根据1和2,数列 , , , , , , 3n 23n 1 1 4 4 7 7 10 计算S1, S 2 , S3 , S 4 , 根据计算结果 , 猜出Sn的表达式, 并用 数学归纳法进行证明 . 1 1 1 1 2 解 S1 ; S2 ; 1 4 4 4 47 7 2 1 3 3 1 4 S3 ; S4 . 7 7 10 10 10 10 13 13
2.3
数学归纳法
学习归纳法是一种特殊 的证明方法, 主要用于研究 an ,已知 与正整数有关的数学问 题.例如, 对于数列 an n 1,2, , 通过对n 1,2,3,4前4 a1 1, an1 1 an 1 项的归纳 , 我们已经猜想出其通项 公式为an .但 n 是, 我们只能肯定这个猜想 对前4项成立,而不敢肯 定对后续的项也成立 .这个猜想需要证明 . 自然地, 我们会想到从n 5开始一个个往下验证 . 一般来说,与正整数n有关的命题,当n比较小时可 以逐个验证, 但当n较大时, 验证起来会很麻烦 .特 别是证明n 取所有正整数都成立的 命题时, 逐一
1 思考 你认为证明数列的通项 公式是an 这个 n 猜想与上述多米诺骨牌 游戏有相似性吗? 你能类 比多米诺骨牌游戏解决 这个问题吗?
由条件, 容易知道 n 1时猜想成立 . 这就相当于游戏 的条件 1.类比条件 2,可以考虑证明一个递推 关系 : 1 如果 n k时猜想成立 , 即ak ,那么当 n k 1时 k 1 猜想也成立 ,即ak 1 . k 1 1 1 ak 1 k 事实上,如果 ak ,那么 ak 1 , k 1 ak 1 1 k 1 k
即n k 1时猜想也成立 .