第四章基本定理-41存在唯一性定理
- 格式:pptx
- 大小:457.66 KB
- 文档页数:29
存在唯一性定理证明要证明存在唯一性定理,首先需要定义什么是“唯一性”。
在数学中,存在唯一性通常指的是在一些条件下,存在一个且仅存在一个对象满足这个条件。
我们来详细证明关于唯一性定理的一个例子。
假设我们要证明以下定理:对于任意一个正整数n,存在唯一的一个整数m,使得m和n互为相反数。
首先我们来证明存在性:对于任意一个正整数n,我们可以找到一个整数m,使得m和n互为相反数。
事实上,取m=-n,就可以满足这个条件。
因为两个数互为相反数意味着它们的和为零,所以m+n=-n+n=0,符合条件。
接下来我们来证明唯一性:假设存在两个不同的整数m1和m2,都满足和n互为相反数。
那么根据定义,有m1+n=0和m2+n=0。
将两个等式相减可得:m1-m2=0。
由此可知,m1和m2是相等的,也就是说不存在两个不同的整数满足这个条件。
因此,我们证明了对于任意一个正整数n,都存在唯一的一个整数m,使得m和n互为相反数。
在这个例子中,我们证明了存在唯一性定理的一个特例。
在实际数学证明中,存在唯一性定理有可能涉及到更加复杂的情况和更多的对象,但其证明思路和方法基本相似。
总结起来,证明存在唯一性定理的一般步骤如下:1.首先需要明确定义什么是“唯一性”。
2.先证明存在性,即找到至少一个对象满足条件。
3.再证明唯一性,即如果存在两个对象满足条件,则它们必须相等。
4.结合具体问题,使用数学思维和逻辑推理,进行严密的证明。
5.最后在证明过程中使用恰当的数学工具和方法,如数学公式、等式运算等,以增强可读性和严密性。
需要注意的是,证明存在唯一性定理是一个具有挑战性的过程,需要对问题有深入的认识和理解,并善于运用数学知识和技巧来完成证明过程。
同时,在证明中也要时刻保持逻辑的连贯性和严谨性,以确保证明的正确性。
向量基本定理证明一、向量基本定理内容1. 平面向量基本定理- 如果e_1,e_2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ_1,λ_2,使a = λ_1e_1+λ_2e_2。
其中{e_1,e_2}叫做表示这一平面内所有向量的一个基底。
2. 空间向量基本定理- 如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p = xa+yb + zc。
{a,b,c}叫做空间的一个基底。
二、平面向量基本定理的证明1. 存在性证明- 设e_1,e_2是同一平面内的两个不共线向量,a是这一平面内的任一向量。
- 过向量a的起点O作平行于e_1,e_2的直线,与e_1,e_2所在的直线分别交于A,B两点。
- 因为e_1≠0,设→OA=λ_1e_1,同理设→OB=λ_2e_2。
- 根据向量加法的平行四边形法则,a=→OA+→OB=λ_1e_1+λ_2e_2。
2. 唯一性证明- 假设a=λ_1e_1+λ_2e_2=μ_1e_1+μ_2e_2,其中λ_1,λ_2,μ_1,μ_2∈ R。
- 则(λ_1 - μ_1)e_1+(λ_2-μ_2)e_2 = 0。
- 因为e_1,e_2不共线,所以λ_1-μ_1 = 0且λ_2-μ_2 = 0,即λ_1=μ_1,λ_2=μ_2。
三、空间向量基本定理的证明1. 存在性证明- 设a,b,c是不共面的三个向量,p是空间任一向量。
- 把向量a,b,c,p的起点都移到同一点O。
- 过点P作直线PP_1平行于c,且与平面OAB交于点P_1。
- 在平面OAB内,过点P_1作直线P_1P_2平行于b,交OA于点P_2。
- 过点P_2作直线P_2P_3平行于a,交OB于点P_3。
- 设→OP_3=x a,→P_3P_2=y b,→P_2P_1=z c。
- 由向量加法的三角形法则可得p=→OP=→OP_3+→P_3P_2+→P_2P_1=xa + yb+zc。
唯一性定理唯一性定理是数学中的重要定理之一,它指出了在某些条件下,特定类型的方程或问题只有唯一解。
唯一性定理最经典的形式是微分方程的唯一性定理,它在微积分和微分方程的研究中占据重要的地位。
微分方程是描述自然现象和物理规律的重要工具,通过对微分方程的求解,可以得到问题的解析解,从而更好地理解和预测现象。
然而,并不是所有的微分方程都能够得到解析解,有些方程可能只能通过数值方法进行求解。
因此,唯一性定理提供了一种重要的判据,用于确定方程是否有唯一解。
在微分方程的唯一性定理中,通常需要满足连续性和局部利普希茨条件。
连续性要求方程中的函数在某个区域内是连续的,这是非常基本的要求,因为连续性是数学分析中的重要概念。
局部利普希茨条件则要求方程中的函数在一定范围内具有有界的导数,这个条件保证了方程的解在某个区间内是唯一的。
微分方程的唯一性定理可以通过三个步骤来证明。
首先,需要利用泰勒级数展开将微分方程转化为一个无穷级数。
其次,需要证明无穷级数的解存在且唯一。
最后,通过局部利普希茨条件和连续性条件,得到解的存在范围。
除了微分方程的唯一性定理,数学中还有一些其他类型问题的唯一性定理。
例如,线性代数中的矩阵方程的唯一性定理,数论中的素因数分解的唯一性定理等等。
这些定理都有一个共同点,即在满足一定条件下,问题的解是唯一的。
唯一性定理在数学研究和应用中有着广泛的应用。
通过这些定理,我们可以确定问题是否存在唯一解,从而帮助我们深入研究和理解问题。
唯一性定理也经常被用于证明其他定理,深化了我们对数学的认识和理解。
总之,唯一性定理是数学中的一类重要定理,它指出了在满足特定条件下,方程或问题具有唯一解的情况。
微分方程的唯一性定理是其中最经典和重要的定理之一,它在微积分和微分方程的研究中扮演着重要的角色。
唯一性定理的应用广泛,帮助我们理解和解决各种数学问题,并进一步推动数学的发展。
唯一性定理除了在微分方程中应用广泛,还在其他数学领域中有重要的应用。
Banach空间中常微分方程解的存在唯一性定理總婷婷(XX帅X学院数学与鋭计学院,XX,XX,741000)描要:在Banach空同中,常械分方程解的存在唯一性定理中力=},初值冋題的解y(f)的变量『在t o-h<t<t o+ht变化,把f的变化X围扩大为心%「5+%, 为此给出f变化X围后的Banach 空间中常做分方程解的存在唯一性定理,并对定理给予明确的证明.关维词:存在唯一;常撤分方程;数学IJ3细袪;皮卡逐步II近法\ Banach空间引言常撤分方程解的存在唯一性定理明确地肯定了在一定条件下方程的解的存在性和唯一性,它是常ta分方程理论中最基本且实用的定理,有其重大的理论怠义,另一方面,它也是近做求解法的前提和理论基硝.对于人们裁知的Banach空同中常撤分方程解的存在唯一性定理,解的存在区同较小,只限制在一个小的球形邻裁内,(球形邻域的半径若为5, U需满足Ld<\,且辭只在以儿为中心以5为半径的冈球B t5(y0) = (yeX|||y-y0||<J)存在唯一,其中X是Banach空间)因此在应用过程中受到了一定的眼制.如今我们尝试扩大了解的存在XIJ.U而使此重要的定理今后有更加广泛的应用.1预备定理我们给岀Banach空同中常做分方程解的存在唯一性定理如下设X是Banach空同,UuX是一f开集.f :U i X上关干 >,满足利普希茨(Lipschitz)条件,即存在常数厶>0,使得不等式]/(/, ”)- /(/, y2)|| <厶卜】一儿||,对于所有y^y2eu部成立.® y.eU ,在u内,以儿为中心作一个半径为“的冈球3心())=© eX|||y-儿||詡’对所有的y e B b(y0)都成立,且有,取h = min{%,%^},则存在唯一的C、曲线y(t),使得在r0-h<t< t0+h上满足y w B h(y0), 并有y' = /(/,y),y(G)=)b・2结果与证明笔者通il改进对力的限歟即仅取〃 = %/,硕备定理仍然成立,从而使定理的应用进一步广泛.2.1改进条件后的定理定理假设条件同上预备定理,设初值为仇,儿),则存在唯一的C、曲线y(『),对任恿的G 一%/ ° "u + %r满足y €场(儿),且使得V = /(/, y) , Wo)=儿.显然可有% —〃,心 + 幻 U〔5 - ,心 + % ],目"min{%,%} •2.2定理舸证明证明证明过程中我们利用皮卡(Picard)逐步逼近法•为了简单起见,只就区同对干区间t.<t<t.+y M的讨论完全一样.2.2.1定理证明的思想现在先简单叙述一下运用皮卡逐步逼近法证明的壬要思想.首先证明条件 H), xu=y0等价于求枳分方程y(Q = %+j\/a,y)〃•⑴再证明积分方程的解的存在唯一性.任取一个儿⑴为连续函数,将它代人方程⑴的右常,可得到函数卩⑴=y(> +J;./■(/,%)〃/,显然,儿⑴也为连续函数•若x⑴=y o(0,1可知y()⑴就是方程⑴的解•若不然,我ill a把川)代人枳分方程⑴的右竭m,y),可得到函数儿⑴=儿+J;“/(/')〉)/•若y2(0 = >'i(0 JO可知莎⑴就是方程(1)的解•若不然,我们如此下去,可作连续函红儿(/) = + j* :>/(/,y”-i M ・(2)这算就得到连续函数列儿(0,”(/),儿⑴,…,儿⑴,…若畑⑴=儿⑴,那么儿⑴就是枳分方程的解,如果始终不发生眩种悄猊,我们可以证明上面的函数序列有一个极眼函数y(t), fill liin y…(t) = y(f)存在,因而对(2)式两jfi取枚限时,就得到巴y n(0 = y0 + lim J :/(f,y…_,)dt = y0+J ;o lim/(r,儿“)/ =儿 + J ;o/(r,y)dt, 即y(0 = y0 + J;/(心)力謔就是说M)是枳分方程的解•在定理的假设条件下,以上的步骤是可以实现的.2.2.2定理iil明的步骤下面我门分五个命题来证明定理.金題1设y = y(r)是y'5,y)的定义于区同心%““上,满足初值条件〉仇)=儿(3)的解厲y = y(r)是枳分方程W)=儿+ 定义于心一夕缶上的连续解,反之亦衆证明因为y = y(0是方程y' = /(/, y)的解,故有竽5,刃.at对上式两fflU/o到「取定枳分得到W) - W())= J ;> /(/,y W ‘ 5 - % o()‘把(3)式代入上式,即有y(f) = >o+J 财(人曲5-%;"")•⑷因此,y = XO是(4)的定义于上的连续解.反之,如果y = y(f)是⑷的连续解,)心)=儿+J: <t<t0.fit分之,得到弊局)•ata把心心代人⑷式,得到y(G =儿,S此,y = y(r)是方程 H)的定义于区间且満足初值条件(3)的解.金题1込毕.现在取y。
线性方程组的解存在唯一性定理线性方程组是数学中常见的问题之一,它与矩阵和向量的概念紧密相关。
对于给定的线性方程组,我们通常会关心解集的存在性和唯一性,这在很多实际问题中具有重要的意义。
本文将探讨线性方程组解的存在唯一性定理,并解释其背后的原理和证明思路。
一、线性方程组的定义和基本性质首先,我们来回顾线性方程组的基本定义。
给定一个包含n个未知数$x_1, x_2, ..., x_n$的线性方程组,可以表示为以下形式:$$\begin{cases}a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \\... \\a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m \\\end{cases}$$其中,$a_{ij}$表示系数矩阵的元素,$b_i$表示常数向量的元素。
线性方程组的解可以表示为一个n维向量$(x_1, x_2, ..., x_n)$,使得方程组的每个等式都成立。
解集可以是一个空集(即无解)、一个具有无穷多个解的集合,或者只包含一个解。
接下来,我们将研究线性方程组解存在唯一性的情况。
二、线性方程组解存在唯一性定理的表述线性方程组的解存在唯一性定理可以总结为以下表述:对于一个齐次线性方程组,如果系数矩阵的秩等于未知数的个数,即$r(A) = n$,那么方程组的解集只包含零向量;如果系数矩阵的秩小于未知数的个数,即$r(A) < n$,那么方程组的解集包含无穷多个解。
对于一个非齐次线性方程组,如果系数矩阵的秩等于增广矩阵的秩,即$r(A) = r([A|b])$,那么方程组的解集只包含一个解;如果系数矩阵的秩小于增广矩阵的秩,即$r(A) < r([A|b])$,那么方程组的解集包含无穷多个解。
注意,这里的秩指的是矩阵的行秩或列秩,即行向量组或列向量组的最大线性无关组的元素个数。
插值多项式存在唯一性定理 在次数不超过n 的多项式集合n H 中,满足条件j j n y x L =)( (j =0,1…,n ).的插值多项式)(x L n ∈n H 是存唯一的.证明 公式)()()()(1'10k n k n n k k n x x x x y x L -+=-=∑ωω已经证明了插值多项式的存在性,下面用反证法证明唯一性.假定还有=)(x P n H 使得)(i x P =)(i x f ,i =0,1…,n 成了.于是有0)()(=-i i n x P x L 对0=i ,1,…,n 成立,它表明多项式n n H x P x L ∈-)()(有1+n 个零点,,10x x …n x ,这与n 个零点的代数基本定理矛盾,故只能)()(x L x P n ≡.证毕.龙格现象一般来说,节点个数越多,插值函数和被插值函数就有越多的地方相等.但是随着插值节点个数的增加,两个插值节点之间插值函数并不一定能够很好地逼近被插值函数.再次,从舍入误差看,高次插值由于计算量大,可能会产生更严重的误差积累,所以,稳定性得不到保证.这就是Runge 现象.解决Runge 现象的方法是采用分段低次多项式插值:有分段线性插值和分段三次Hermite 插值.在每个小区间采用低次插值,则可避免Runge 现象.龙格函数MATLAB 程序 for i=3:2:11x=linspace(-1,1,i);y=1./(1+25*x.^2);p=polyfit(x,y,i-1);xx=-1:0.01:1;yy=polyval(p,xx);plot(xx,yy,'b');hold on;grid on;end;plot(x,1./(1+25*x.^2),'r');-1-0.8-0.6-0.4-0.200.20.40.60.81插值方法比较Lagrange插值使用基函数法进行构造,其插值函数在插值区间的解析表达式关于节点对称、光滑性好,但插值函数没有继承性,增加节点将使前期计算作废,导致运算量增加。