0,2π与⎥⎦⎤⎢⎣⎡2,0π是连接在一起的,且关于原点对称,应用方便) 所以,选取闭区间⎥⎦
⎤⎢⎣⎡-2,2ππ,使得x y sin =在该区间上存在反函数,而这个反函数就是今天要学习的反正弦函数。
三、 认识符号sin arc x
1.引进符号sin arc x
由于反正弦函数并不是正弦函数的反函数,而是函数x y sin =,⎥⎦
⎤⎢⎣⎡-2,2ππ的反函数。
用一个记号来表示,引进记号:y x arcsin =。
选择arcsin 表示反正弦函数是有道理的。
arcsin 中sin 是正弦,arc 是什么意思呢?arc 并不是“反”的意思,它是英文单词,解释为“圆弧”,圆弧即圆周上的一段,那么圆弧l 与圆心角α有什么关系呢?r l α=,在单位圆中1=r ,即l α=,所以此时弧即角,角即弧。
我们可以将arc 理解作角,所以arcsin 从字。