蓝光光纤激光器的原理及发展讲解
- 格式:doc
- 大小:14.00 KB
- 文档页数:3
光纤激光器的工作原理及其发展前景光纤激光器的工作原理及其发展前景1 .引言光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。
光纤激光器被人们视为一种超高速光通信用放大器。
光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。
光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。
近年来光纤激光器的输出功率得到迅速提高。
已达到10—100 kW。
作为工业用激光器,现已成为输出功率最高的激光器。
光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。
其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。
2.光纤激光器的原理2.1光纤激光器的分类光纤材料的种类,光纤激光器可分为:(1)晶体光纤激光器。
工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG 单晶光纤激光器等。
(2)非线性光学型光纤激光器。
主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。
(3)稀土类掺杂光纤激光器。
光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器。
(4)塑料光纤激光器。
向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。
2.2光纤激光器的工作原理光纤激光器的结构和传统的固体、气体激光器一样。
光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。
泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。
蓝光光纤激光器的原理及发展一、前言蓝光波段激光在高密度数据存储、海底通信、大屏幕显示(需要蓝绿光构造全色显示、检测、生命科学、激光医疗等领域有着广泛的应用价值。
目前商业化的固体激光器激光波长主要在近红外和红外波段。
在固体激光器中欲获得蓝色激光输出,主要有以下三种方法:(1利用宽禁带半导体材料直接制作蓝光波段的半导体激光器;(2利用非线性频率变换技术对固体激光进行倍频;(3利用上转换技术在掺稀土的晶体、玻璃或光纤中实现蓝激光输出。
对于可见波段的半导体激光二极管(LD,蓝光LD的研制需要昂贵的设备和衬底材料,同时LD的光束质量不尽人意,在许多应用领域受到了限制。
由LD泵浦的倍频固体激光器,需要非线性晶体材料进行频率转换,虽然光束质量很好,输出功率也很高,但系统较复杂。
近年来,人们利用发光学中的频率上转换机制,大力发展具有蓝绿光输出上转换发光材料,所采用的泵浦源一般为近红外高功率半导体激光器。
另外,与稀土掺杂的玻璃和晶体相比,光纤具有输出波长多、可调谐范围宽等优点。
利用上转换光纤制作的光纤激光器还具有结构简单、效率高、成本低的优点。
近两年来,国外对蓝光上转换光纤激光器研究很活跃,并且其商业化进程也相当迅速。
二、工作原理蓝光光纤激光器是利用稀土离子上转换的发光机理,即采用波长较长的激发光照射掺杂的稀土离子的样品时,发射出波长小于激发光波长的光。
稀土离子的上转换发光机制一般可以分为激发态吸收、能量转移和光子雪崩三种过程。
蓝光上转换光纤的输出波长一般在450~490nm之间,目前能获得蓝光输出稀土离子主要有Tm3+,Pr3+两种,但大多数情况下,为了提高泵浦吸收效率和上转换发光效率,往往采用将Tm3+或者Pr3+离子与Yb3+离子共掺的方式,通过Yb3+离子的敏化作用,利用多声子吸收的原理获得高效的上转换发光效应, Tm3+/Yb3+共掺和Pr3+/Yb3+共掺这两种方式的上转换光纤激光目前报道的最多。
三、发展历程频率上转换发光现象最早是在石英介质中发现的,但由于其上转换发光效率低下,且在低温下工作而未引起研究人员的注意。
蓝光激光器的应用与发展黄必昌一、前言全固态蓝光激光器因其在激光生物医学、激光彩色显示、激光高密度数据存储、激光光谱学、激光打印、激光水下成像与通讯等领域的广泛应用,近年来备受人们重视。
用LD泵浦YAG晶体通过腔内倍频可以实现大功率蓝光激光输出,从而实现红(671nm)、绿(532 nm)、蓝(473 nm)三元色激光的连续输出。
目前有关蓝光激光器的研究成为国内外研究小组竞相开展的研究热点,在很短的时间里世界各地都掀起了固态草蓝色激光光源的研究热潮。
全固态蓝光激光作为一种新的相干光源,具有体积小、结构紧凑、寿命长、效率高、运转可靠等一系列优点,能够应用在许多其他激光器无法应用的场合。
全固态蓝光激光器主要应用在蓝光激发、高密度光存储、彩色激光显示、拉曼光谱、荧光光谱分析、生物工程、DNA排序、海洋水色和海洋资源探测等很多方面。
在固体激光器中欲获得蓝色激光输出,主要有以下三种方法:(1)利用宽禁带半导体材料直接制作蓝光波段的半导体激光器;(2)利用非线性频率变换技术对固体激光进行倍频;(3)利用上转换技术在掺稀土的晶体、玻璃或光纤中实现蓝激光输出。
对于可见波段的半导体激光二极管(LD),蓝光LD的研制需要昂贵的设备和衬底材料,同时LD的光束质量不尽人意,在许多应用领域受到了限制。
由LD泵浦的倍频固体激光器,需要非线性晶体材料进行频率转换,虽然光束质量很好,输出功率也很高,但系统较复杂。
近年来,人们利用发光学中的频率上转换机制,大力发展具有蓝绿光输出上转换发光材料,所采用的泵浦源一般为近红外高功率半导体激光器。
另外,与稀土掺杂的玻璃和晶体相比,光纤具有输出波长多、可调谐范围宽等优点。
利用上转换光纤制作的光纤激光器还具有结构简单、效率高、成本低的优点。
近两年来,国外对蓝光上转换光纤激光器研究很活跃,并且其商业化进程也相当迅速。
下面结合激光显示和蓝光光盘等主要应用,首先简单说明其工作原理然后介绍全固态蓝光激光器的多种技术和最新发展。
光纤激光器的工作原理及其发展前景(3)光纤激光器的工作原理及其发展前景以形成相干性很好的激光。
激光发射是受激辐射远远超过自发辐射的物理过程,为了使这种过程持续发生,必须形成离子数反转.因此要求参与过程的能级应超过2个,同时还要有泵浦源提供能量。
光纤激光器实际上也可以称为波长转换器.通过它可以将泵浦波长光转换为所需的激射波长光。
例如,掺铒光纤激光器将980nm的泵浦光进行泵浦,输出1550nm的激光。
激光的输出可以是连续的,也可以是脉冲形式的。
激光输出是连续的还是脉冲输出形式主要依赖于激光工作介质.如果是连续形式输出,激光上能级的自发发射寿命必须高于激光下能级以获得较高的粒子数反转。
如果是脉冲形式输出.激光下能级的寿命就会超过上能级,此时就会以脉冲的形式输出光纤激光器有2种激射状态:三能级和四能级激射。
3 光纤激光器的分类(1)按增益介质分类:稀土离子掺杂光纤激光器(Nd3+、Er3+.yb3+、Tm3+等,基质可以是石英玻璃、氟化锆玻璃、单晶)。
非线性效应光纤激光器(利用光纤中的SRS、SBS非线性效应产生波长可调谐的激光)。
在光纤中掺人不同的稀土离子,并采用适当的泵浦技术,即可获得不同波段的激光输出。
(2)按谐振腔结构分类:F—P腔、环形腔、环路反射器光纤谐振腔以及”8”字形腔、DBR光纤激光器、DFB光纤激光器(3)按光纤结构分类: 单和双包层光纤激光器、光子晶体光纤激光器、特种光纤激光器。
(4)按输出激光类型分类: 连续光纤激光器.超短脉冲光纤激光器、大功率光纤激光器。
(5)按输出波长分类:S一波段(1460~1530 nm)、C一波段(1530~1565 nm)、L一波段(1565~ 1610 nm)。
4 光纤激光器的特点在激光振荡中.将能量集中于谐振腔所选的驻波以产生相干光。
在光技术中,只有光纤和波导能对光轴方向和横模方向进行三维模控制。
在以单模光纤作增益介质的光纤激光器中无竞争横模,因此可进行稳定的激光振荡。
蓝光激光器最新发展和应用作者:中国科学院上海光学精密机械研究所叶震寰楼祺洪摘要:结合激光显示和蓝光光盘等主要应用,介绍全固态蓝光激光器的多种技术和最新发展。
重点讲述了蓝光半导体激光以及半导体激光直接倍频蓝光激光器技术的进展。
最后对蓝光激光器的一些主要应用进行了总结。
关键字:蓝光激光、激光显示、蓝光光盘、蓝光LD1、激光显示与蓝色激光激光显示采用红、绿、蓝三基色全固态激光器作为光源,由于激光的高色纯度,按三基色合成原理在色度作者:中国科学院上海光学精密机械研究所叶震寰楼祺洪摘要:结合激光显示和蓝光光盘等主要应用,介绍全固态蓝光激光器的多种技术和最新发展。
重点讲述了蓝光半导体激光以及半导体激光直接倍频蓝光激光器技术的进展。
最后对蓝光激光器的一些主要应用进行了总结。
关键字:蓝光激光、激光显示、蓝光光盘、蓝光LD1、激光显示与蓝色激光激光显示采用红、绿、蓝三基色全固态激光器作为光源,由于激光的高色纯度,按三基色合成原理在色度图上形成的色度三角形面积最大,因而激光显示的图像有着比现有彩色电视更大的色域、更高的对比度和亮度,颜色更鲜艳,能反映自然界的真实色彩,在家庭影院和大屏幕显示领域具有巨大的应用前景[1]。
2002年韩国三星公司就已经推出了80英寸VGA分辨率的高亮度激光电视的样机,可以获得很好的显示效果。
作为激光全色显示的关键技术,红、绿、蓝三基色全固态激光器也已成为当前国际上研究的热点。
其中,三基色光源中的蓝色激光是目前激光显示研究中的瓶颈。
实现全固态蓝色激光光源的途径主要有三种:(1)直接发射蓝光的激光二极管;(2)LD倍频的蓝色光源;(3)LD泵浦通过非线性光学手段获得的蓝色激光器。
直接发射蓝光的半导体激光器,具有结构简单、使用方便、电-光转换效率高等优点。
能够直接发射蓝色激光的LD一直受到人们的关注。
但由于半导体材料本身的缺陷难于克服,使得蓝色激光二极管的发展相对缓慢,与实用化之间还有一段距离。
蓝光光纤激光器的原理及发展
一、前言
蓝光波段激光在高密度数据存储、海底通信、大屏幕显示(需要蓝绿光构造全色显示、检测、生命科学、激光医疗等领域有着广泛的应用价值。
目前商业化的固体激光器激光波长主要在近红外和红外波段。
在固体激光器中欲获得蓝色激光输出,主要有以下三种方法:
(1利用宽禁带半导体材料直接制作蓝光波段的半导体激光器;
(2利用非线性频率变换技术对固体激光进行倍频;
(3利用上转换技术在掺稀土的晶体、玻璃或光纤中实现蓝激光输出。
对于可
见波段的半导体激光二极管(LD,蓝光LD的研制需要昂贵的设备和衬底材料,同时LD的光束质量不尽人意,在许多应用领域受到了限制。
由LD泵浦的倍频固体激光器,需要非线性晶体材料进行频率转换,虽然光束质量很好,输出功率也很高,但系统较复杂。
近年来,人们利用发光学中的频率上转换机制,大力发展具有蓝绿光输出上转换发光材料,所采用的泵浦源一般为近红外高功率半导体激光器。
另外,与稀土掺杂的玻璃和晶体相比,光纤具有输出波长多、可调谐范围宽等优点。
利用上转换光纤制作的光纤激光器还具有结构简单、效率高、成本低的优点。
近两年来,国外对蓝光上转换光纤激光器研究很活跃,并且其商业化进程也相当迅速。
二、工作原理
蓝光光纤激光器是利用稀土离子上转换的发光机理,即采用波长较长的激发光照射掺杂的稀土离子的样品时,发射出波长小于激发光波长的光。
稀土离子的上转换发光机制一般可以分为激发态吸收、能量转移和光子雪崩三种过程。
蓝光上转换光纤的输出波长一般在450~490nm之间,目前能获得蓝光输出稀土离子主要有
Tm3+,Pr3+两种,但大多数情况下,为了提高泵浦吸收效率和上转换发光效率,往往采
用将Tm3+或者Pr3+离子与Yb3+离子共掺的方式,通过Yb3+离子的敏化作用,利用多声子吸收的原理获得高效的上转换发光效应, Tm3+/Yb3+共掺和Pr3+/Yb3+共掺这两种方式的上转换光纤激光目前报道的最多。
三、发展历程
频率上转换发光现象最早是在石英介质中发现的,但由于其上转换发光效率低下,且在低温下工作而未引起研究人员的注意。
首次获得上转换激光输出是在1971年,当时是由Johnson和Guggenheim[2]在低温下采用氙灯泵浦Ho3+/Yb3+共掺和
Er3+/Yb3+的共掺的BaY2F8晶体分别获得了551nm和670nm上转换激光输出。
八十年代末九十年代初期,当时因为发展长波段通讯曾努力开发氟化
物玻璃光纤,虽然长波通讯并未成功,稀土掺杂的ZBLAN光纤作上转换增益介质,却得到很多有意义的上转换激光结果。
ZBLAN光纤中掺杂的稀土离子主要有Pr3+、Er3+、Tm3+、Ho3+等,其中掺Pr3+或者Pr3+/Yb3+共掺ZBLAN光纤的上转换激光输出在当时报道最多,这是因为Pr3+离子在上转换泵浦机理下可以产生蓝、绿、橙黄、红的多种波段的可见光。
1989年Allain等[3]报道了在77K低温下采用647nm和676nm泵浦Tm3+:ZBLAN 光纤中获得455和480nm上转换激光输出,这是首次利用上转换原理在氟化物光纤中获得了可见波段的激光输出。
从此以后室温下的上转换光纤激光输出报道相继增多,并且光纤的基质材料研究多集中在氟化物玻璃的ZBLAN系统上。
氟化物玻璃体系之所以成为人们青睐的上转换发光基质材料,是因为具有较低的声子能量,低的声子能量能降低玻璃在泵浦过程中无辐射驰豫的几率,提高稀土离子中间亚稳态能级的荧光寿命,从而有效提高上转换发光的效率。
但氟化物玻璃较差的化学稳定性和较低的机械强度为其实际应用带来了一定困难。
第一次蓝光上转换光纤激光输出报道是在1991年,R.G.Smart等人[4]用两台钛宝石激光器同时泵浦Pr3+:ZALAN光纤,在491nm得到了1mW的激光器输出。
研究者发现在单掺杂Pr3+离子的情况下,蓝光输出功率往往不高。
为了提高上转换发
光效率,90年代中期以后,研究者在掺稀土离子(主要是以Pr3+和Tm3+为主的同时共掺Yb3+作为敏化剂,这样有效地提高了对泵浦光的吸收效率,而且Yb3+离子较宽的吸收带有利于对泵浦源有较大的选择余地。
表1给出了90年代期间蓝光光纤激光器的激光输出情况[4-11]。
其中,1997年德国Hamburg大学Zellmer等人在
Pr3+/Yb3+:ZBLAN光纤中获得了375mW的480nm 激光输出,这是迄今报道的最高功率的蓝光光纤激光输出。
九十年代末,包层泵浦技术的发展为上转换光纤激光器的研究提供了新的契机。
通过包层泵浦技术可以将泵浦光入纤的耦合效率,从一般的30~50%提高到80%以上,耦合效率的提高增大了上转换蓝绿光的输出功率。
目前包层泵浦上转换光纤激光器的研究工作已成为国际上的最新研究热点,它在常规光纤激光器研究工作的基础上,利用频率上转换技术大大扩展了激光器的频率范围,可获得近红外光、可见光乃至更短波长的激光输出。
尤其是频率上转换技术目前正应用到极缺蓝和绿激光波段。
2002年Zellmer等人[13]用850nm的LD泵浦包层Pr3+/Yb3+:ZBLAN光纤,获得了2.06W的635nm红光输出,斜率效率为45%,光束质量M2<10,另外,在520nm 绿光波段也获得了340mW激光输出。
近两年来国外许多科研院所纷纷加大了对应用于蓝光波段的上转换光纤的研究力度。
上转换光纤激光器研究领域目前处于领先地位的是德国,其中德国以Laser Zentrum Hannover研究所为主要代表单位。
除此之外,国外一些商业机构也对蓝绿上转换玻璃光纤激光器投入了极大的热情,如法国的Alcatel公司、英国的电信公司、美国SDL公司、和美国加州JDS Uniphase公司等。
国内部分高等院校和科研机构(如上海光机所、长春光机所、南开大学、北京师范大学等曾对块状玻璃中上转换发光机理作了不少研究,但未见对上转换双包层玻璃光纤的报道。
国内目前还没有上转换光纤激光器产品问世。