氧化还原反应和电化学
- 格式:doc
- 大小:199.00 KB
- 文档页数:15
氧化还原反应与电化学氧化还原反应是化学中一种重要的反应类型,其在自然界和工业生产中都有广泛的应用。
而电化学则是研究氧化还原反应中电荷转移过程的学科。
本文将探讨氧化还原反应与电化学之间的关系及其在实际应用中的作用。
一、氧化还原反应的基本概念氧化还原反应是指化学反应中电子的转移过程。
其中,氧化是指物质失去电子,而还原则是指物质获得电子。
这一过程常常伴随着氧化态和还原态之间的转化。
例如,金属的氧化是指其失去电子变成正离子,而非金属的还原则是指其获得电子变成负离子。
在氧化还原反应中,通常存在氧化剂和还原剂的概念。
氧化剂是指可以氧化其他物质的物质,它自身则被还原。
相反,还原剂是指可以将其他物质还原的物质,它自身则被氧化。
氧化剂和还原剂之间的作用是通过电子的转移来实现的。
二、电化学的基本原理电化学是研究在化学反应中电荷转移的学科。
它主要研究的是氧化还原反应的电流与电势之间的关系。
电化学研究中的核心是电解池的构成,即由氧化剂和还原剂构成的两个半电池,通过电介质连接形成闭合电路。
在电解池中,氧化剂半反应发生在阳极,还原剂半反应发生在阴极。
当外部电源施加电压时,电流通过电解池,促使氧化剂从阳极转移到阴极,还原剂则反之。
这样的电流转移过程,实质上是电子从氧化剂转移到还原剂的过程。
电化学反应的程度可以通过电势差来衡量。
电势差越大,说明反应越易进行,反之则反应难以发生。
而通过测量电势差的变化,可以得到不同反应之间的能量变化情况,从而研究氧化还原反应的热力学性质。
三、氧化还原反应与电化学的应用1. 电池电池是利用氧化还原反应产生电能的装置。
一般电池由正极、负极和电解质组成。
电池的运行过程就是氧化还原反应不断进行的过程。
正极的氧化反应释放电子,而负极的还原反应则接受电子。
通过外部连接电路,电能可以被释放出来,实现电池的工作。
2. 金属腐蚀与防护金属腐蚀是一种广泛存在于自然界中的氧化还原反应。
在金属表面形成腐蚀产物的过程中,金属自身发生氧化反应,形成氧化物。
氧化还原反应和电化学氧化还原反应和电化学是化学领域中重要的研究方向,它们在生产、能源、环境保护等各个领域都具有重要的应用价值。
本文将从氧化还原反应的基础知识入手,介绍氧化还原反应的定义、特征以及电化学的相关概念和应用。
一、氧化还原反应的基本概念和特征1.1 氧化还原反应的定义氧化还原反应是指化学反应中,电子从一种物质转移到另一种物质的过程。
在氧化还原反应中,发生氧化的物质失去电子,而发生还原的物质则获得电子。
整个过程涉及到电子的转移和能量的释放。
1.2 氧化还原反应的特征氧化还原反应的特征可以总结为以下几个方面:1)电子的转移:氧化还原反应中,电子从一个物质转移到另一个物质,导致物质的氧化或还原。
2)氧化和还原:氧化是指物质失去电子,还原是指物质获得电子。
3)氧化剂和还原剂:氧化剂是指能接受电子的物质,还原剂是指能提供电子的物质。
4)氧化态和还原态:在氧化还原反应中,物质的氧化态和还原态发生变化。
二、电化学的基本概念和应用2.1 电化学的基本概念电化学是研究电能与化学能之间相互转化的学科。
它涉及到电解、电池等重要概念。
2.2 电化学的应用电化学在许多领域都有广泛的应用。
以下是电化学的几个应用方面:1)电解:通过电解,可以将化合物分解为原子或离子,使得某些实验或工业过程得以实现。
2)电池:电化学电池是将化学能转化为电能的装置,广泛应用于电子产品、交通工具等领域。
3)腐蚀和防腐:电化学腐蚀是指金属在电解质中发生的一种化学腐蚀过程,而电化学防腐则是通过电化学方法来保护金属材料。
4)电解池:电解池是用于电解过程的装置,广泛应用于化学实验、电镀、电解精炼等领域。
三、氧化还原反应与电化学的关系氧化还原反应和电化学有着密切的关系。
氧化还原反应中的电子转移过程是电化学研究的基础。
通过电化学的方法,我们可以控制和利用氧化还原反应,实现能量的转化和化学反应的控制。
例如,电化学电池就是通过氧化还原反应来产生电能的装置。
氧化还原反应和电化学反应氧化还原反应是化学反应中最为重要和常见的反应之一。
它涉及到物质中的电子转移过程。
在氧化还原反应中,物质可以同时发生氧化和还原。
与之相伴随的是电化学反应,电化学反应是指在化学反应中涉及电子的转移和电流的流动的反应。
一、氧化还原反应氧化还原反应中,氧化和还原是同时进行的。
氧化是指物质失去电子;还原则是指物质获得电子。
这一过程中,电子从一个物质转移到另一个物质。
氧化和还原总是同时发生,因为电子不能独立存在。
例如,当铁和氧气发生反应时,铁原子(Fe)失去两个电子,被氧(O2)接受,生成氧化铁(Fe2O3)。
这里,铁原子发生了氧化,而氧气发生了还原。
氧化还原反应在日常生活中非常常见。
例如,金属的生锈、水的电解、电池的工作原理等都是氧化还原反应的例子。
二、电化学反应电化学反应是指在化学反应中涉及电子的转移和电流的流动的反应。
它是由氧化还原反应导致的。
电化学反应可以分为两种类型:电解反应和电池反应。
1. 电解反应电解反应是指在电解池中,通过外加电压使化学反应发生。
在电解过程中,正极(阳极)接受电子,发生氧化反应;负极(阴极)释放电子,发生还原反应。
电解反应在工业生产和实验室中广泛应用。
例如,电解盐水时,氯离子(Cl-)在阳极上接受电子,发生氧化反应生成氯气(Cl2),而阳离子(Na+)在阴极上释放电子,发生还原反应生成氢气(H2)。
2. 电池反应电池反应是指在电化学电池内,将化学能转化为电能的反应。
电池由两个半电池组成,每个半电池都有一个氧化反应和一个还原反应。
半电池之间通过电子流进行电荷平衡。
常见的电池包括干电池、蓄电池和燃料电池等。
干电池是通过将氧化剂和还原剂隔离,以阻止反应直接进行,并通过电子在电路中流动来提供电能。
蓄电池是通过可逆的氧化还原反应来存储和释放电能。
燃料电池是通过将燃料和氧气直接反应生成电能。
总结:氧化还原反应和电化学反应密切相关,涉及到电子转移和电流的流动。
氧化还原反应是物质中的电子转移过程,分为氧化和还原。
氧化还原反应与电化学氧化还原反应是一种在化学反应中非常重要的类型,它涉及物质的电荷转移和电子流动。
与氧化还原反应密切相关的是电化学,电化学则是研究电荷转移和电流在化学反应中的应用。
本文将探讨氧化还原反应与电化学之间的联系以及它们在现实生活中的应用。
一、氧化还原反应氧化还原反应(简称氧化反应和还原反应)是指物质中原子氧化态和还原态发生变化的过程。
在氧化反应中,物质失去电子并增加氧化态;而在还原反应中,物质获得电子并减少氧化态。
氧化还原反应是一种相互联系的电子流动过程,其中一个物质被氧化,同时另一个物质被还原。
氧化还原反应具有普遍性和广泛性。
它们在自然界和工业生产中都起着非常重要的作用。
例如,许多金属的氧化反应会导致它们产生锈蚀,损失金属的本来特性和价值。
此外,许多生化反应,如呼吸和新陈代谢中产生的能量,也是通过氧化还原反应进行的。
二、电化学基础电化学是研究电荷转移与电流在化学反应中的应用的科学学科。
它探究了氧化还原反应如何与电流和电势相关,并通过控制电流和电势来实现对化学反应的控制和调节。
电化学中的两个重要概念是电解和电池。
电解是一种利用外加电流引起氧化还原反应的过程。
在电解中,阳极发生氧化反应,阴极发生还原反应。
电池是一种将化学能转化为电能的装置,其中氧化还原反应是产生电流的基础。
三、氧化还原反应在电化学中的应用氧化还原反应在电化学中有许多实际应用。
以下是几个常见的例子:1. 腐蚀防护:通过将金属制品镀上一层不易被氧化的物质,例如使用电镀技术将锌镀在铁上,可以防止金属产生氧化反应,减缓腐蚀的速度。
2. 电解水制氢:电解水是一种将水分解为氢气和氧气的反应。
通过将电流通过含水溶液中的两个电极,可以将水分解为氢气和氧气,从而产生可用于能源和化学反应的氢气。
3. 电池技术:电池是一种将化学能转化为电能的设备。
它基于氧化还原反应,通过控制金属离子和氧化物之间的电子传递来产生电流。
电池在我们日常生活中被广泛使用,例如干电池、锂电池和燃料电池。
氧化还原反应与电化学反应氧化还原反应是化学反应中常见的一类反应类型,也是电化学反应的重要组成部分。
本文将从基本概念、氧化还原反应的特点和电化学反应的应用等方面进行探讨。
一、基本概念氧化还原反应是指在化学反应过程中,原子、离子或分子失去或获得电子的过程。
在氧化还原反应中,原子、离子或分子失去电子的过程称为氧化,而获得电子的过程称为还原。
在氧化还原反应中,氧化和还原总是同时发生,互为一对。
氧化剂是指接受电子的物质,它在反应中被还原;还原剂则是指捐赠电子的物质,它在反应中被氧化。
二、氧化还原反应的特点1. 电荷守恒:氧化还原反应中,电荷守恒定律得到充分保持,反应前后的总电荷不变。
2. 原子数量守恒:氧化还原反应中,反应前后的原子数量保持不变。
3. 氧化态的变化:氧化还原反应中,原子、离子或分子的氧化态发生改变。
三、电化学反应的应用电化学反应是指在电解质中,通过外加电势差促使氧化还原反应发生的化学过程。
电化学反应广泛应用于电池、电解和电镀等领域。
1. 电池:电池是一种将化学能转化为电能的装置。
它基于两种不同活性的物质之间的氧化还原反应,通过连续的电子传递产生电流。
常见的电池类型包括干电池、锂离子电池和铅酸蓄电池等。
2. 电解:电解是利用外加电势差使物质在电解质中发生氧化还原反应的过程。
电解被广泛用于金属电镀、电解制氢等工业和科学实验中。
3. 电镀:电镀是一种利用电解的方法在金属表面形成一层金属镀层的技术。
在电解槽中,将带有金属离子的溶液作为电解质,通过外加电势差使金属离子还原成金属,形成均匀的镀层。
四、总结氧化还原反应是化学反应中重要的一类反应类型,在许多化学和物理过程中起着重要作用。
电化学反应作为氧化还原反应的一种特殊应用,不仅广泛应用于电池、电解和电镀等领域,而且在能源存储和环境保护等方面也具有重要意义。
深入理解氧化还原反应与电化学反应的原理和特点,对于我们更好地理解和应用化学知识具有重要意义。
通过本文的介绍,希望读者们能够对氧化还原反应及其与电化学反应的关系有更深入的理解,并能够在实际应用中加以运用。
氧化还原反应与电化学氧化还原反应与电化学是化学领域中两个重要的概念。
氧化还原反应是指化学物质中电荷的转移过程,而电化学则是研究电荷转移与化学反应之间的关系。
本文将从氧化还原反应与电化学的基本概念、应用领域以及相关实验方法等方面进行论述。
1. 氧化还原反应的基本概念氧化还原反应是指化学物质中电子的转移过程,具体表现为电荷发生变化,从而形成氧化反应和还原反应两个互为逆反应的部分。
在氧化反应中,物质失去电子,电子从反应物转移到产物上,因此电荷数增多;而在还原反应中,则相反,物质获得电子,导致电荷数减少。
2. 电化学的基本概念电化学研究的是电荷转移与化学反应之间的关系。
其中包括两个核心概念,即电位和电流。
电位是指物质对电子的亲和力,反映物质参与氧化还原反应的能力。
而电流则是指电荷在电解质中流动的过程,它可以通过导体进行传递,导体的外部接入电源或外接电子接收体,使电流产生。
3. 氧化还原反应与电化学的应用领域氧化还原反应和电化学在许多领域具有广泛的应用。
例如,电池就是利用氧化还原反应产生电能的装置。
在电解池中,电流通过电解质溶液,使得阳极发生氧化反应,阴极发生还原反应,从而实现物质的电荷转移。
此外,电镀、蓄电池、腐蚀等都与氧化还原反应和电化学密切相关。
4. 与电化学相关的实验方法为了研究氧化还原反应和电化学,科学家们开发出许多实验方法。
例如,电化学分析方法是利用电位和电流对化学物质进行定量分析。
常见的电化学实验方法包括循环伏安法、阳极极化曲线法、电化学阻抗谱法等。
这些方法通过测量电位和电流的变化,可得到氧化还原反应 kin 及电极电荷转移过程的信息。
总结:氧化还原反应与电化学是化学领域中的重要概念。
通过分析氧化还原反应和电化学的基本概念,了解其应用领域,以及电化学实验方法等内容,我们可以更深入地理解电子转移过程和电荷传递的原理。
这对于研究和应用电化学都具有重要意义。
氧化还原反应与电化学在化学领域中,氧化还原反应是一种重要的反应类型,也是电化学研究的基础。
本文将探讨氧化还原反应与电化学之间的联系,阐述其在化学领域中的重要性。
一、氧化还原反应的基本概念和特点1.1 氧化还原反应的定义和原理氧化还原反应是指化学反应中发生的电荷转移过程,其中一个物种失去电子被氧化而另一个物种获得电子被还原的过程。
在这个过程中,原子、离子和分子之间的价电子数量会发生变化。
1.2 氧化还原反应的基本特征氧化还原反应具有以下基本特征:- 电子转移:在氧化还原反应中,电子从一个物种转移到另一个物种。
- 价电子数变化:反应中存在物质的氧化和还原两个过程,其中一个物质的氧化态数增加,而另一个物质的氧化态数减少。
- 氧化剂和还原剂:反应中起氧化作用的物质被称为氧化剂,而起还原作用的物质被称为还原剂。
二、氧化还原反应与电化学的关系2.1 电化学基础知识电化学研究了电荷转移与化学反应之间的关系。
在电化学中,我们通过测量电流和电位的变化来研究氧化还原反应。
这一领域的核心是电解和电池。
2.2 电解过程电解是指在外加电势的作用下,将电解质溶液或熔融电解质通过电解发生氧化还原反应的过程。
在电解过程中,正电荷离子迁移到负极,而负电荷离子则迁移到阳极。
2.3 电池反应电池是一种将化学能转化为电能的装置。
它基于氧化还原反应,通过将两个半反应分隔在不同的电极中,产生电流。
在电池中,氧化反应和还原反应相互对应,形成闭合的电路。
三、氧化还原反应与实际应用氧化还原反应在许多实际应用中发挥着重要作用。
以下是一些例子:3.1 腐蚀和防腐氧化还原反应是金属腐蚀的基本原理。
金属与氧气或水接触时,发生氧化反应,并失去电子。
这导致金属的腐蚀。
防腐是通过控制氧化还原反应来保护金属表面,延长其使用寿命。
3.2 电解水制氢电解水是一种常见的制氢方法。
在电解水过程中,水分子发生氧化还原反应,水分子中的氢原子被氧化,形成氧气;水分子中的氧原子被还原,形成氢气。
化学反应中的氧化还原反应和电化学反应在化学反应中,氧化还原反应和电化学反应是两种主要反应类型,它们广泛应用于生活和工业领域,如电池、腐蚀和金属加工等。
本文将对氧化还原反应和电化学反应进行探究,以更好地理解它们的重要性和应用。
一、氧化还原反应氧化还原反应(简称氧化反应)是指化学反应中,某个原子的电子数目发生了改变,是一种电子转移反应。
一些化学物质失去一个或多个电子,另一些化学物质得到这些电子。
反应中的电子接受者称为氧化剂,而电子捐赠者称为还原剂。
为方便记忆,在化学反应中,我们将“OILRIG”缩写为:氧化为电子接受器,还原为电子捐赠器。
例如,铁(Fe)和氧(O2)在高温下反应生成二氧化铁(Fe2O3),反应式如下:4Fe + 3O2 → 2Fe2O3在此反应中,铁原子失去了电子,而氧原子获得了电子,因此铁是还原剂,氧是氧化剂。
氧化还原反应有许多应用,如电池、腐蚀和生物反应等。
二、电化学反应电化学反应是指化学反应中,电子在化学物质之间传递,是一种电荷传递过程。
与氧化还原反应不同的是,电化学反应中,物质不一定氧化或还原。
电化学反应是在外加电压或电流的作用下进行的。
根据电化学反应的类型,我们可以将其分为两类:电解和电池反应。
1. 电解电解是指通过外加电压或电流来促使化学物质发生化学反应并产生电子。
电解通常在电解槽或电解池中进行。
在电解过程中,化学物质被分解为正负两极性离子,并在电极上沉积或释放。
电解通常用于生产金属、电镀和水解等。
2. 电池反应电池反应是指两种不同半反应在外加电压的作用下,通过电路连接,使电荷流动,产生电能。
在电池反应中,氧化还原反应起着至关重要的作用。
例如,一般的干电池由锌,碳杆和间隔物组成,是一种直接得到电能的化学电池。
在干电池内部,锌为还原剂,而电池中的二氧化锰为氧化剂,反应式如下:Zn + MnO2 + H2SO4 → ZnSO4 + MnSO4 + H2O在此反应中,锌被氧化,而二氧化锰被还原,因此锌是还原剂,二氧化锰是氧化剂。
氧化还原反应与电化学氧化还原反应和电化学是化学学科中两个重要的概念。
氧化还原反应是指化学物质之间电子的转移过程,是化学反应的一种基本类型。
而电化学研究的是电能与化学能之间的相互转化关系,通过电化学实验可以对化学反应进行研究和控制。
本文将详细介绍氧化还原反应和电化学的基本概念、原理与应用。
一、氧化还原反应氧化还原反应是电子转移过程的化学反应。
在氧化还原反应中,物质可以失去电子(被氧化)或者获得电子(被还原)。
氧化还原反应可以用电子的流动来描述,在反应过程中产生电流。
氧化还原反应的关键参数是氧化剂和还原剂。
氧化剂是指可以接受电子的物质,它在反应中发生还原。
还原剂是指可以给予电子的物质,它在反应中发生氧化。
氧化还原反应的基本表达式是:氧化剂 + 还原剂→ 还原剂 + 氧化剂氧化还原反应对于生命的存在和能量交换起着重要作用。
例如,细胞呼吸过程中发生的有机物的氧化就是一个氧化还原反应。
此外,氧化还原反应还广泛应用于电池、金属腐蚀以及化学合成等领域。
二、电化学的基本概念与原理电化学研究的是电能和化学能之间的相互转化关系。
它研究了电解过程、电池的工作原理、电化学平衡等内容。
电化学反应是指利用电流来引发的化学反应。
电解池是进行电化学反应的装置,它由阳极、阴极和电解质溶液组成。
在电解过程中,阳极发生氧化反应,阴极发生还原反应。
电化学反应的基本原理是法拉第定律和电极电势。
法拉第定律描述了通过电解质溶液的电流与产生的化学反应之间的关系。
电极电势是反应进行的动力学参数,它可以通过电位差和电子传递速率来描述。
电化学还包括电化学平衡和电化学动力学。
电化学平衡是指电解过程中正反应和逆反应达到动态平衡的状态。
电化学动力学研究的是电化学反应速率与外部电势、浓度和温度等因素之间的关系。
三、氧化还原反应与电化学的应用氧化还原反应和电化学在生活和工业中有广泛的应用价值。
其中最常见的应用是电池。
电池是将化学能转化为电能的装置,包括干电池、蓄电池和燃料电池等。
氧化还原反应与电化学氧化还原反应(简称氧化反应或还原反应)是化学反应的一种重要类型,也是电化学研究的基础。
电化学研究了物质在电场和电流的作用下的性质和变化规律,将电能与化学变化联系起来。
本文将着重介绍氧化还原反应与电化学之间的关系,探讨电流与氧化还原反应的本质联系,以及电化学在实际应用中的重要性。
1. 氧化还原反应的基本概念和原理氧化还原反应是指物质中的原子、离子或分子失去电子的过程为氧化反应,而得到电子的过程称为还原反应。
在氧化还原反应中,存在着氧化剂和还原剂两个参与物质,氧化剂接受电子,还原剂失去电子。
这一过程可以用化学方程式表示,例如:2Na + Cl2 → 2NaCl。
在这个反应中,钠(Na)失去了电子,发生了氧化反应;氯气(Cl2)接受了钠的电子,发生了还原反应。
2. 电流与氧化还原反应的联系氧化还原反应离不开电流的存在。
电流是指电荷在单位时间内通过导体横截面的量,其方向由正电荷流动的方向确定。
在氧化还原反应中,氧化剂接受电子,必须有电子从还原剂中流向氧化剂,才能维持反应的进行。
这个电子的流动过程形成了电流。
因此,可以说氧化还原反应是电流流动的结果,电流的存在促使了氧化还原反应的进行。
3. 电化学的研究内容电化学研究了物质在电场和电流的作用下的性质和变化规律。
其研究内容主要包括三个方面:电解学、电池学和电化学分析。
(1)电解学:电解学研究了物质在电解过程中的行为和特性。
电解是指将电能转化为化学能的过程,通过电解可以将化合物分解成对应的离子,或将离子还原为相应的化合物。
例如,通过电解水可以将水分解为氢气和氧气。
(2)电池学:电池学研究了电化学电池的工作原理和特性。
电化学电池是指利用氧化还原反应转化化学能为电能的装置。
电池由正极、负极和电解质组成,正极发生氧化反应,负极发生还原反应,通过电路和外部载荷与电解质之间的电子流动将化学能转化为电能。
(3)电化学分析:电化学分析是利用氧化还原反应进行分析的一种方法。
2006年化学竞赛讲义氧化还原反应和电化学(初赛版)化学竞赛大纲对氧化还原反应和电化学知识的要求:电化学:1、氧化态。
氧化还原的基本概念和反应的书写和配平。
2、原电池。
电极符号、电极反应、原电池符号、原电池反应。
3、标准电极电势。
用标准电极电势判断反应的方向及氧化剂与还原剂的强弱。
4、元素电势图及其应用5、电解池的电极符号与电极反应。
6、电解与电镀。
7、电化学腐蚀。
8、常见化学电源。
9、pH、络合剂、沉淀剂对氧化还原反应的影响的定性说明。
概述电化学反应可分为两类:(1)利用自发氧化还原反应产生电流(原电池),反应△G<0,体系对外做功。
(2)利用电能促使非自发氧化还原反应发生(电解),反应△G>0,环境对体系做功。
一、氧化还原反应的基本概念(一).氧化还原反应的实质1.氧化还原反应无机化学反应一般分为两大类,一类是在反应过程中,反应物之间没有电子的转移或得失,如酸碱反应、沉淀反应,它们只是离子或原子间的相互交换;另一类则是在反应过程中,反应物之间发生了电子的得失或转移,这类反应被称之为氧化还原反应。
氧化还原反应的实质是电子的得失和转移,元素氧化数的变化是电子得失的结果。
元素氧化数的改变也是定义氧化剂、还原剂和配平氧化还原反应方程式的依据。
2.氧化数1970年国际纯化学和应用化学学会(IUPAC)定义氧化数(oxidation number)的概念为:氧化数(又称氧化值)是某元素一个原子的荷电数,这种荷电数是将成键电子指定给电负性较大的原子而求得。
确定元素原子氧化数有下列原则:(1)单质的氧化数为零。
因为同一元素的电负性相同,在形成化学键时不发生电子的转移或偏离。
例如S8中的S,Cl2中的Cl,H2中的H,金属Cu、Al等,氧化数均为零。
(2)氢在化合物中的氧化数一般为I,但在活泼金属的氢化物中,氢的氧化数为-I,如NaH-I。
(3)氧在化合物中的氧化数一般为-Ⅱ,但在过氧化物中,氧的氧化数为-I,如H2O -I、BaO-I 2;在超氧化物中,氧的氧化数为-I/2,如KO-I/22;在氟的氧化物中,氧的氧2化数为Ⅱ,如OⅡF2。
(4)单原子离子元素的氧化数等于它所带的电荷数。
如碱金属的氧化数为I,碱土金属的氧化数为Ⅱ。
(5)在多原子的分子中所有元素的原子氧化数的代数和等于零;在多原子的离子中所有元素的原子氧化数的代数和等于离子所带的电荷数。
根据以上规则,我们既可以计算化合物分子中各种组成元素原子的氧化数,亦可以计算多原子离子中各组成元素原子的氧化数。
例如:MnO4- 中Mn的氧化数为:x + 4×(-Ⅱ)= -I x = ⅦCr2O72-中Cr的氧化数为:2x + 7×(-Ⅱ)= -Ⅱx = Ⅵ由于氧化数是在指定条件下的计算结果,所以氧化数不一定是整数。
如在连四硫酸根离子(S4O62-)中,S的氧化数为Ⅴ/2。
这是由于分子中同一元素的硫原子处于不同的氧化态,而按上法计算的是S元素氧化数的平均值,所以氧化数有非整数出现。
3.氧化剂与还原剂根据氧化数的概念,凡是物质氧化数发生变化的反应,称为氧化还原反应。
氧化数升高的过程称为氧化,氧化数降低的过程称为还原。
在反应过程中,氧化数升高的物质称为还原剂(reductant),氧化数降低的物质称为氧化剂(oxidant)。
氧化剂起氧化作用,它氧化还原剂,自身被还原;还原剂起还原作用,它还原氧化剂,自身被氧化。
在氧化还原反应中,若氧化数的升高和降低都发生在同一种化合物中,即氧化剂和还原剂为同一种物质,称自身氧化还原反应。
自身氧化还原反应又称为歧化反应(disproportionation reaction)。
4.氧化还原电对每个氧化还原反应方程式可以拆成两个半反应式,即失电子的氧化半反应式和得电子的还原半反应式。
例如氧化还原离子反应式:Ce4+ + Fe2+ =Ce3++ Fe3+氧化半反应式:Fe2+ -e =Fe3+还原半反应式:Ce4+ +e =Ce3+氧化型与还原型构成了如下两对氧化还原电对(redox couple):Ce4+/ Ce3+和Fe3+ /Fe2+。
因此,氧化还原反应是两个(或两个以上)氧化还原电对共同作用的结果。
半反应式可用通式表示:氧化型+ e =还原型氧化还原电对书写时,氧化型写在斜线左侧,还原型写在斜线右侧。
(二)、氧化还原方程式的配平氧化还原反应有两种常用配平方法:氧化数法和离子电子法。
本章重点掌握离子电子法。
离子电子法是根据在氧化还原反应中与氧化剂和还原剂有关的氧化还原电对,先分别配平两个半反应方程式,然后按得失电子数相等的原则将两个半反应方程式加和得到配平的反应方程式。
离子电于法配平方程式的基本步骤为:(1)写出反应过程中氧化值起变化的离子写成一个没有配平的离子方程式:MnO42-+SO32- →Mn2++SO42-(2)将上面未配平的离子方程式分写为两个半反应式,一个代表氧化剂的还原反应;另一个代表还原剂的氧化反应:MnO42-→Mn2+ SO32-→SO42-(3)分别配平两个半反应式。
配平时首先配平原子数,然后在半反应的左边或右边加上适当电子数来配平电荷数。
以使半反应式两侧各种原子的总数及净电荷数相等相等。
MnO42-还原为Mn2+时,要减少4个氧原子,在酸性介质中,要与8个H+离于结合生成4个H2O分子。
MnO42-+8 H+→Mn2+ +4H2O上式中左边的净电荷数为+7,右边的净电荷数为+2,所以需在左边加5个电子,使两边的电荷数相等:MnO42-+8 H++5e = Mn2+ +4H2OSO32-氧化为SO42- 时,增加的1个氧原子可由溶液中的H2O分子提供,同时生成2个H+离子:SO32- +H2O = SO42- +2H+上式中,左边的净电荷数为-2,右边的净电荷数为0,所以右边应加上2个电子:SO32- +H2O = SO42- +2H+ +2e(4)根据氧化剂和还原剂得失电子数必须相等的原则,在两个半反应式中乘上相应的系数(由得失电子的最小公倍数确定),然后两式相加得到配平的离子反应方程式。
2MnO42-+6H++ 5 SO32- = 2Mn2+ +5SO42- +3H2O 氧化值法和离于电子法各有优缺点。
氧化值法能较迅速地配平简单的氧化还原反应。
它的适用范围较广,不只限于水溶液中的反应,特别对高温反应及熔融态物质间的反应更为适用。
而离子电于法能反映出水溶液中反应的实质,特别对有介质参加的复杂反应配平比较方便。
但是,离子电子法仅适用于配平水溶液中的反应。
氧化还原反应配平应掌握以下基本要求(1)氧化剂和还原剂的氧化数变化必须相等。
(2)方程式两边的各种元素的原子数必须相等。
(3)配平方法的难点是未发生氧化数变化的原子数的配平,待别是氢和氧原子的配平。
一般情况下如反应物氧原子数多了,在酸性介质中的反应以加H+离子生成水的方式配平;若为碱性介质中的反应,应加H2O 使之与氧反应生成OH一离子。
二、电池电动势和电极电势(一).原电池1.原电池的组成利用氧化还原反应,将化学能转变为电能的装置叫做原电池(primary cell)。
电池的设计证明了氧化还原反应确实发生了电子的转移。
一个原电池包括两个半电池,每个半电池又称为一个电极。
其中放出电子的一极称为负极(negative electrode),是电子流出极,发生氧化反应;另一极是接受电子的一极称为正极(positive electrode),正极上发生还原反应。
电极上分别发生的氧化还原反应,称为电极反应(electrode reaction)。
一般说来,由两种金属电极构成的原电池,较活泼的金属做负极,另一金属做正极。
负极金属失去电子成为离子而进入溶液,所以它总是逐渐溶解。
原电池的两个电极的溶液通过盐桥沟通,盐桥有两方面的作用,一方面它可以消除因溶液直接接触而形成的液接电势,另一方面它可使联接的两溶液保持电中性,2.原电池的符号为表达方便通常将原电池的组成以规定的方式书写,称为电池符号表示式。
其书写原则规定:(1)把负极写在电池符号表示式的左边,以“(-)”表示;正极写在电池符号表示式的右边,并以“(+)”表示。
(2)以化学式表示电池中各物质的组成,溶液要标上浓度或活度(mol.L-1),若为气体物质应注明其分压(Pa)。
如不特殊指明,则温度为298 K,气体分压为101.325 kPa,溶液浓度为1 mol.L-1。
(3)以符号“|”表示不同物相之间的接界,用“‖”表示盐桥。
同一相中的不同物质之间用“,”表示。
(4)非金属或气体不导电,因此非金属元素在不同价态时构成的氧化还原电对作半电池时,需外加惰性金属(如铂和石墨等)做电极导体。
其中,惰性金属不参与反应,只起导电的作用。
例如Cu―Zn原电池的电池符号为:(-)Zn(s)|Zn2+(c1)‖Cu2+(c2)|Cu(s)(+)3.常用电极类型(1)金属一金属离子电极将金属片插入含有同一金属离子的盐溶液中构成的电极。
如Zn2+/Zn氧化还原电对所组成的电极。
其电极符号为:Zn |Zn2+(c1)电极反应式Zn2+ +2e = Zn(2)金属一金属难溶盐一阴离子电极将金属表面涂以该金属的难溶盐,浸入与其盐具相同阴离子的溶液中组成的电极。
如氯化银电极和甘汞电极。
在一定温度下,它们电极的电势稳定,再现性好,装置简单,使用方便,广泛用做参比电极。
氯化银电极电极符号: Ag(s)| AgCl(s)|Cl-(c)电极反应式: AgCl +e =Ag +Cl-甘汞电极电极符号: Hg(l)|Hg2Cl2(s)| KCl(c)电极反应式: Hg2Cl2 +2e = 2Hg +2Cl-(3)气体—离子电极该类电极是将气体通入其相应离子溶液中,气体与其溶液中的阴离子成平衡体系。
因气体不导电,需借助不参与电极反应的惰性金属铂组成电极。
常见有氢电极和氯电极。
氯电极电极符号:Pt(s)| Cl2(p) | Cl-(c)电极反应式:Cl2 +2e =2Cl -(4)氧化还原电极习惯上将其还原态不是金属态的电极称为氧化还原电极。
它是将惰性电极(如铂或石墨)浸入含有同一种元素不同氧化态的两种离子的溶液中构成的。
Fe3+/Fe2+电极电极符号:Pt(s)| Fe3+(c1), Fe2+(c2)电极反应为:Fe3+ + e =Fe2+4.电池电动势电池正、负电极之间没有电流通过时的电势差称为电池的电动势(electronmotive fore 符号E池表示)。
电池电动势是衡量氧化还原反应推动力大小的判据,这与热力学上使用反应体系的吉布斯自由能变化ΔG作为反应自发倾向的判据是一致的。
E池= E(+)-E(-)(二).电极电势1.电极电势的产生—双电层理论德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double layer theory)解释电极电势的产生的原因。