连续型随机变量常见的几种分布
- 格式:ppt
- 大小:2.05 MB
- 文档页数:49
1.均匀分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f2.指数分布 密度分布函数 ⎭⎬⎫⎩⎨⎧>=-其他,00,)(x e x f x λλ 3.伽玛分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>Γ=--0,00,)()(1x x e x x f x ααααλ4.正态分布 密度分布函数 222)(21)(σμπσ--=x e x f5.对数正态分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>=--e l s e x e x x f x ,00,21)(222)(l n σμπσ6.贝塔分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<-ΓΓ+Γ=--e l s e x x x r r r r x f r r ,010,)1()()()()(112121217.爱尔兰分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>-=--0,00,)!1()(1x x e x r x f x r r λλ8.拉普拉斯分布 密度分布函数 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=--λμλx e x f 21)(%泊松分布概率密度作图:x=0:20;y1=poisspdf(x,2.5);y2=poisspdf(x,5);y3=poisspdf(x,10);hold onplot(x,y1,':r*')plot(x,y2,':b*')plot(x,y3,':g*')hold offtitle('Poisson 分布')正态分布标准差意义的图示mu=3; sigma=0.5;x=mu+sigma*[-3:-1,1:3];yf=normcdf(x,mu,sigma);P=[yf(4)-yf(3),yf(5)-yf(2),yf(6)-yf(1)];xd=1:0.1:5;yd=normpdf(xd,mu,sigma);%for k=1:3xx{k}=x(4-k):sigma/10:x(3+k);yy{k}=normpdf(xx{k},mu,sigma);endsubplot(1,3,1),plot(xd,yd,'b');hold onfill([x(3),xx{1},x(4)],[0,yy{1},0],'g')text(mu-0.5*sigma,0.3,num2str(P(1))),hold offsubplot(1,3,2),plot(xd,yd,'b');hold onfill([x(2),xx{2},x(5)],[0,yy{2},0],'g')text(mu-0.5*sigma,0.3,num2str(P(2))),hold offsubplot(1,3,3),plot(xd,yd,'b');hold onfill([x(1),xx{3},x(6)],[0,yy{3},0],'g')text(mu-0.5*sigma,0.3,num2str(P(3))),hold offv=4;xi=0.9;x_xi=chi2inv(xi,v);x=0:0.1:15;yd_c=chi2pdf(x,v);%。
概率论连续型随机变量概率论是数学的一个分支,主要研究随机现象的概率规律和统计规律。
在概率论中,随机变量是一种可以随机取不同值的变量。
连续型随机变量是指取值范围为连续的变量,其概率分布函数可以用密度函数来描述。
连续型随机变量的概率密度函数(Probability Density Function,简称PDF)是描述随机变量取值概率的函数。
对于一个连续型随机变量X,其概率密度函数f(x)满足以下两个条件:1)f(x)≥0,对于所有的x;2)∫f(x)dx=1,即概率密度函数在整个取值范围上的积分等于1。
概率密度函数的性质决定了连续型随机变量的一些特点。
首先,连续型随机变量的概率是通过对其概率密度函数进行积分得到的。
例如,对于一个连续型随机变量X,其取值在[a,b]之间的概率可以表示为P(a≤X≤b)=∫f(x)dx。
其次,连续型随机变量的概率密度函数可以用来计算随机变量落在某个区间的概率。
例如,对于一个连续型随机变量X,可以计算P(X≥a)=∫f(x)dx。
对于连续型随机变量,我们也可以计算其期望值和方差。
连续型随机变量X的期望值E(X)表示随机变量的平均取值,可以通过对X乘以其概率密度函数f(x)后积分得到。
方差Var(X)表示随机变量取值的离散程度,可以通过计算E((X-E(X))^2)得到。
连续型随机变量常见的概率分布有正态分布、指数分布、均匀分布等。
其中,正态分布是最重要的连续型概率分布之一。
正态分布的概率密度函数是一个钟形曲线,其均值和标准差决定了曲线的位置和形状。
正态分布在自然界和社会科学中都有广泛的应用,如身高、体重、考试成绩等。
指数分布是描述事件发生时间间隔的概率分布。
指数分布的概率密度函数是单峰递减的曲线,其形状由参数λ决定。
指数分布在可靠性工程、排队论、风险分析等领域有广泛应用。
均匀分布是描述随机变量在一个区间内取值的概率分布。
均匀分布的概率密度函数是一个常数,区间内所有取值的概率相等。
连续型概率分布连续型概率分布是概率论中的一个重要概念,用于描述连续随机变量的可能取值范围及其对应的概率。
与离散型概率分布相比,连续型概率分布在数轴上的每一个点都有概率密度函数与之对应,而不是直接给出某个点的概率。
本文将介绍几种常见的连续型概率分布,包括均匀分布、正态分布和指数分布。
一、均匀分布均匀分布是一种简单而常见的连续型概率分布,它假设随机变量在一定的范围内取值的概率是相同的。
在数学上,均匀分布的概率密度函数为:f(x) = 1 / (b - a),a ≤ x ≤ b其中,a和b分别表示均匀分布的下界和上界。
图表上,均匀分布的概率密度函数在[a, b]区间内的取值是一个常数,且在[a, b]之外为0。
这意味着在[a, b]区间内的任意一个子区间上,概率密度的积分就是该子区间的长度除以[a, b]之间的总长度。
二、正态分布正态分布是统计学中最重要的连续型概率分布之一,也被称为高斯分布。
正态分布在自然界和社会科学中的广泛应用使得它成为了研究的重点。
正态分布的概率密度函数可以写作:f(x) = 1 / (σ * √(2π)) * exp(-(x - μ)² / (2σ²))其中,μ是均值,σ是标准差。
正态分布的概率密度函数呈钟形曲线,其峰值位于μ处,标准差决定了曲线的形状。
正态分布具有许多重要的特性,如68-95-99.7法则,即大约68%的概率密度位于一个标准差范围内,95%位于两个标准差范围内,99.7%位于三个标准差范围内。
三、指数分布指数分布是描述连续随机事件发生的时间间隔的概率分布。
例如,某个服务台上的顾客到达时间间隔、两次地震发生的间隔等,都可以用指数分布来描述。
指数分布的概率密度函数可以写作:f(x) = λ * exp(-λx),x ≥ 0其中,λ是分布的参数,表示单位时间内事件发生的平均次数。
指数分布的概率密度函数在区间[0, +∞)上递减,且总面积等于1。
指数分布还有一个重要的特性是无记忆性,即已经等待了一段时间后,再等待一段时间的概率与一开始等待这段时间的概率是相等的。