转化单位1的分数应用题(含参考答案解析)
- 格式:pdf
- 大小:399.84 KB
- 文档页数:7
六年级上册数学教案3.3 转化单位“1”解决较复杂的分数应用题|西师大版我今天要为大家分享的教学内容是我所教授的六年级上册数学教案中的一部分,具体是第三章第三节“转化单位‘1’解决较复杂的分数应用题”。
这一节的主要内容是让学生掌握如何将单位“1”转化为具体的数值,并利用这个方法解决一些较复杂的分数应用题。
我的教学目标是希望学生们能够通过这一节的学习,掌握单位“1”的转化方法,并能够运用这个方法解决实际的问题。
同时,我也希望他们能够提高他们的数学思维能力和解决问题的能力。
在教学过程中,我会遇到一些难点和重点。
重点是让学生掌握单位“1”的转化方法,难点则是如何让学生们理解并运用这个方法解决实际的问题。
为了帮助学生们更好地理解和掌握这个方法,我准备了一些教具和学具,包括一些具体的分数应用题和一些辅助的图表。
在教学过程中,我会通过一些具体的实例引入这个概念,然后通过讲解和练习,让学生们逐渐理解和掌握这个方法。
在讲解的过程中,我会特别强调如何将单位“1”转化为具体的数值,并如何利用这个数值来解决实际的问题。
在板书设计上,我会用清晰的图表和简洁的文字来展示这个方法的步骤和关键点,以便学生们能够更好地理解和记忆。
在作业设计上,我会布置一些具体的分数应用题,让学生们运用他们所学的知识来解决。
我会提供详细的答案和解题步骤,以便学生们能够更好地理解和掌握。
我会进行课后反思和拓展延伸。
我会根据学生们在课堂上的表现和作业的完成情况,对我的教学方法和内容进行调整和改进。
同时,我也会寻找一些相关的资料和题目,为学生们的学习提供更多的拓展和延伸。
重点和难点解析:在我在六年级上册数学教案中分享的教学内容中,我认为有几个重点和难点是值得我们特别关注的。
我们需要重点关注的是单位“1”的转化方法。
这个方法是解决较复杂的分数应用题的关键,因此,学生们必须熟练掌握。
在教学过程中,我会通过具体的实例和讲解,让学生们理解并掌握这个方法。
我会强调,将单位“1”转化为具体的数值是解决分数应用题的第一步,而这个数值的计算方法是关键。
第四讲分数应用题转化单位“ 1、知识梳理分数应用题研究的是数与量的对应关系,确定单位“ 1”是解答分数应用题的关键。
当问题中有多个分率,且这些分率单位“ 1”不同时,要分析不变量,将单位“ 1 ”进行统这种方法叫转化单位“ 1”、方法归纳1. 总量不变,转化为以总量为单位“1”,一种量不变,以不变的量为单位“ 1”,差量不变,以差量为单位“ 1 ”。
2. 在转化的过程中,注意分率与比之间的转化,注意“份数”思想。
三、课堂精讲例1.修路队修一条公路,第一天修了这条公路的-,第二天修了余下的-,已知这两天5 3共修路120米,这条公路全长多少米?【规律方法】总量不变,以总量(这条公路)为单位“。
1【搭配课堂训练题】 【难度分级】A看了 20页,这本书共有多少页?2. 运送一堆水泥,第一天运了这堆水泥的运,这堆水泥有多少吨?例2. (2013天河省实)某校六年级有三个班,在为 4.20雅安地震献爱心的活动中,一班22的捐款数是二、三班捐款数之和的一,二班的捐款数是一、三班捐款数之和的一,已知三35班的捐款数比一班少 180元,问三个班共捐款多少元? 【规律方法】三个班捐款总量不变,以总量为单位“1 ”。
【搭配课堂训练题】 【难度分级】B13.甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的 -211乙队筑的路是其他三个队的 -,丙队筑的路是其他三个队的一 丁队筑了多少米?1. 小方三天看完一本书,第一天看了全书的1,第二天看了余下的:第二天比第一天多1 一 2,第—天运的是第一天的,还剩84吨没有433 4 '4例3 .兄弟两人各有人民币若干元,其中弟的钱数是兄的,若弟给兄4元,则弟的钱数52是兄的3,求兄弟两人原来各有多少元?【规律方法】在变化过程中,不变的是两人总钱数,以总钱数为单位“14. 小明看一本课外读物,读了几天后,已读的页数是剩下页数的-后来他又读了20页81这时已读的页数是剩下页数的-,这本课外读物共有多少页?615. 王师傅生产一批零件,不合格产品是合格产品的,后来从合格产品中又发现了2个不19合格产品,这时算出产品的合格率是94%。
2019-2020年六年级数学分数(一)练习题及答案 一、甲、乙两个仓库共存粮150吨,如果甲仓库取出粮食的31后就和乙仓库存粮一样多。
则原来甲、乙仓库各存粮多少吨?解析:下一步:答案:解:由题意可知,乙仓库的粮食是甲仓库的32,即: 甲仓库原来的存粮占总数的53,乙仓库占总数的52。
150×53=90(吨) 150×52=60(吨) 答:原来甲、乙仓库各存粮90吨、60吨。
小结:解答复杂的分数应用题时,关键要通过分析数量关系,弄清每道题是把什么数量看做单位“1”的,找出解题的数量关系,最后再列式解答二、第二天,白兔妈妈决定带着三个孩子去采蘑菇。
到了晚上,三个孩子都说自己采到的多。
你们愿意帮助它们判断一下到底谁采的多吗?已知三个小白兔共采240个蘑菇,老大采的是老二和老三总数的一半,老二采的是老大和老三总数的1/3,三个小白兔各采多少个?解析:将三只兔子采的蘑菇总量看作“单位1”,则:下一步:答案:解:由题意可知:将三个小白兔采的蘑菇的总量看作“单位1”,则老大采的蘑菇占总数的13,老二采的蘑菇占总数的14;240×13=80(个)240×14=60(个)240-60-80=100(个)答:三个小白兔各采了80个、60个、100个蘑菇。
小结:再如果遇见类似应用题,题中各个分率的单位“1”不相同时,我们可以通过转化的方法,把已知分率的单位“1”转化成相同的,从而找出已知数量所对应的分率。
三、第三天早上,白兔妈妈分一些蘑菇给三个孩子。
老大分了1/3,老二分了剩下的1/3,老三分了老二剩下的1/4,最后还有6个蘑菇。
同学们,你们知道三只小白兔一共分了多少个蘑菇吗?说说这里的3个分率分别是把哪个数量当作单位“1”的?那应该怎么办呢?解析:(分步出示,红色点击下一步后出示)答案:解:由题意可知:将每个小白兔拿剩下的蘑菇的总量看作是单位1,则老二分剩下的蘑菇个数:6÷(1-14)=8(个)老大分剩下蘑菇的个数:8÷(1-13)=12(个)蘑菇总个数12÷(1-13)=18(个)所以三只小兔一共分的蘑菇数为:18-6=12(个)答:三只小兔一共分了12个蘑菇。
6六年级奥数-第六讲.分数百分数应用题.教师版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(6六年级奥数-第六讲.分数百分数应用题.教师版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为6六年级奥数-第六讲.分数百分数应用题.教师版的全部内容。
一、解答题(共25小题,满分0分)1.(2011•成都)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是多少元?2.(2006•泉山区校级自主招生)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,这100千克的蘑菇现在还有千克.3.有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是多少升?4.(2012•哈尔滨校级自主招生)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重.如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍.这两堆煤共重多少吨?5.一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子、白棋子各有多少枚?6.某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生?7.(2010•北京校级自主招生)把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少?8.学校男生人数占45%,会游泳的学生占54%.男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几?9.某校四年级原有2个班,现在要重新编为3个班,将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多10%,那么原一班有多少人?10。
分数、百分数应用题(一)知识框架一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a是b的几分之几,就把数b看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1 199÷=.二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
单位1的应用题及答案【篇一:求单位一的应用题】1. 小明花17元买了一本书,比原来便宜15%。
这本书原来多少元? 22. 小明有50元,用去了5,一共用去了多少元?13. 一个饲养场,养鸭180只,养鸡的只数比鸭少6鸡多少只?,这个饲养场养4. 小明看一本书,已经看好60%,比剩下的多80页。
这本书有多少页?15. 某车间缝制成衣2400件,比原计划超产6,原计划缝制成衣多少件?46. 时代超市新进一批白糖,第一天卖出总数的5克,这批白糖一共有多少千克?、,结果还剩440千求百分率应用题:1. 在一次测验中,小明做对的题数是11道,错了4道,小明在这次测验中正确率是百分之几?2. 把8克糖放入92克水中,糖水的浓度是百分之几?3. 行同一段路,甲要10分钟,乙要15分钟,甲的速度比乙的速度慢百分之几?4. 某厂的一种产品,原来每件成本96元,技术革新后,每件成本降低到了84元,每件成本降低了百分之几?5. 一件商品原价40元,打折之后现价32元,打几折?6. 赵师傅6天生产了400个零件,其中有4个不合格,求这批零件的合格率。
7. 一个乡去年原计划造林12公顷,实际造林14公顷。
实际造林比原计划多百分之几?8. 有一堆煤,第一次用去总数的50 % ,第二次用去总数的30%,第一次比第二次多用了总数的百分之几?求具体量的应用题:21. 果园里有梨树1200棵,苹果的数量占梨树的5你能算出她下午打了多少个字吗?,苹果树有几棵?2. 王丽打一份资料,她上午打了2300个字,下午比上午少打了10%。
3. 一条公路修了30%,还剩70千米没修,修了多少千米?4. 六2班有男生30人,女生是男生的80%,六2班女生有多少人?5. 绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带1后,降低了8,降低了多少分贝?6. 小红上午练了100个字,下午练了140个字,今天练字的个数相 2当于昨天的3,小红昨天练了多少个字?【篇二:小学分数应用题中的单位1问题的专项练习(1)】p> 声明:此文档源文件来源于网络,版权归原作者所有,上传仅供学习交流参考,如作为其他用途,请与作者联系,与上传者无关,特此声明。