北京理工大学数值分析总复习2019.ppt
- 格式:ppt
- 大小:3.41 MB
- 文档页数:68
第一章、绪论1、了解数值分析的研究对象与特点。
2、了解误差的来源与分类,会求有效数字,会简单的误差估计。
3、了解误茅的定性分析及避免误茅危害。
第一早、插值重点题目:P19, 5, 7.1、 了解插值的概念。
2、 掌握拉格朗日(Lagrange)插值法及其余项公式。
3、 了解均差的概念及基本性质,掌握牛顿(Newton)插值法。
4、 了解茅分的概念,会牛顿前插公式、后插公式。
5、 会埃尔米特(Hermite)插值及其余项公式。
6、 知道高次插值的病态性质,会分段线性插值和分段埃尔米特插值及其误并和收敛性。
7、 了解三次样条插值,知道其误差和收敛性。
重点题目:P5& 2, 6, 16.第三章、函数逼近与曲线拟合1、 了解函数逼近的基木概念,了解范数和内积空间。
2、 了解正交多项式的概念,了解切比雪夫多项式和勒让德多项式以及它们的性质,知道其他常用止交多项式。
理解最佳一致逼近的概念和切比雪夫定理,掌握简单的最佳一致逼近多项式的求法。
理解最佳平方逼近的概念,掌握最佳平方逼近多项式的求法,了解用止交多项式做最佳平 方逼近的方法。
6、了解最佳平方逼近与快速傅里叶变换。
7、了解有理逼近。
重点题目:P115, 4, 13, 15, 17, 19.第四章、数值积分与数值微分1、 了解数值求积的基本思想、代数精度的概念、插值型求积公式及其代数精度、求积公式的 收敛性和稳定性。
2、 掌握低阶牛顿-柯特斯(Newton-Cotes)公式及其性质和余项。
3、 会复化梯形公式和复化辛普森公式及其余项。
4、 会龙贝格(Romberg)求积算法。
5、 了解高斯求积公式的理论,会高斯-勒让德求积公式和高斯-切比雪夫求积公式。
6、 了解儿种常用的数值微分方法。
重点题目:P15& 1, 4, 6.第五章、解线性方程组的直接方法1、 了解求解方程组的两类方法,了解矩阵基础知识。
2、 掌握高斯消去法,了解矩阵的三角分解。
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值分析总复习提纲数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。
在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。
一、误差分析与算法分析误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算截断误差根据泰勒余项进行计算。
基本的问题是(1)1()(01)(1)!n n f x x n θεθ++<<<+,已知ε求n 。
例1.1:计算e 的近似值,使其误差不超过10-6。
解:令f(x)=e x ,而f (k)(x)=e x ,f (k)(0)=e 0=1。
由麦克劳林公式,可知211(01)2!!(1)!n x xn x x e e x x n n θθ+=+++++<<+当x=1时,1111(01)2!!(1)!e e n n θθ=+++++<<+故3(1)(1)!(1)!n e R n n θ=<++。
当n =9时,R n (1)<10-6,符合要求。
此时,e≈2.718 285。
2、绝对误差、相对误差及误差限计算绝对误差、相对误差和误差限的计算直接利用公式即可。
基本的计算公式是:①e(x)=x *-x =△x =dx② *()()()ln r e x e x dxe x d x x x x==== ③(())()()()e f x f x dx f x e x ''== ④(())(ln ())r e f x d f x =⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ''''=+=+ ⑥121212((,))((,))(,)f x x f x x f x x εδ=⑦ xεδ=注意:求和差积商或函数的相对误差和相对误差限一般不是根据误差的关系而是直接从定义计算,即求出绝对误差或绝对误差限,求出近似值,直接套用定义式()()r e x e x x =或xεδ=, 这样计算简单。
数值分析期末复习要点总结数值分析是一门研究用数值方法来解决数学问题和科学工程问题的学科。
它包括数值计算、数值逼近、数值求解以及数值模拟等内容。
本文将从数值计算的基础知识、数值逼近方法、数值求解方法以及数值模拟方法等方面进行复习要点总结。
一、数值计算的基础知识1. 计算误差:绝对误差、相对误差、有效数字、舍入误差等等。
2. 机器精度:机器数、舍入误差、截断误差等等。
3. 数值稳定性:条件数、病态问题等等。
4. 误差分析:前向误差分析、后向误差分析等等。
二、数值逼近方法1. 插值方法:拉格朗日插值、Newton插值、Hermite插值等等。
2. 曲线拟合:最小二乘法、Chebyshev逼近等等。
3. 数值微分:前向差分、后向差分、中心差分等等。
4. 数值积分:梯形法则、Simpson法则等等。
三、数值求解方法1. 非线性方程求解:二分法、牛顿迭代法、弦截法等等。
2. 线性方程组求解:直接法(Gauss消元法、LU分解法)和迭代法(Jacobi法、Gauss-Seidel法)。
3. 特征值和特征向量:幂法、反幂法、QR分解法等等。
4. 非线性最优化问题:牛顿法、拟牛顿法、梯度下降法等等。
四、数值模拟方法1. 常微分方程数值解法:Euler法、改进Euler法、Runge-Kutta法等等。
2. 偏微分方程数值解法:差分法、有限元法、有限差分法等等。
3. 数值优化方法:线性规划、非线性规划、整数规划等等。
五、数值计算软件1. MATLAB基础:向量、矩阵、符号计算等等。
2. MATLAB数值计算工具箱:插值与拟合工具箱、符号计算工具箱等等。
3. 其他数值计算软件:Python、R、Octave等等。
总结数值分析是一门重要的数学学科,它为解决实际问题提供了有效的数值方法。
在数值计算的基础知识中,我们需要了解计算误差、机器精度和数值稳定性等概念,同时也需要掌握误差分析的方法。
数值逼近方法包括插值、曲线拟合、数值微分和数值积分等内容,其中插值和拟合是常见的逼近方法。
数值分析复习总结数值分析课本重点知识点第一章P4定义一P5定义二P6定理1P7例题3P10条件数(1)绝对误差(限)和相对误差(限)公式(2)有效数字(3)条件数及其公式第二章P26定理2(以及余项推导过程)P36两个典型的埃尔米特插值(1)拉格朗日插值多项式(包括其直线公式和抛物线公式)(2)插值余项推导及误差分析(估计)(3)两个典型的埃尔米特插值(4)三次样条插值的概念第三章P63例题3(1)最佳平方逼近公式的计算(2)T3(x)的表达式第四章P106复合梯形公式P107复合辛普森求积公式P108例题3(1)复合公式及其余项(2)判断一个代数的精确度第五章P162定义3向量的范数P165定理17P169定义8(1)左中右矩形公式(2)LU分解(3)谱半径和条件数(4)向量的范数第六章P192定理9第1条P192例题8第七章P215不动点和不动点迭代法P218定理3P228弦截法P229定理6第九章P280欧拉法与后退欧拉法P283改进欧拉公式数值分析课后点题答案第一章数值分析误差第二章插值法第三章函数逼近所以无解19。
观测物体的直线运动,得出以下数据:时间t(s) 0 0.9 1.9 3.0 3.9 5.0 距离s(m)10305080110求运动方程。
解:被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程 s a bt =+ 令{}1,span t Φ=22012201016,53.63,(,)14.7,(,)280,(,)1078,s s =====则法方程组为614.728014.753.631078a b = ??? ?从而解得7.85504822.25376a b =-??=? 故物体运动方程为22.253767.855048S t =-20。
已知实验数据如下:i x 19 25 31 38 44 j y19.032.349.073.397.8用最小二乘法求形如2s a bx =+的经验公式,并计算均方误差。