北京理工大学数值分析总复习2019.ppt
- 格式:ppt
- 大小:3.41 MB
- 文档页数:68
课程编号: 北京理工大学2007-2008学年第二学期2006级计算机系《数值分析》期末试卷A 卷班级 学号 姓名 成绩注意:① 答题方式为闭卷。
② 可以使用计算器。
请将填空题直接填在试卷上,大题答在答题纸上。
一、 填空题(每空2分,共40分)1. 若x = 0.03600是按四舍五入原则得到的近似数,则它有______位有效数字,绝对误差限和相对误差限分别为 、 。
2. 要使162277660.310=的近似值的相对误差小于0.01%,至少要取 位有效数字。
3. 设f (x )=a n x n +1 (a n ≠0),则f [x 0, x 1,…, x n ]=_________。
4. 设函数f (x )区间[a,b]内有二阶连续导数,且f (a )f (b )<0, 当 时,则用双点弦截法产生的解序列收敛到方程f (x )=0的根。
5. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯求积公式的代数精度为 。
6. 求0123=--x x 在[1.3, 1.6]内的根时,迭代法3211n n x x +=+和2111nn x x +=+_____(填:前者或后者)收敛较快。
7. 设有矩阵⎥⎦⎤⎢⎣⎡-=6433A ,则‖A ‖∞=______,‖A ‖2=_______。
8. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列{}()k X 收敛的充分必要条件是 。
9. 在牛顿-柯特斯求积公式中,当牛顿-柯特斯系数有负值时,公式稳定性不能得到保证,所以实际应用中只使用n ≤______的牛顿-柯特斯公式。
10. 用松弛法 (03.1=ω)解方程组⎪⎩⎪⎨⎧-=+-=-+-=-3444143232121x x x x x x x 的迭代公式是。
11. 用复化辛卜生公式求积分⎰+=101x dx I 的近似值时,至少需 个节点处的函数值,才能保证所求积分近似值的误差不超过10-5。
数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。
它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。
在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。
本文将对数值分析期末知识点进行总结,以便帮助大家复习。
二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。
插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。
常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。
2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。
微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。
数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。
3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。
原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。
数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。
4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。
在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。
数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。
三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。
这些误差可能来自于测量、舍入、截断等各种原因。
因此,误差分析是数值分析中一个非常重要的内容。
数值分析上机作业第 1 章1.1计算积分,n=9。
(要求计算结果具有6位有效数字)程序:n=1:19;I=zeros(1,19);I(19)=1/2*((exp(-1)/20)+(1/20));I(18)=1/2*((exp(-1)/19)+(1/19));for i=2:10I(19-i)=1/(20-i)*(1-I(20-i));endformat longdisp(I(1:19))结果截图及分析:在MATLAB中运行以上代码,得到结果如下图所示:当计算到数列的第10项时,所得的结果即为n=9时的准确积分值。
取6位有效数字可得.1.2分别将区间[-10.10]分为100,200,400等份,利用mesh或surf命令画出二元函数z=的三维图形。
程序:>> x = -10:0.1:10;y = -10:0.1:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长0.1')>> x = -10:0.2:10;y = -10:0.2:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长 0.2')>>x = -10:0.05:10;y = -10:0.05:10;[X,Y] = meshgrid(x,y);Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1);subplot(2,2,1);mesh(X,Y,Z);title('步长0.05')结果截图及分析:由图可知,步长越小时,绘得的图形越精确。
第一章引论1、数值分析研究对象:数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。
2、数值分析特点:①面向计算机,要根据计算机特点设计切实可行的有效算法②有可靠的理论分析,能任意逼近并达到精度要求,对近似计算要保证收敛性和数值稳定性③要有好的计算复杂性,时间复杂性好是指节省时间,空间复杂性好是指节省存贮量,这也是建立算法要研究的问题。
④要有数值试验,即任何一个算法除了从理论上要满足上述三点外,还要通过数值试验证明是行之有效的。
3、数值分析实质:是以数学问题为研究对象,不像纯数学那样只研究数学本身的理论,而是把理论与计算紧密结合,着重研究数学问题的数值方法及理论。
4、用计算机解决科学计算问题通常经历以下过程实际问题--数学模型(应用数学)--数值计算方法--程序设计--上机计算结果(计算数学)5、误差来源及分类1.模型误差——从实际问题中抽象出数学模型2.观测误差——通过测量得到模型中参数的值(通常根据测量工具的精度,可以知道这类误差的上限值。
)要用数值计算方法求它的近似解,由此产生的误差称为(截断误差)或(方法误差)原始数据的输入及浮点数运算过程中都有可能产生误差,这样产生的误差称为舍入误差6、五个关于误差的概念5.有效数字(1)定义:若近似值x*的绝对误差限是某一位的半个单位,该位到x*的第一位非零数字一共有n 位,则称近似值x*有n 位有效数字,或说x*精确到该位。
注意:近似值后面的零不能随便省去!2≤⨯1102≤⨯10.00000734102≤⨯(3)性质:(1)有效数字越多,则绝对误差越小 (2)有效数字越多,则相对误差越小有效数字的位数可刻画近似数的精确度! 6、一元函数的误差估计问题:设y =f (x ),x 的近似值为x *,则y 的近似值 y *的误差如何计算?(*)(*)(*)(*)e y dy f x dx f x e x ''≈=≈ (*)(*)(*)e y f x e x '≈ *(*)(*)(*)(*)r r x e y f x e x f x '≈故相应的误差限计算如下(*)(*)(*)y f x x εε'≈ *(*)(*)(*)(*)r r x y f x x f x εε'≈ 7、二元函数的误差估计问题:设y=f(x1, x2), x1, x2的近似值为x1*, x2* ,则y 的误差如何计算?**121212(*)*(,)(,)(*,*)e y y y f x x f x x df x x =-=-≈12121212(*,*)(*,*)(*)(*)f x x f x x e x e x x x ∂∂=+∂∂(*)(*)*(*)(*)(*)(*)(*)r r dy f x e x x e y f x e x y f x f x ''≈≈=1212121212121212(,)(,)(*,*)(*,*)(*)()()(*)(*)f x x f x x f x x f x x e y e x e x e x e x x x x x ∂∂∂∂=+≤⋅+⋅∂∂∂∂故绝对误差限为12121212(*,*)(*,*)(*)(*)(*)f x x f x x y x x x x εεε∂∂=+∂∂8、多元函数的误差估计121211121(*,*,,*)(*,*,,*)(*)*(*)(*)(*,*,,*)(*)n n n nnn i i i f x x x f x x x e y y y e x e x x x f x x x e x x =∂∂=-=++∂∂∂=∂∑9、加减乘除运算的误差估计(1)定义:初始数据的误差或计算中的舍入误差在计算过程中的传播,因算法不同而异。
数值分析总复习提纲数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。
在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。
一、误差分析与算法分析误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算截断误差根据泰勒余项进行计算。
基本的问题是(1)1()(01)(1)!n n f x x n θεθ++<<<+,已知ε求n 。
例1.1:计算e 的近似值,使其误差不超过10-6。
解:令f(x),而f (k)(x)(k)(0)0=1。
由麦克劳林公式,可知211(01)2!!(1)!n x xn x x e e x x n n θθ+=+++++<<+当1时,1111(01)2!!(1)!e e n n θθ=+++++<<+故3(1)(1)!(1)!n e R n n θ=<++。
当n =9时,(1)<10-6,符合要求。
此时, e≈2.718 285。
2、绝对误差、相对误差及误差限计算绝对误差、相对误差和误差限的计算直接利用公式即可。
基本的计算公式是:①e(x)=x *-x =△x=② *()()()ln r e x e x dxe x d x x x x==== ③(())()()()e f x f x dx f x e x ''==④(())(ln ())r e f x d f x = ⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ''''=+=+⑥121212((,))((,))(,)f x x f x x f x x εδ=⑦ x εδ=注意:求和差积商或函数的相对误差和相对误差限一般不是根据误差的关系而是直接从定义计算,即求出绝对误差或绝对误差限,求出近似值,直接套用定义式()()r e x e x x =或xεδ=,这样计算简单。
数值分析复习总结数值分析课本重点知识点第一章P4定义一P5定义二P6定理1P7例题3P10条件数(1)绝对误差(限)和相对误差(限)公式(2)有效数字(3)条件数及其公式第二章P26定理2(以及余项推导过程)P36两个典型的埃尔米特插值(1)拉格朗日插值多项式(包括其直线公式和抛物线公式)(2)插值余项推导及误差分析(估计)(3)两个典型的埃尔米特插值(4)三次样条插值的概念第三章P63例题3(1)最佳平方逼近公式的计算(2)T3(x)的表达式第四章P106复合梯形公式P107复合辛普森求积公式P108例题3(1)复合公式及其余项(2)判断一个代数的精确度第五章P162定义3向量的范数P165定理17P169定义8(1)左中右矩形公式(2)LU分解(3)谱半径和条件数(4)向量的范数第六章P192定理9第1条P192例题8第七章P215不动点和不动点迭代法P218定理3P228弦截法P229定理6第九章P280欧拉法与后退欧拉法P283改进欧拉公式数值分析课后点题答案第一章数值分析误差第二章插值法第三章函数逼近所以无解19。
观测物体的直线运动,得出以下数据:时间t(s) 0 0.9 1.9 3.0 3.9 5.0 距离s(m)10305080110求运动方程。
解:被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程 s a bt =+ 令{}1,span t Φ=22012201016,53.63,(,)14.7,(,)280,(,)1078,s s =====则法方程组为614.728014.753.631078a b = ??? ?从而解得7.85504822.25376a b =-??=? 故物体运动方程为22.253767.855048S t =-20。
已知实验数据如下:i x 19 25 31 38 44 j y19.032.349.073.397.8用最小二乘法求形如2s a bx =+的经验公式,并计算均方误差。