2017年-2018北师大版七年级[下册]数学期末试题和答案解析
- 格式:doc
- 大小:205.00 KB
- 文档页数:6
2017-2018学年山东滕州七年级下册期末综合检测(一)数学试题一、选择题1.下列计算正确的是()A .;B.;C.;D.;2.计算(a -2b)(a +2b)的结果是()A.a2+2ab+b2B.a2-4ab-4b2C.a2-4b2D.a2+4b23.如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),由图中面积关系可以直接得到的公式是()A.a2﹣b2=(a+b)(a﹣b)B.a2+b2=(a+b)2﹣2abC.(a﹣b)2=a2+b2﹣2ab D.(a+b)2﹣(a﹣b)2=4ab4.一辆汽车在笔直的公路上,两次拐弯后,仍在原来的方向上平行前进,则这两次拐弯的角度应是()A.第一次向左拐40°,第二次向右拐40°B.第一次向右拐40°,第二次向左拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向右拐40°,第二次向右拐140°5.一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A. 40°B. 45°C. 50°D. 10°6.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.7.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC8.如图,△ABC≌△ADE,∠DAC=60,∠BAE=100,BC、DE相交于点F,则∠DFB度数是( )A. 15B. 20C. 25D. 309.第24届冬季奥林匹克运动会,将于2022年02月04–2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是( )A.B.C.D.10.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是()A.B.C.D.11.如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列说法中:①∠ADE =∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF=180°;④S△ABC=S四边形DBCF.正确的有()A.4个B.3个C.2个D.1个12.已知(x+m)(x+n)=x2-3x-4,则m+n的值为()A.1 B.-1 C.-2 D.-313.将一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD =180°;③如果BC∥AD,则有∠2=45°;④如果∠CAD=150°,必有∠4=∠C;正确的有( )A.①②③B.①②④C.①③④D.①②③④14.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°15.如图,在△ABC中,AB=AC,∠BAC=70°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F 分别在BC、AC上,点C沿EF折叠后与点O重合,则∠BEO的度数是()A. 20°B. 35°C. 40°D. 55°二、填空题16.若a m=3,a n=4,则a m+n=_____.17.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=_____.18.多项式x2+2mx+64是完全平方式,则m= ________ .19.如图,在中,,,,与的关系是__________.20.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE=________cm.21.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若,则的度数为____________.22.已知,则的值为__________.23.如图,∠AOB=30°,点M,N分别是射线OA,OB上的动点,OP平分∠AOB,且OP=6,△PMN的周长最小值为________.三、解答题24.先化简,再求值:[(x+2y)2-(3x+y)(-y+3x)-5y2]÷(-4x),其中x=-,y=2.25.如图:点B,E,C,F在一条直线上,FB=CE,AB∥ED,AC∥DF.求证:AB=DE,AC=DF.26.如图,△ABC和△DCE均是等腰三角形,CA=CB,CD=CE,∠BCA=∠DCE.(1)求证:BD=AE;(2)若∠BAC=70°,求∠BPE的度数.27.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).28.现有外观完全相同的卡片,正面分别绘有4种不同的花色,小胖和小亮在每种花色的卡片中各取9张,上面分别标上数字1,2,3,4,5,6,7,8,9.把36张卡片背面朝上洗匀,开始进行抽卡片游戏.规定:小胖从中任意抽取一张卡片(不放回),小亮从剩余的卡片中任意抽取一张,谁抽到的卡片上的数字大谁就获胜(说明:卡片上的数字的大小与花色无关).然后两人把抽到的卡片都放回,重新开始游戏.(1)小胖从中任意抽取一张卡片,他抽到9的概率是____;(2)若小胖抽取到的卡片上的数字为3,然后小亮抽取卡片,那么小胖获胜的概率是____,小亮获胜的概率是____;(3)若小胖抽取到的卡片上的数字为1,然后小亮抽取卡片,小胖获胜的概率是____,小亮获胜的概率是____;(4)小胖抽取到的卡片上的数字为多少时,两个人获胜的概率相同?请说明理由.29.先阅读下面的内容,再解决问题.例题:若, 求m和n的值解:∵∴∴∴,∴,问题:(1)若,求的值.(2)已知a,b,c是△ABC的三边长,满足,且c是△ABC中最长的边,求c的取值范围.30.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系呢?(1)通过观察、实验提出猜想:∠ACB与∠ABC的数量关系,用等式表示为:.(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:如图2,延长AC到F,使CF=CD,连接DF.通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.想法2:在AB上取一点E,使AE=AC,连接ED,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.请你参考上面的想法,帮助小明证明猜想中∠ACB与∠ABC的数量关系(一种方法即可).。
2017-2018学年山东滕州七年级下册期末综合检测(一)数学试题一、选择题1.下列计算正确的是()A.;B.;C.;D.;2.计算(a -2b)(a +2b)的结果是()A.a2+2ab+b2B.a2-4ab-4b2C.a2-4b2D.a2+4b23.如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),由图中面积关系可以直接得到的公式是()A.a2﹣b2=(a+b)(a﹣b)B.a2+b2=(a+b)2﹣2abC.(a﹣b)2=a2+b2﹣2ab D.(a+b)2﹣(a﹣b)2=4ab4.一辆汽车在笔直的公路上,两次拐弯后,仍在原;的方向上平行前进,则这两次拐弯的角度应是()A.第一次向左拐40°,第二次向右拐40° B.第一次向右拐40°,第二次向左拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向右拐40°,第二次向右拐140°5.一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A. 40°B. 45°C. 50°D. 10°6.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.7.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 8.如图,△ABC≌△ADE,∠DAC=60,∠BAE=100,BC、DE相交于点F,则∠DFB度数是( )A. 15B. 20C. 25D. 309.第24届冬季奥林匹克运动会,将于2022年02月04–2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是( )A.B.C.D.10.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是()A.B.C.D.11.如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列说法中:①∠ADE=∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF=180°;④S△ABC =S四边形DBCF.正确的有( )A.4个B.3个C.2个D.1个12.已知(+m)(+n)=2-3-4,则m+n的值为( )A.1 B.-1 C.-2 D.-313.将一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD =180°;③如果BC∥AD,则有∠2=45°;④如果∠CAD=150°,必有∠4=∠C;正确的有( )A.①②③B.①②④C.①③④D.①②③④14.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°15.如图,在△ABC中,AB=AC,∠BAC=70°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F分别在BC、AC上,点C沿EF折叠后与点O重合,则∠BEO的度数是()A. 20°B. 35°C. 40°D. 55°二、填空题16.若a m=3,a n=4,则a m+n=_____.17.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=_____.18.多项式2+2m+64是完全平方式,则m= ________ .19.如图,在中,,,,与的关系是__________.20.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE =________cm.21.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若,则的度数为____________.22.已知,则的值为__________.23.如图,∠AOB=30°,点M,N分别是射线OA,OB上的动点,OP平分∠AOB,且OP =6,△PMN的周长最小值为________.三、解答题24.先化简,再求值:[(+2y)2-(3+y)(-y+3)-5y2]÷(-4),其中=-,y=2.25.如图:点B,E,C,F在一条直线上,FB=CE,AB∥ED,AC∥DF.求证:AB=DE,AC=DF.26.如图,△ABC和△DCE均是等腰三角形,CA=CB,CD=CE,∠BCA=∠DCE.(1)求证:BD=AE;(2)若∠BAC=70°,求∠BPE的度数.27.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知2﹣4y2=12,+2y=4,求﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).28.现有外观完全相同的卡片,正面分别绘有4种不同的花色,小胖和小亮在每种花色的卡片中各取9张,上面分别标上数字1,2,3,4,5,6,7,8,9.把36张卡片背面朝上洗匀,开始进行抽卡片游戏.规定;小胖从中任意抽取一张卡片(不放回),小亮从剩余的卡片中任意抽取一张,谁抽到的卡片上的数字大谁就获胜(说明;卡片上的数字的大小与花色无关).然后两人把抽到的卡片都放回,重新开始游戏.(1)小胖从中任意抽取一张卡片,他抽到9的概率是____;(2)若小胖抽取到的卡片上的数字为3,然后小亮抽取卡片,那么小胖获胜的概率是____,小亮获胜的概率是____;(3)若小胖抽取到的卡片上的数字为1,然后小亮抽取卡片,小胖获胜的概率是____,小亮获胜的概率是____;(4)小胖抽取到的卡片上的数字为多少时,两个人获胜的概率相同?请说明理由.29.先阅读下面的内容,再解决问题.例题:若, 求m和n的值解:∵∴∴∴,∴,问题:(1)若,求的值.(2)已知a,b,c是△ABC的三边长,满足,且c是△ABC中最长的边,求c的取值范围.30.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系呢?(1)通过观察、实验提出猜想:∠ACB与∠ABC的数量关系,用等式表示为:.(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:如图2,延长AC到F,使CF=CD,连接DF.通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.想法2:在AB上取一点E,使AE=AC,连接ED,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.请你参考上面的想法,帮助小明证明猜想中∠ACB与∠ABC的数量关系(一种方法即可).。
专业整理 知识分享2016—2017学年下学期期末水平质量检测初一数学试卷(全卷满分:120分钟 考试时间:120分钟)注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效。
一、细心填一填(每小题3分,共计24分)1. 计算:2)3(2x y + = ;)2b -b -2a a -)((= . 2.如果12++kx x 是一个完全平方式,那么k 的值是 。
3. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000 万元,这个数据用科学记数法可表示为 万元.4。
等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 。
5。
如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC≌△ADE,还需要添加的条件是 。
6。
现在规定两种新的运算“﹡"和“◎":a ﹡b=22b a +;a ◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(—1)][2◎(—1)]= 。
7.某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为 千米。
8。
某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 。
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共27分)9。
下列图形中不是..正方体的展开图的是( )E D CBA第5题t (小时)2 O30S (千米)第8题专业整理 知识分享A B C D 10. 下列运算正确..的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .144=-a a 11. 下列结论中,正确..的是( ) A.若22b a ,b a ≠≠则 B 。
2017 —2018 学年下学期期末水平质量检测初一数学试卷(全卷满分: 120 分钟考试时间:120分钟)注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、细心填一填(每小题 3 分,共计 24 分)1.算:(2x3y) 2=;(2a - b)( - b 2a)=.A2.如果x2kx1是一个完全平方式,那么k 的是.B3.温家宝理在十届全国人大四次会上到解决“三” E D, 2006 年中央政用于“三”的支出将达到33970000第 5万元,个数据用科学数法可表示万元 .C4.等腰三角形一是10 ㎝,一是 6 ㎝,它的周是.5.如,已知∠ BAC= ∠DAE=90°,AB=AD ,要使△ ABC ≌△ ADE ,需要添加的条件是.6.在定两种新的运算“ ”和“◎”: a b= a2b2;a◎b=2ab,如(2 3)(2◎3)=( 22+32)( 2× 2× 3)=156, [2( -1 ) ][2 ◎( -1 ) ]=.7.某物体运的路程s(千米)与运的t (小)关系如所示,当t=3 小,物体运所的路程千米 .8.某公路急弯立了一面大子,从子中看到汽的的号如所示,汽的号是.二、相信你的选择(每小题只有一个正确的选项,每小题3分,共27分)9. 下列形中不是正方体的展开的是()..A B C D10. 下列运算正确的是()..A .a5a5a10B .a6 a 4a24C.a0 a 1a D .a4a4111. 下列中,正确的是()..A . 若a b, 则 a2 b 2 B. 若a b ,则 a2 b 2C. 若a2b2 ,则 a bD. 若a b , 则11Aa b D12.如,在△ ABC 中, D 、E 分是 AC 、 BC 上的点,若△ ADB ≌△ EDB ≌△ EDC,∠ C 的度数是 ()B CA .15 °B .20 ° C.25 ° D .30 °E13. 察一串数:0, 2,4, 6,⋯ . 第 n 个数()第 14A .2 (n- 1) B.2n - 1 C.2 ( n+ 1) D.2n + 1S(千米)30O2t(小)第814. 下列关系式中,正确的是()..A .a b C. a b 2a 2b 2 B. a b a b a2b2 2a2 b 2 D. a b2a22ab b 215.如图表示某加工厂今年前 5 个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂()A .1月至 3 月每月产量逐月增加,4、5 两月产量逐月c(件)减小B.1 月至 3 月每月产量逐月增加,4、5 两月产量与 3 月持平C.1 月至 3 月每月产量逐月增加,4、 5 两月产量均停止生产D . 1月至 3 月每月产量不变, 4、5 两月均停止生产O 1 2 3 4 5t(月)16.下列图形中,不一定是轴对称图形的是()第 15题...A . 等腰三角形 B. 线段 C. 钝角 D. 直角三角形17.长度分别为 3cm, 5cm, 7cm, 9cm 的四根木棒,能搭成(首尾连结)三角形的个数为()A . 1 B. 2 C. 3 D . 4三、精心算一算( 18 题 5 分, 19 题 6 分,共计 11 分)18.2 y 6 2y 4319. 先化简2x 1 23x 1 3x 1 5x x 1 ,再选取一个你喜欢的数代替x,并求原代数式的值 .M四、认真画一画( 20 题 5 分, 21 题 5 分,共计 10 分)20.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)第 23 题理由是:21.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)第一种第二种第三种第四种第 24 题五、请你做裁判(第22 题小 5 分,第 23 小题 5 分,共计 10 分)22. 在“五·四”青年节中,全校举办了文艺汇演活动. 小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成 6 份,如图所示 .游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去 . 若你是小芳,会同意这个办法吗?为什么?21334523. 一个长方形的养鸡场的长边靠墙,墙长小赵也打算用它围成一个鸡场,其中长比宽多14 米,其它三边用竹篱笆围成,现有长为2 米,你认为谁的设计符合实际?35 米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多按照他的设计,鸡场的面积是多少?5 米;六、生活中的数学(8 分),24. 某种产品的商标如图所示,O 是线段 AC 、BD 的交点,并且AC = BD , AB = CD. 小明认为图中的两个三角形全等,他的思考过程是:在△ ABO 和△ DCO 中A DAC BDAOBDOC ABO DCO OAB CD你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并B C说明你的思考过程. (请将答案写在右侧答题区)第 28 题七.探究拓展与应用满分30分,25.几何探究题( 30 分)请将题答在右侧区域。
2017-2018学年山东滕州七年级下册期末综合检测(一)数学试题一、选择题1.下列计算正确的是()A.;B.;C.;D.;2.计算(a -2b)(a +2b)的结果是()A.a2+2ab+b2B.a2-4ab-4b2C.a2-4b2D.a2+4b23.如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),由图中面积关系可以直接得到的公式是()A.a2﹣b2=(a+b)(a﹣b)B.a2+b2=(a+b)2﹣2abC.(a﹣b)2=a2+b2﹣2ab D.(a+b)2﹣(a﹣b)2=4ab4.一辆汽车在笔直的公路上,两次拐弯后,仍在原;的方向上平行前进,则这两次拐弯的角度应是()A.第一次向左拐40°,第二次向右拐40° B.第一次向右拐40°,第二次向左拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向右拐40°,第二次向右拐140°5.一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A. 40°B. 45°C. 50°D. 10°6.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.7.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 8.如图,△ABC≌△ADE,∠DAC=60,∠BAE=100,BC、DE相交于点F,则∠DFB度数是( )A. 15B. 20C. 25D. 309.第24届冬季奥林匹克运动会,将于2022年02月04–2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是( )A.B.C.D.10.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是()A.B.C.D.11.如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列说法中:①∠ADE=∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF=180°;④S△ABC =S四边形DBCF.正确的有( )A.4个B.3个C.2个D.1个12.已知(+m)(+n)=2-3-4,则m+n的值为( )A.1 B.-1 C.-2 D.-313.将一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD =180°;③如果BC∥AD,则有∠2=45°;④如果∠CAD=150°,必有∠4=∠C;正确的有( )A.①②③B.①②④C.①③④D.①②③④14.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°15.如图,在△ABC中,AB=AC,∠BAC=70°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F分别在BC、AC上,点C沿EF折叠后与点O重合,则∠BEO的度数是()A. 20°B. 35°C. 40°D. 55°二、填空题16.若a m=3,a n=4,则a m+n=_____.17.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=_____.18.多项式2+2m+64是完全平方式,则m= ________ .19.如图,在中,,,,与的关系是__________.20.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE =________cm.21.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若,则的度数为____________.22.已知,则的值为__________.23.如图,∠AOB=30°,点M,N分别是射线OA,OB上的动点,OP平分∠AOB,且OP =6,△PMN的周长最小值为________.三、解答题24.先化简,再求值:[(+2y)2-(3+y)(-y+3)-5y2]÷(-4),其中=-,y=2.25.如图:点B,E,C,F在一条直线上,FB=CE,AB∥ED,AC∥DF.求证:AB=DE,AC=DF.26.如图,△ABC和△DCE均是等腰三角形,CA=CB,CD=CE,∠BCA=∠DCE.(1)求证:BD=AE;(2)若∠BAC=70°,求∠BPE的度数.27.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知2﹣4y2=12,+2y=4,求﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).28.现有外观完全相同的卡片,正面分别绘有4种不同的花色,小胖和小亮在每种花色的卡片中各取9张,上面分别标上数字1,2,3,4,5,6,7,8,9.把36张卡片背面朝上洗匀,开始进行抽卡片游戏.规定;小胖从中任意抽取一张卡片(不放回),小亮从剩余的卡片中任意抽取一张,谁抽到的卡片上的数字大谁就获胜(说明;卡片上的数字的大小与花色无关).然后两人把抽到的卡片都放回,重新开始游戏.(1)小胖从中任意抽取一张卡片,他抽到9的概率是____;(2)若小胖抽取到的卡片上的数字为3,然后小亮抽取卡片,那么小胖获胜的概率是____,小亮获胜的概率是____;(3)若小胖抽取到的卡片上的数字为1,然后小亮抽取卡片,小胖获胜的概率是____,小亮获胜的概率是____;(4)小胖抽取到的卡片上的数字为多少时,两个人获胜的概率相同?请说明理由.29.先阅读下面的内容,再解决问题.例题:若, 求m和n的值解:∵∴∴∴,∴,问题:(1)若,求的值.(2)已知a,b,c是△ABC的三边长,满足,且c是△ABC中最长的边,求c的取值范围.30.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系呢?(1)通过观察、实验提出猜想:∠ACB与∠ABC的数量关系,用等式表示为:.(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:如图2,延长AC到F,使CF=CD,连接DF.通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.想法2:在AB上取一点E,使AE=AC,连接ED,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.请你参考上面的想法,帮助小明证明猜想中∠ACB与∠ABC的数量关系(一种方法即可).。
2017—2018学年下期期末考试八年级数学参考答案一、选择题1.B2.A3.B4.D5.A6.C7.C8.D9.A 10.B 二、填空题11.x=2;12.合理即可;13.24米;14.小丽家今年7月的用水量-小丽家去年12月的用水量=5m 3或小丽家今年7月份每立方米的水费=11+3(小丽家去年12月每立方米的水费;15.4或三、解答题16.原式可化简为x 2+1.……………………………3分当x =2时,原式=22+1=5(注:x 不能取1或-1)……6分17.(1)图略………………………………2分(2)图略………………………………4分(3)(-1,-2).…………………………6分18.图略.C 点有两个………………………………1分尺规作出AB 的垂直平分线………………………3分在垂直平分线上作出两个正确的C 点…………………5分能正确的给出∠ACB 是直角的理由.………………………………7分19.(1)①5-2;②1-2;………………………………2分(2)③54;………………………………3分(3)同意小英的说法.理由如下:求不等式25x x +∙+∙<的解集,就是在图象上找出直线1l 在2l 在下方时对应的x 的取值,两直线的交点C 的横坐标1-2能够使25=x x +∙+∙成立.在C 点的左侧直线1l 在2l 的下方,即满足y 1<y 2,故此不等式的解集为12x <-.(理由合理即可.)………………6分20.解:(1)AB =CD .四边形ABCD 是平行四边形.………………………………2分(2)证明:连接BD .在△ABD 和△CDB 中,,,,A B C D A D B C B D D B =⎧⎪=⎨⎪=⎩∴△ABD ≌△CDB (SSS ),∴∠ADB =∠DBC ,∠ABD =∠CDB ,∴AB ∥CD ,AD ∥CB.∴四边形ABCD 是平行四边形;………………………………7分(3)平行四边形两组对边分别相等.………………………………9分21.解:(1)设A ,B 两种型号的新能源汽车的销售单价分别为x 元、y 元,依题意得5+359,8596.4,x y x y =⎧⎨+=⎩解得 5.8,10.x y =⎧⎨=⎩答:A 型汽车的销售单价为5.8万元,B 型汽车的销售单价为10万元.…………………4分(2)设B 型号的新能源汽车a 辆,则采购A 型号的新能源汽车(30-a )辆,依题意得10a +5.8(30-a )≤200,解得:a ≤12.5.(a 取整数)答:4S 店最多采购B 型号的新能源汽车12辆.……………………7分(3)设4S 店销售完这30辆车,获得的利润是w 万元,()()()5.853010924+0.2w a a a=--+-=0.2012.5,12240.212=26.4.w a a w a a a w >∴∴≤∴==+⨯随的增大而增大最大时,最大又且是整数时,Q Q 答:A 型号采购18辆,B 型号采购12辆时,利润最大,最大利润是26.4万元.……10分22.解:(1)∵四边形ABCD 是平行四边形,∴AB=CD =4;AB ∥CD.……………………2分∴∠B =∠DCE =90°.……………………3分∴Rt △DCE 中,DC =4,CE =3,∴根据勾股定理,得DE =5cm.……………………4分(2)95;根据题意,AP =2t ,PD =9-2t ,EQ =3t ,……………………6分∵四边形PQED 是平行四边形,∴PD=QE,∴9-2t =3t .……………………7分∴t =9.……………………8分。
2017-2018学年山东滕州七年级下册期末综合检测(一)数学试题一、选择题1.下列计算正确的是()A.;B.;C.;D.;2.计算(a -2b)(a +2b)的结果是()A.a2+2ab+b2B.a2-4ab-4b2C.a2-4b2D.a2+4b23.如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),由图中面积关系可以直接得到的公式是()A.a2﹣b2=(a+b)(a﹣b)B.a2+b2=(a+b)2﹣2abC.(a﹣b)2=a2+b2﹣2ab D.(a+b)2﹣(a﹣b)2=4ab4.一辆汽车在笔直的公路上,两次拐弯后,仍在原;的方向上平行前进,则这两次拐弯的角度应是()A.第一次向左拐40°,第二次向右拐40°B.第一次向右拐40°,第二次向左拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向右拐40°,第二次向右拐140°5.一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A. 40°B. 45°C. 50°D. 10°6.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.7.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 8.如图,△ABC≌△ADE,∠DAC=60,∠BAE=100,BC、DE相交于点F,则∠DFB度数是( )A. 15B. 20C. 25D. 309.第24届冬季奥林匹克运动会,将于2022年02月04–2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是( )A.B.C.D.10.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是()A.B.C.D.11.如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列说法中:①∠ADE=∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF=180°;④S =S四边形DBCF.正确的有( )△ABCA.4个B.3个C.2个D.1个12.已知(+m)(+n)=2-3-4,则m+n的值为( )A.1 B.-1 C.-2 D.-313.将一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD =180°;③如果BC∥AD,则有∠2=45°;④如果∠CAD=150°,必有∠4=∠C;正确的有( )A.①②③B.①②④C.①③④D.①②③④14.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°15.如图,在△ABC中,AB=AC,∠BAC=70°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F分别在BC、AC上,点C沿EF折叠后与点O重合,则∠BEO的度数是()A. 20°B. 35°C. 40°D. 55°二、填空题16.若a m=3,a n=4,则a m+n=_____.17.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=_____.18.多项式2+2m+64是完全平方式,则m= ________ .19.如图,在中,,,,与的关系是__________.20.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE =________cm.21.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若,则的度数为____________.22.已知,则的值为__________.23.如图,∠AOB=30°,点M,N分别是射线OA,OB上的动点,OP平分∠AOB,且OP =6,△PMN的周长最小值为________.三、解答题24.先化简,再求值:[(+2y)2-(3+y)(-y+3)-5y2]÷(-4),其中=-,y=2.25.如图:点B,E,C,F在一条直线上,FB=CE,AB∥ED,AC∥DF.求证:AB=DE,AC=DF.26.如图,△ABC和△DCE均是等腰三角形,CA=CB,CD=CE,∠BCA=∠DCE.(1)求证:BD=AE;(2)若∠BAC=70°,求∠BPE的度数.27.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知2﹣4y2=12,+2y=4,求﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).28.现有外观完全相同的卡片,正面分别绘有4种不同的花色,小胖和小亮在每种花色的卡片中各取9张,上面分别标上数字1,2,3,4,5,6,7,8,9.把36张卡片背面朝上洗匀,开始进行抽卡片游戏. 规定;小胖从中任意抽取一张卡片(不放回),小亮从剩余的卡片中任意抽取一张,谁抽到的卡片上的数字大谁就获胜(说明;卡片上的数字的大小与花色无关).然后两人把抽到的卡片都放回,重新开始游戏.(1)小胖从中任意抽取一张卡片,他抽到9的概率是____;(2)若小胖抽取到的卡片上的数字为3,然后小亮抽取卡片,那么小胖获胜的概率是____,小亮获胜的概率是____;(3)若小胖抽取到的卡片上的数字为1,然后小亮抽取卡片,小胖获胜的概率是____,小亮获胜的概率是____;(4)小胖抽取到的卡片上的数字为多少时,两个人获胜的概率相同?请说明理由.29.先阅读下面的内容,再解决问题.例题:若, 求m和n的值解:∵∴∴∴,∴,问题:(1)若,求的值.(2)已知a,b,c是△ABC的三边长,满足,且c是△ABC中最长的边,求c的取值范围.30.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系呢?(1)通过观察、实验提出猜想:∠ACB与∠ABC的数量关系,用等式表示为:.(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:如图2,延长AC到F,使CF=CD,连接DF.通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.想法2:在AB上取一点E,使AE=AC,连接ED,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.请你参考上面的想法,帮助小明证明猜想中∠ACB与∠ABC的数量关系(一种方法即可).。
2017-2018学年北师大版初一数学下册期末测试卷及答案2017-2018学年第二学期期末考试七年级数学试卷第I卷(选择题共48分)一、选择题(本大题共12小题,每小题4分,共48分)1.下列计算正确的是()A。
$a^3+a^2=a^5$B。
$a^3\cdot a^2=a^6$C。
$a^3\div a^2=a$D。
$(a^3)^2=a^9$2.某个观测站测得:空气中pm2.5含量为每立方米0.g,则将0.xxxxxxx用科学记数法表示为()A。
$2.3\times10^7$B。
$2.3\times10^6$C。
$2.3\times10^5$D。
$2.3\times10^4$3.下列图形中,不属于轴对称图形的是()删除此段4.如图,直线$l_1//l_2$,则∠α为()A.120°B.130°C.140°D.150°5.下列运算正确的是()A。
$(x+y)^2=x^2+2xy+y^2$B。
$(x-y)^2=x^2-2xy+y^2$C。
$(x-2y)^2=x^2-4xy+4y^2$D。
$(-x+y)^2=x^2-2xy+y^2$6.如图,已知点D是△ABC的重心,若AE=4,则AC的长度为()A.4B.8C.10D.127.如图,已知两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°8.若长方形面积是$2a^2-2ab+6a$,一边长为2a,则这个长方形的周长是()A。
$6a-2b+6$B。
$2a-2b+6$C。
$6a-2b$D。
$3a-b+3$9.如图,要测量河两岸相对两点A、B间的距高,先在过点B的$AB$的垂线上取两点C、D,使得$CD=BC$,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SASB.SSSC.ASAD.AAS10.下列命题中,是假命题的是()A.对顶角相等B.同角的余角相等C.到线段两端点距离相等D.到角两边距离相等的点,在这个角的角平分线上11.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长为x,宽为y,则依题意列二元一次方程组正确的是()begin{cases}5x+2y=75\\2x+y=75\end{cases}$begin{cases}x+2y=75\\2x+y=75\end{cases}$删除此段begin{cases}3x+y=75\\y=3x\end{cases}$12.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,点E、F分别是线段BC、DC上的的动点.当三角形的周长最小时,∠EAF的度数为()删除此段二、填空题1.-13.3 + ( )1的值为。
2017 — 2018学年第二学期期末检测试题答案七年级数学一、选择题(每小题3分,共30分)1-5 CCAAB6-10 DBCCD二、填空题(每题3分,共15分)11. 2.5×10-1012.1/2 13.45°14.20°15.75°三、解答题(共75分)16. 解:(1)①原式=4-1+1 1 3()②原式=12a2b4+116a4b8÷2414a b⎛⎫⎪⎝⎭……2分=4-1+3 ……3分=12a2b4+14a2b4……3分=6;……4分=34a2b4;……4分(2)原式=9x2-4-5x2+5x-(4x2-4x+1) ……2分=9x2-4-5x2+5x-4x2+4x-1 ……3分=9x-5,……4分当x=13-时,原式=-8. ……5分17. (答案举例如下,每画对一个图给2分,共6分)18. (1)如图,……2分(2)15×(0.942+0.946+0.951+0.949+0.948)=15×4.736=0.9472≈0.95.……4分(3)一共有5+13+22=40种等可能的结果,其中摸到黄球的结果又5种∴P(摸出一个球是黄球)=51408=.……6分(4)设取出了x个黑球,则放入了x个黄球,则51513224+x=++,解得x=5.答:取出了5个黑球.……8分19. (每空1分,共6分)垂直的定义;已证;SAS;全等三角形对应角相等;直角三角形中两锐角互余;等量代换.20. 解:(1)在△ABC中,∠B=30°,∠ACB=70°,∴∠BAC=180°-30°-70°=80°,∵AD平分∠BAC,∴,……2分又∵AE⊥BC,∴∠AEC=90°,∴∠BAE=90°-∠B=90°-30°=60°,……4分∴∠DAE=∠BAE-∠BAD=60°-40°=20° ……5分又∵CF∥AD,∴∠CFE=∠DAE=20° ……6分(2).……8分21. (1)根据题意画出图形,如图所示.……3分(2)解:由题可知∠BAC=∠EDC=90°,60cm=0.6m,AC=20×0.6=12m,DC=20×0.6=12m,DE=100×0.6=60m. ……5分∵点E、C、B在一条直线上,∴∠DCE=∠ACB.∵∠BAC=∠EDC=90°,AC=DC,∠DCE=∠ACB,∴△ABC≌△DEC. ……7分∴AB=DE.∵DE=60m,∴AB=60m. ……9分答:A、B两根电线杆之间的距离大约为60m. ……10分22.解:(1) ∵在等边三角形ABC 中,AD 是高∴BD =DC ,即AD 是线段BC 的垂直平分线 ∴BP =PC∴BP +PE =PC +PE =EC ……3分∵在等边三角形ABC 中,点E 是AB 的中点 ∴CE ⊥AB ∴∠ADB =∠CEB =90° 在△ADB 和△CEB 中∠ADB =∠CEB ,∠B =∠B ,AB =CB∴△ADB ≌△CEB ∴EC =AD =6 ∴BP +PE =6 ……6分(2)如图,……8分PM +PC 的最小值为5. ……10分23.(1)答:DE ⊥DA ……1分理由:∵△ABC 中,∠BAC =90°,AB =AC ∴∠B =45°……2分∵MN ∥BC ∴∠DAE =∠B =45° ……3分∵DE =DA∴∠DAE =∠DEA =45°∴∠EDA =90° 即DE ⊥DA ……4分(2)解:∵∠DEA =45°∠DEA +∠DEB =180°∴∠DEB =180°-∠DEA =135° ……5分(3)答:DB =DP ……6分理由:如答图2,∵∠DEA =∠DAE =45°∴∠DAP =∠DAE + ∠BAC = 135°∵∠DEB =135°∴∠DEB =∠DAP =135° ……7分∵∠1+∠EDP =90°,∠EDP +∠2=90°,∴∠1=∠2. ……8分在△BDE 与△PDA 中,∠1=∠2,DE =DA ,∠DEB =∠DAP =135°∴△BDF ≌△PDA (ASA ) ∴DB =DP . ……9分(4)答:DE ⊥DA , DB =DP 成立. ……10分理由:∵△ABC 中,∠BAC =90°,AB =AC ∴∠ABC =45°∵MN ∥BC ∴∠DAE =∠ABC =45° ……11分∵DE =DA ∴∠DAE =∠DEA =45°∴∠EDA =90° 即DE ⊥DA ……12分∵DE ⊥DA , DE =DA ∴∠E =∠DAE =45°∴∠DAP =180°-∠DAE -∠BAC = 45°∵∠1+∠ADB =90°,∠ADB +∠2=90°,∴∠1=∠2. ……11分在△BDE 与△PDA 中,∠1=∠2,DE =DA ,∠E =∠DAP =45°∴△BDF ≌△PDA (ASA )∴DB =DP . ……12分(答图2)(图3)图3D(5)如右图……13分答:DE⊥DA,DB=DP成立.……14分。
2017-2018学年山东滕州七年级下册期末综合检测(一)数学试题一、选择题1.下列计算正确的是()A.;B.;C.;D.;2.计算(a -2b)(a +2b)的结果是()A.a2+2ab+b2B.a2-4ab-4b2C.a2-4b2D.a2+4b23.如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),由图中面积关系可以直接得到的公式是()A.a2﹣b2=(a+b)(a﹣b)B.a2+b2=(a+b)2﹣2abC.(a﹣b)2=a2+b2﹣2ab D.(a+b)2﹣(a﹣b)2=4ab4.一辆汽车在笔直的公路上,两次拐弯后,仍在原;的方向上平行前进,则这两次拐弯的角度应是()A.第一次向左拐40°,第二次向右拐40°B.第一次向右拐40°,第二次向左拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向右拐40°,第二次向右拐140°5.一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A. 40°B. 45°C. 50°D. 10°6.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.7.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 8.如图,△ABC≌△ADE,∠DAC=60,∠BAE=100,BC、DE相交于点F,则∠DFB度数是( )A. 15B. 20C. 25D. 309.第24届冬季奥林匹克运动会,将于2022年02月04–2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是( )A.B.C.D.10.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是()A.B.C.D.11.如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列说法中:①∠ADE=∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF=180°;④S =S四边形DBCF.正确的有( )△ABCA.4个B.3个C.2个D.1个12.已知(+m)(+n)=2-3-4,则m+n的值为( )A.1 B.-1 C.-2 D.-313.将一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD =180°;③如果BC∥AD,则有∠2=45°;④如果∠CAD=150°,必有∠4=∠C;正确的有( )A.①②③B.①②④C.①③④D.①②③④14.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°15.如图,在△ABC中,AB=AC,∠BAC=70°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F分别在BC、AC上,点C沿EF折叠后与点O重合,则∠BEO的度数是()A. 20°B. 35°C. 40°D. 55°二、填空题16.若a m=3,a n=4,则a m+n=_____.17.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=_____.18.多项式2+2m+64是完全平方式,则m= ________ .19.如图,在中,,,,与的关系是__________.20.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE =________cm.21.如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若,则的度数为____________.22.已知,则的值为__________.23.如图,∠AOB=30°,点M,N分别是射线OA,OB上的动点,OP平分∠AOB,且OP =6,△PMN的周长最小值为________.三、解答题24.先化简,再求值:[(+2y)2-(3+y)(-y+3)-5y2]÷(-4),其中=-,y=2.25.如图:点B,E,C,F在一条直线上,FB=CE,AB∥ED,AC∥DF.求证:AB=DE,AC=DF.26.如图,△ABC和△DCE均是等腰三角形,CA=CB,CD=CE,∠BCA=∠DCE.(1)求证:BD=AE;(2)若∠BAC=70°,求∠BPE的度数.27.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知2﹣4y2=12,+2y=4,求﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).28.现有外观完全相同的卡片,正面分别绘有4种不同的花色,小胖和小亮在每种花色的卡片中各取9张,上面分别标上数字1,2,3,4,5,6,7,8,9.把36张卡片背面朝上洗匀,开始进行抽卡片游戏. 规定;小胖从中任意抽取一张卡片(不放回),小亮从剩余的卡片中任意抽取一张,谁抽到的卡片上的数字大谁就获胜(说明;卡片上的数字的大小与花色无关).然后两人把抽到的卡片都放回,重新开始游戏.(1)小胖从中任意抽取一张卡片,他抽到9的概率是____;(2)若小胖抽取到的卡片上的数字为3,然后小亮抽取卡片,那么小胖获胜的概率是____,小亮获胜的概率是____;(3)若小胖抽取到的卡片上的数字为1,然后小亮抽取卡片,小胖获胜的概率是____,小亮获胜的概率是____;(4)小胖抽取到的卡片上的数字为多少时,两个人获胜的概率相同?请说明理由.29.先阅读下面的内容,再解决问题.例题:若, 求m和n的值解:∵∴∴∴,∴,问题:(1)若,求的值.(2)已知a,b,c是△ABC的三边长,满足,且c是△ABC中最长的边,求c的取值范围.30.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系呢?(1)通过观察、实验提出猜想:∠ACB与∠ABC的数量关系,用等式表示为:.(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:如图2,延长AC到F,使CF=CD,连接DF.通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.想法2:在AB上取一点E,使AE=AC,连接ED,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.请你参考上面的想法,帮助小明证明猜想中∠ACB与∠ABC的数量关系(一种方法即可).。
2016—2017
学年下学期期末水平质量检测初一数学试卷
(全卷满分:120分钟考试时间:120分钟)
注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.一、
细心填一填(每小题3分,共计24分)
1. 计算:2)
3
(2x y
+ = ;)
2
b-
b-
2a a
-
)(
(= .
2.如果1
2+
+kx
x是一个完全平方式,那么k的值是 .
3. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题
时说,2006年中央财政用于“三农”的支出将达到33970000
万元,这个数据用科学记数法可表示为万元.
4. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .
5. 如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是 .
6.现在规定两种新的运算“﹡”和“◎”:a﹡b=2
2b
a+;a◎b=2ab,如(2﹡3)(2◎3)=
(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .
7.某物体运动的路程s(千米)与运动的时间t(小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为千米.
8.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图
所示,则该汽车的号码是 .
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共27分)
9.下列图形中不是
..正方体的展开图的是()
A B C D
10. 下列运算正确
..的是()
A.10
5
5a
a
a=
+ B.24
4
6a
a
a=
⨯C.a
a
a=
÷-1
0D.1
4
4=
-a
a
11. 下列结论中,正确
..的是()
A.若2
2b
a
,b
a≠
≠则 B.若2
2b
a
,b
a>
>则
C.若b
a
,
b
a2
2±
=
=则 D.若
b
1
a
1
,
b
a>
>则
12. 如图,在△ABC中,D、E分别是AC、BC上的点,若
△ADB≌△EDB≌△EDC,则∠C的度数是( )
A.15°
B.20°
C.25°
D.30°
13. 观察一串数:0,2,4,6,….第n 个数应为( )
A.2(n -1)
B.2n -1
C.2(n +1)
D.2n +1 14.下列关系式中,正确..
的是( ) A.()222
b a b a -=- B.()()22b a b a b a -=-+
C.()222
b a b a +=+ D.()2
22
b 2ab a b a +-=+
15. 如图表示某加工厂今年前5
) A.1月至3月每月产量逐月增加,4、
5两月产量逐月 减小
B.1月至3月每月产量逐月增加,
4、5两月产量与3
持平
C.1月至
3月每月产量逐月增加,4
、5
生产
D. 1月至3月每月产量不变,4、5两月均停止生产 16.下列图形中,不一定...是轴对称图形的是( ) A.等腰三角形 B.线段 C.钝角17. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )
A.1
B.2
C. 3
D.4
三、精心算一算(18题5分,19题6分,共计11分)
18.()()3
42
6
y y 2-
19.先化简()()()()1x 5x 13x 13x 12x 2
-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.
四、认真画一画(20题5分,21题5分,共计10分)
20.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:
21.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)
五、请你做裁判(第22题小5分,第23小题5分,共计10分)
22.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额. 小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.
游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?
23. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米; 小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?
六、生活中的数学(8分),
24.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且
在△ABO 和△DCO 中 ⎪⎩
⎪
⎨⎧=∆≅∆−→−∠=∠=
CD AB DCO ABO DOC AOB BD AC
你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.(请将答案写在右侧答题区)
七.探究拓展与应用满分30分,
25.几何探究题(30分)请将题答在右侧区域。
2010—2011学年下学期期末水平质量检测 七年级数学试卷参考答案及评分标准
一、细心填一填(每题2分,共计20)
1. 5x ;2a.
2.±2.
3.平行.
4.3.397×10
7
5.
8
3
6.26或22㎝
7. AC=AE (或BC=DE ,∠E=∠C,∠B=∠D)
8.-20
9. 45 10.B6395
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)
三、精心算一算(21题3分,22题5分,共计8分)
21.解:=1212
y 2y
- =12y ……3分
22.解:=5x 5x 19x 14x 4x 2
2
2
-++-+-=29x +- …3分 当x=0时,原式
四、认真画一画(23题4分,24题423.解:
理由是: 垂线段最短 . ……2分 作图……2分
24.解
每作对一个给1分
五、请你做裁判!(第25题小4分,第26小题6分,共计10分)
25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是
3162=,而小丽去的可能性是6
1
,所以游戏不公平. ……2分 26.解:根据小王的设计可以设宽为x 米,长为(x +5)米,
根据题意得2x +(x +5)=35 解得x=10.
因此小王设计的长为x +
. ……2分 根据题意得2x +(x +2解得x=11.
因此小王设计的长为x +2=11+11×13=143(平方米). ……2分 六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)
(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只. (3)近似数.
(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分
添加的条件为:∠B=∠C(或∠A =∠D 、或符合即可)…3分
在△ABO 和△DCO 中
DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩
⎪
⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一) 七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)
29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行 (3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)2
2
b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=2
2
b a -.
(4): 评分标准:每空1分,(4)小题各1分八、信息阅读题(6分)
31.(1)解:由图象可以看出农民自带的零钱为5元;
(2)
()元5.0305
20=- (3)
()()千克,千克453015154
.020
26=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.。