现代生物仪器分析第五章气相色谱法
- 格式:ppt
- 大小:1.83 MB
- 文档页数:84
气相色谱仪使用方法及试验操作步骤气相色谱技术是现代化学分析中的紧要手段之一、气相色谱仪(GC)是一种高效液相色谱(HPLC)和毛细管电泳技术(CE)之类的分析仪器,广泛应用于生物化学、环境分析、食品安全、药物、化工等领域。
本文介绍气相色谱仪的使用方法和试验操作步骤,希望对大家的讨论工作有所帮忙。
一、气相色谱仪的基本原理气相色谱法是一种在惰性载气流动作用下,利用样品成分在不同温度下对固定相上分别的方法。
气相色谱仪紧要由进样装置、色谱柱、检测器、计算机软件构成。
其中,色谱柱是气相色谱仪的核心部件,可以依据不同的应用场合配置不同种类的色谱柱。
气相色谱仪基本原理如下:1.样品挥发成分进入色谱柱2.色谱柱中填充有不同材料的液态或固态载气固定相3.不同挥发成分因固定相的选择性分别在分别列中停留时间不同4.通过检测器检测不同挥发成分的特征值并进行分析和识别二、气相色谱仪的使用方法在使用气相色谱仪前,需要正确安装气瓶、NN、纯化器等设备并进行调试。
操作气相色谱仪时需要保持仪器的稳定和一些紧要试验参数的精准性,操作前应谙习相关操作手册。
1. 样品的制备在进行气相色谱分析之前,必需将待测的样品进行制备。
在样品制备过程中需要注意以下几点:1.样品中的挥发物质必需彻底挥发,在对样品进行处理之前要先进行预处理2.需要保证样品的纯度,才能保证气相色谱仪的分析结果精准3.样品制备过程中不得使用水及含水溶液2. 进样操作样品制备完成后,需要将样品注入气相色谱仪中进行分析。
进样过程中应注意以下事项:1.进样量应依据样品的性质和检测要求合理选择,超量进样会影响分析结果2.在进样前应先进行检测器本底稳定,然后才能进行样品的进样3.每次进样之前,应清洗进样针头以确保不会显现交叉污染的情况3. 计算分析结果在分析中,需要计算并分析样品的峰面积、峰高度、保留时间等分析参数。
计算分析结果时,应注意以下几点:1.分析结果的精准性和牢靠性与仪器和操作人员的技术水平有关,需要统计和分析每个分析参数的偏差情况,以确定操作的精准性2.计算结果应与标准品进行对比,然后进行数据修正,以确定试验数据的精准性和牢靠性三、试验操作步骤以下是气相色谱仪常规分析的步骤:1.准备分析样品,依照标准样品来自制,应使用干燥无残留污染的样品容器2.准备好进样设备,清洗进样针头3.设置分析条件,包括纪录时间、流速、温度程序4.进样到色谱柱中5.依照设定条件进行扫描,然后进行数据分析6.依据得到的数据进行分析,然后生成试验报告四、总结气相色谱仪是一种紧要的分析仪器,广泛应用于生物化学、环境分析、食品安全、药物、化工等领域。
第二章习题解答1简要说明气相色谱分析的基本原理借在两相间分配原理而使混合物中各组分分离。
气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。
组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。
2.气相色谱仪的基本设备包括哪几部分?各有什么作用?气路系统.进样系统、分离系统、温控系统以及检测和记录系统.气相色谱仪具有一个让载气连续运行管路密闭的气路系统.进样系统包括进样装置和气化室.其作用将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中.3.当下列参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动相流速增加,(4)相比减少,是否会引起分配系数的改变?为什么?答:固定相改变会引起分配系数的改变,因为分配系数只于组分的性质及固定相与流动相的性质有关.所以(1)柱长缩短不会引起分配系数改变(2)固定相改变会引起分配系数改变(3)流动相流速增加不会引起分配系数改变(4)相比减少不会引起分配系数改变4.当下列参数改变时: (1)柱长增加,(2)固定相量增加,(3)流动相流速减小,(4)相比增大,是否会引起分配比的变化?为什么?答: k=K/b,而b=VM/VS ,分配比除了与组分,两相的性质,柱温,柱压有关外,还与相比有关,而与流动相流速,柱长无关.故:(1)不变化,(2)增加,(3)不改变,(4)减小5.试以塔板高度H做指标,讨论气相色谱操作条件的选择.解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑流速的影响,选择最佳载气流速.P13-24。
(1)选择流动相最佳流速。
(2)当流速较小时,可以选择相对分子质量较大的载气(如N2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H2,He),同时还应该考虑载气对不同检测器的适应性。
(3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。
气相色谱概述摘要:随着科学技术的发展,气相色谱法作为一种新型分离分析技术被迅速发展起来,它是一种高效能、选择性好、灵敏度高、应用广泛的仪器分析方法。
本文主要介绍了气相色谱的概念、基本原理、特点、系统组成以及其在实践中的应用。
关键词:气相色谱;分析;应用1气相色谱概述气一液色谱法诞生五十多年以来,气相色谱理论和技术都有了长足的进步。
色谱柱由气一液、气一固色谱填充柱很快发展为毛细管柱,多种高灵敏度和选择性检测器的发展使气相色谱的使用范围不断扩大,食品分析技术也随之发生了革命性的变化,尤其是60年代气相色谱一质谱联用仪的产生,有效弥补了气相色谱在定性分析方面特异性差的弱点,使得气相色谱技术在复杂基质样品分析中有了突破性进展。
据报道,现有的气相色谱检测器约50余种。
1952年James 和Martin 创立气一液色谱法的同时,使用了第一个气相色谱检测器一接在填充柱出口的一个滴定装置来检测脂肪酸的分离,用滴定溶液体积对时间作图,得到积分色谱图。
以后他们又发明了气体密度天平。
1954年Rya 提出热导计,开创了现代气相色谱检测器时代。
1958年wcwillian 和Harley 同时发明了F,Lovelock 发明了氢电离检测器(AID),使检测器的灵敏度提高了2—3 个数量级。
20世纪60和70年代,由于环境科学等学科的发展,提出了痕量分析的要求,一些高灵敏度、高选择性的检测器陆续出现。
1960年Loveofkc 又提出了电子捕获检测器(ECD);1966年Bordy等发明了火焰光度检测器(FPo);1974年Kolb 和BIScho 提出了Npo,等等。
20世纪50年代,由于弹性石英毛细管柱的快速广泛应用和计算机技术的发展,使TCD、FID、ECD和砷D 的灵敏度和稳定性均有很大提高。
同时,出现了化学发光检测器(CLD),以及一批用于化合物的组成和结构分析的联用仪器,如傅立叶变换红外光谱(FTIR)、质量选择检测器(MSD)和原子发射检测器(AED)逐渐成为常规使用的检测器。
简述气相色谱法的特点气相色谱(Gas Chromatography,GC)是一种常见的分离和分析技术,广泛应用于化学、生物、环境、食品等领域的物质分析。
它基于样品中化合物的揮发性差异,在载气的帮助下,通过在一个固定相(色谱柱)中的分配和吸附作用,实现化合物的分离和定量分析。
气相色谱法具有以下几个主要特点:1. 高分离能力:气相色谱法能够对复杂样品中的化合物进行高效、高分辨率的分离。
它利用色谱柱中的固定相(即填充物)和流动相(载气)之间的相互作用,实现了对不同物质的选择性吸附和分配。
这种分离作用使得混合物中的组分能够逐个地通过色谱柱,最终以不同的保留时间被分离出来。
2. 灵敏度高:气相色谱法对于许多化合物具有很高的灵敏度。
因为在GC系统中,样品溶液会被蒸发成气态进入色谱柱进行分离,这就大大提高了样品的浓缩程度,进而增强了检测信号的强度。
此外,由于气相色谱技术采用的是非破坏性的物质检测方法,所以它可以保持样品的完整性和可再分析性。
3. 宽线性范围:气相色谱法具有较宽的线性范围,可以对不同浓度的化合物进行准确定量。
在GC分析中,样品的浓度与峰高之间通常呈线性关系,这使得分析者能够通过构建标准曲线来对样品中化合物的浓度进行定量计算。
4. 选择性强:气相色谱法对于分析多种样品具有很高的选择性。
分析者可以通过调整填料种类、色谱柱温度、载气流速等条件,使得某些化合物优先被吸附或排出色谱柱,从而实现对不同化合物的选择性分离。
此外,还可以通过添加适当的衍生化试剂或采用某些特殊的色谱柱,将一些热稳定性较差或极性化合物进行改性分析,提高分析的准确性和选择性。
5. 快速分析:气相色谱法具有高效的分析速度。
色谱柱尺寸较小,采用较高的温度和载气流速,可以加快分析速度。
同时,GC分析仪器也越来越智能化,提供了自动化的样品进样、数据处理和报告生成等功能,从而大大缩短了分析的耗时。
6. 多样性检测:气相色谱法能够检测多种类型的化合物。