2014数形结合思想(修改)
- 格式:ppt
- 大小:1.12 MB
- 文档页数:19
数形结合思想方法一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.2230 13x x kx k k ++=-若关于的方程的两根都在和之间,求的取值范围。
分析:2()23f x x kx k x =++令,其图象与轴交点的横坐标就是方程()0f x =()13y f x =-的解,由的图象可知,要使二根都在,之间, (1)0f ->只需,(3)0f >,()()02bf f k a-=-<同时成立. 10(10)k k -<<∈-解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩2020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
数学思想方法专题第二讲 数形结合思想1. 数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.2. 数形结合思想的实质、关键及运用时应注意的问题:其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化,在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参,合理用参,建立关系,由数思形,以形思数,做好数形转化;第三是正确确定参数的取值范围.3. 实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系; (2)函数与图象的对应关系;(3)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(4)所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,以2为半径的圆.1. (2013·重庆)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4B.17-1 C .6-2 2D.17答案 A 解析 设P (x,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C 1′C 2|=(2-3)2+(-3-4)2=5 2.而|PM |=|PC 1|-1,|PN |=|PC 2|-3, ∴|PM |+|PN |=|PC 1|+|PC 2|-4≥52-4.2. (2011·大纲全国)已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C. 2D.22答案 C 解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O 、A 、C 、B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2.3. (2013·山东)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12答案 C 解析 如图,由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0得A (3,-1).此时直线OM 的斜率最小,且为-13.4. (2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x , x ≤0,ln (x +1), x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 D 解析 函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成 立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度.显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立.③当a <0时,只需在x <0时,x 2-2x ≥ax 成立.即a ≥x -2成立,∴a ≥-2.综上所述:-2≤a ≤0.故选D.5. (2012·天津)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.答案 (0,1)∪(1,4)解析 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1(x >1或x <-1),-x -1(-1≤x <1).在直角坐标系中作出该函数的图象,如图中实线所示. 根据图象可知,当0<k <1或1<k<4时有两个交点.题型一 数形结合解决方程的根的个数问题例1 (2012·福建)对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.审题破题 本题以新定义为背景,要先写出f (x )的解析式,然后将方程f (x )=m 根的个数转化为函数y =f (x )的图象和直线y =m 的交点个数.答案 ⎝ ⎛⎭⎪⎫1-316,0解析 由定义可知,f (x )=⎩⎪⎨⎪⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3.不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=2×12=1,∴x 2x 3<14.令⎩⎪⎨⎪⎧(2x -1)x =14,x <0,解得x =1-34.∴1-34<x 1<0,∴1-316<x 1x 2x 3<0.反思归纳 研究方程的根的个数、根的范围等问题时,经常采用数形结合的方法.一般地,方程f (x )=0的根,就是函数f (x )的零点,方程f (x )=g (x )的根,就是函数f (x )和g (x )的图象的交点的横坐标.变式训练1 已知:函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是( )A .5B .7C .9D .10答案 C 解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.题型二 数形结合解不等式问题例2 设有函数f (x )=a +-x 2-4x 和g (x )=43x +1,已知x ∈[-4,0]时恒有f (x )≤g (x ),求实数a 的取值范围.审题破题 x ∈[-4,0]时恒有f (x )≤g (x ),可以转化为x ∈[-4,0]时,函数f (x )的图象都在函数g (x )的图象下方或者两图象有交点. 解 f (x )≤g (x ),即a +-x 2-4x ≤43x +1,变形得-x 2-4x ≤43x +1-a ,令y =-x 2-4x , ① y =43x +1-a .②①变形得(x +2)2+y 2=4(y ≥0),即表示以(-2,0)为圆心,2为半径的圆的上半圆;②表示斜率为43,纵截距为1-a 的平行直线系.设与圆相切的直线为AT ,AT 的直线方程为: y =43x +b (b >0),则圆心(-2,0)到AT 的距离为d =|-8+3b |5,由|-8+3b |5=2得,b =6或-23(舍去).∴当1-a ≥6即a ≤-5时,f (x )≤g (x ).反思归纳 解决含参数的不等式和不等式恒成立问题,可以将题目中的某些条件用图象表现出来,利用图象间的关系以形助数,求方程的解集或其中参数的范围.变式训练2 已知不等式x 2+ax -2a 2<0的解集为P ,不等式|x +1|<3的解集为Q ,若P ⊆Q ,求实数a 的取值范围.解 x 2+ax -2a 2=(x +2a )(x -a )<0.|x +1|<3⇒Q ={x |-4<x <2}.当-2a <a ,即a >0时,P ={x |-2a <x <a }.∵P ⊆Q ,∴⎩⎪⎨⎪⎧-2a ≥-4,a ≤2,a >0.解得0<a ≤2.当-2a =a ,即a =0时,P =∅,P ⊆Q .当-2a >a ,即a <0时,P ={x |a <x <-2a },∵P ⊆Q ,∴⎩⎪⎨⎪⎧a ≥-4,-2a ≤2,a <0,解得-1≤a <0,综上可得-1≤a ≤2.题型三 数形结合解决有明显几何意义的式子(概念)问题例3 已知函数f (x )=ax 2+bx -1(a ,b ∈R 且a >0)有两个零点,其中一个零点在区间(1,2)内,则ba +1的取值范围为 ( )A .(-∞,1)B .(-∞,1]C .(-2,1]D .(-2,1)审题破题 先根据图象确定a ,b 满足的条件,然后利用ba +1的几何意义——两点(a ,b ),(-1,0)连线斜率求范围.答案D 解析 因为a >0,所以二次函数f (x )的图象开口向上.又f (0)=-1,所以要使函数f (x )的一个零点在区间(1,2)内,则有⎩⎪⎨⎪⎧a >0,f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧a >0,a +b -1<0,4a +2b -1>0.如图所示的阴影部分是上述不等式组所确定的平面区域,式子ba +1表示平面区域内的点 P (a ,b )与点Q (-1,0)连线的斜率.而直线QA 的斜率k =1-00-(-1)=1,直线4a +2b -1=0的斜率为-2,显然不等式组所表示的平面区域不包括边界,所以 P ,Q 连线的斜率的取值范围为(-2,1).故选D.反思归纳 如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有: (1)b -n a -m ↔(a ,b )、(m ,n )连线的斜率; (2)(a -m )2+(b -n )2↔(a ,b )、(m ,n )之间的距离; (3)a 2+b 2=c 2↔a 、b 、c 为直角三角形的三边;(4)f (a -x )=f (b +x )↔f (x )图象的对称轴为x =a +b2.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.变式训练3 已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是( )A .[2,4]B .[2,16]C .[4,10]D .[4,16]答案 B 解析 画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点 Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射 线x -y -1=0(x ≥0)的距离d 的平方,最大值为|QA |2=16.∵d 2=⎝ ⎛⎭⎪⎫|3-0-1|12+(-1)22=(2)2=2.∴取值范围是[2,16].题型四 数形结合解几何问题例4 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(14,-1)B .(14,1) C .(1,2)D .(1,-2)审题破题 本题可以结合图形将抛物线上的点P 到焦点的距离转化为到准线的距离,再探求最值.答案 A 解析 定点Q (2,-1)在抛物线内部,由抛物线的定义知,动点P 到抛物线焦点的距离等于它到准线的距离,问题转化为当点P 到点Q 的距离和点P 到抛物线的准线距离之和最小时,求点P 的坐标,显然点P 是直线y =-1和抛物线y 2=4x 的交点时,两距离之和取最小值,解得这个点的坐标是(14,-1).反思归纳 在几何中的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值.变式训练4 已知P 是直线l :3x +4y +8=0上的动点,P A 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,求四边形P ACB 面积的最小值.解 从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形P AC 的面积S Rt △P AC =12|P A |·|AC |=12|P A |越来越大,从而S 四边形P ACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形P ACB 变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S 四边形P ACB应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3,从而|P A |=|PC |2-|AC |2=2 2.∴(S 四边形P ACB )min =2×12×|P A |×|AC |=2 2.典例 (14分)已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.规范解答解 (1)f ′(x )=3x 2-3a =3(x 2-a ),当a <0时,对x ∈R ,有f ′(x )>0,∴当a <0时,f (x )的单调增区间为(-∞,+∞);当a >0时,由f ′(x )>0,解得x <-a 或x >a ,由f ′(x )<0,解得-a <x <a ,∴当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞);单调减区间为(-a ,a ).[6分](2)∵f (x )在x =-1处取得极值,∴f ′(-1)=3×(-1)2-3a =0,∴a =1.[8分]∴f (x )=x 3-3x -1,f ′(x )=3x 2-3,由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.因为直线y =m 与函数y =f (x )的图象有三个不同的交点,结合如图所示f (x )的图象可知:m的取值范围是(-3,1).[14分]评分细则(1)求出f′(x)给1分,不写出单调区间扣1分;(2)只画图象没有说明极值扣2分;(3)没有结论扣1分,结论中范围写成不等式形式不扣分.阅卷老师提醒(1)解答本题的关键是数形结合,根据函数的性质勾画函数的大致图象;(2)解答中一定要将函数图象的特点交待清楚,单调性和极值是勾画函数的前提,然后结合图象找出实数m的取值范围.1.设函数f(x)定义在实数集上,f(2-x)=f(x),且当x≥1时,f(x)=ln x,则有()A.f(13)<f(2)<f(12) B.f(12)<f(2)<f(13) C.f(12)<f(13)<f(2) D.f(2)<f(12)<f(13)答案C解析由f(2-x)=f(x)知f(x)的图象关于直线x=2-x+x2=1对称,又当x≥1时,f(x)=ln x,所以离对称轴x=1距离大的x的函数值大,∵|2-1|>|13-1|>|12-1|,∴f(12)<f(13)<f(2).2.设函数f(x)=⎩⎪⎨⎪⎧x2+bx+c,x≤0,2,x>0.若f(-4)=f(0),f(-2)=-2,则函数y=g(x)=f(x)-x的零点个数为()A.1 B.2 C.3 D.4答案C解析由f(-4)=f(0)得16-4b+c=c.由f(-2)=-2,得4-2b+c=-2.联立两方程解得:b=4,c=2.于是,f(x)=⎩⎪⎨⎪⎧x2+4x+2,x≤0,2,x>0.在同一直角坐标系内,作出函数y=f(x)与函数y=x的图象,知它们有3个交点,进而函数亦有3个零点.3.若方程x+k=1-x2有且只有一个解,则k的取值范围是()A.[-1,1) B.k=±2C.[-1,1] D.k=2或k∈[-1,1)答案D解析令y=x+k,令y=1-x2,则x2+y2=1(y≥0).作出图象如图:而y=x+k中,k是直线的纵截距,由图知:方程有一个解⇔直线与上述半圆只有一个公共点⇔k=2或-1≤k<1.4.设a,b,c是单位向量,且a·b=0,则(a-c)·(b-c)的最小值为()A.-2 B.2-2 C.-1 D.1- 2答案D解析由于(a-c)·(b-c)=-(a+b)·c+1,因此等价于求(a+b)·c的最大值,这个最大值只有当向量a+b与向量c同向共线时取得.由于a·b=0,故a⊥b,如图所示,|a+b|=2,|c|=1,当θ=0时,(a+b)·c取最大值2,故所求的最小值为1- 2.5.当0<x≤12时,4x<logax,则a的取值范围是()A.⎝⎛⎭⎫0,22B.⎝⎛⎭⎫22,1C.(1,2) D.(2,2)答案B解析由0<x≤12,且log a x>4x>0,可得0<a<1,由4 =log a12可得a=22.令f(x)=4x,g(x)=log a x,若4x<log a x,则说明当0<x≤12时,f(x)的图象恒在g(x)图象的下方(如图所示),此时需a>22.综上可得a的取值范围是⎝⎛⎭⎫22,1.6.已知P为抛物线y=14x2上的动点,点P在x轴上的射影为M,点A的坐标是(2,0),则|P A|+|PM|的最小值是________.答案5-1解析如图,抛物线y=14x2,即x2=4y的焦点F(0,1),记点P在抛物线的准线l:y=-1上的射影为P′,根据抛物线的定义知,|PP′|=|PF|,则|PP′|+|PA|=|PF|+|P A|≥|AF|=22+12= 5.所以(|P A|+|PM|)min=(|P A|+|PP′|-1)min=5-1.专题限时规范训练一、选择题1.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,那么不等式f(x)·cos x<0的解集是()A.⎝⎛⎭⎫-3,-π2∪(0,1)∪⎝⎛⎭⎫π2,3 B.⎝⎛⎭⎫-π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3C.(-3,-1)∪(0,1)∪(1,3) D.⎝⎛⎭⎫-3,-π2∪(0,1)∪(1,3)答案B解析根据对称性画出f(x)在(-3,0)上的图象如图,结合y=cos x在(-3,0),(0,3)上函数值的正负,易知不等式f(x)cos x<0的解集是⎝⎛⎭⎫-π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3.2.已知函数f(x)=⎩⎪⎨⎪⎧|lg x|,0<x≤10,-12x+6,x>10,若a、b、c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()12A .(1,10)B .(5,6)C .(10,12)D .(20,24)答案 C 解析 a ,b ,c 互不相等,不妨设a <b <c ,∵f (a )=f (b )=f (c ),由图象可知,0<a <1,1<b <10,10<c <12.∵f (a )=f (b ),∴|lg a |=|lg b |,即lg a =lg 1b ,a =1b.则ab =1,所以abc =c ∈(10,12).3. 用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x } (x ≥0),则f (x )的最大值为( )A .4B .5C .6D .7答案 C 解析 画出y =2x ,y =x +2,y =10-x 的图象,如图所示,观察图象,可知当0≤x ≤2,f (x )=2x ,当2<x ≤4时,f (x )=x +2,当x >4时,f (x )=10-x ,f (x )的最大值在x =4时取得,为6.4. 函数f (x )=(12)x -sin x 在区间[0,2π]上的零点个数为( )A .1B .2C .3D .4答案 B 解析 函数f (x )=(12)x -sin x 在区间[0,2π]上的零点个数即为方程(12)x-sin x =0在区间[0,2π]上解的个数.因此可以转化为两函数y =(12)x 与y =sin x交点的个数.根据图象可得交点个数为2,即零点个数为2.5. 已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)答案 C 解析 ∵渐近线y =bax 与过焦点F 的直线l 平行,或渐近线从该位置绕原点按逆时针旋转时,直线l 与双曲线的右支有一个交点,∴ba ≥3,即c 2=a 2+b 2≥4a 2,∴e ≥2.6. 设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c答案 D 解析 a =sin 5π7=sin ⎝⎛⎭⎫π-2π7=sin 2π7,又π4<2π7<π2, 可通过单位圆中的三角函数线进行比较:如图所示,cos 2π7=OA ,sin 2π7=AB ,tan 2π7=MN ,∴cos2π7<sin 2π7<tan 2π7,即b <a <c . 7. 不等式x 2-log a x <0在x ∈(0,12)时恒成立,则a 的取值范围是( )A .0<a <1 B.116≤a <1 C .a >1 D .0<a ≤116答案 B 解析 不等式x 2-log a x <0转化为x 2<log a x ,由图形知0<a <1且 (12)2≤log a 12,∴a ≥116,故a 的取值范围为⎣⎡⎭⎫116,1. 8. 函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8答案 D 解析 令1-x =t ,则x =1-t .由-2≤x ≤4,知-2≤1-t ≤4,所以-3≤t ≤3.又y =2sin πx =2sin π(1-t )=2sin πt .在同一坐标系下作出y =1t 和y =2sinπt 的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称.因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0,因此x 1+x 2+…+x 8=8. 二、填空题9. 若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的最小值是________. 答案 2解析 可行域如图所示.又yx 的几何意义是可行域内的点与坐标原点连线的斜率k .由图知,过点A 的直线OA 的斜率最小.联立⎩⎪⎨⎪⎧x -y +1=0,y =2,得A (1,2),∴k OA =2-01-0=2.∴y x 的最小值为2.10.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m 的取值范围是__________.答案 m ≥2-1解析 集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),即直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,∴m =2-1,故m 的取值范围是m ≥2-1.11.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.答案 a >1解析 设函数y =a x (a >0且a ≠1)和函数y =x +a .则函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,就是函数y =a x (a >0且a ≠1)的图象与函数y =x +a 的图象有两个交点.由图象可知,当0<a <1时,两函数只有一个交点,不符合;当a >1时,因为函数y =a x(a >1)的图象过点(0,1),而直线y =x +a 的图象与y 轴的交点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.12.已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0-2x ,x <0,则关于x 的方程f [f (x )]+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析 依题意知函数f (x )>0,又 f [f (x )]=依据y =f [f (x )]的大致图象(如图)知,存在实数k ,使得方程f [f (x )]+k =0恰有1个实根;存在实数k ,使得方程f [f (x )]+k =0恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根;不存在实数k ,使得方程恰有4个不相等的实根.综上所述,其中正确命题的序号是①②. 三、解答题13.已知函数f (x )=x 3+ax 2+bx .(1)若函数y =f (x )在x =2处有极值-6,求y =f (x )的单调递减区间;(2)若y =f (x )的导数f ′(x )对x ∈[-1,1]都有f ′(x )≤2,求ba -1的范围.解 (1)f ′(x )=3x 2+2ax +b ,依题意有⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=-6.即⎩⎪⎨⎪⎧12+4a +b =0,8+4a +2b =-6,解得⎩⎪⎨⎪⎧a =-52,b =-2.∴f ′(x )=3x 2-5x -2.由f ′(x )<0,得-13<x <2.∴y =f (x )的单调递减区间是⎝⎛⎭⎫-13,2. (2)由⎩⎪⎨⎪⎧ f ′(-1)=3-2a +b ≤2,f ′(1)=3+2a +b ≤2,得⎩⎪⎨⎪⎧2a -b -1≥0,2a +b +1≤0.不等式组确定的平面区域如图阴影部分所示:由⎩⎪⎨⎪⎧ 2a -b -1=0,2a +b +1=0,得⎩⎪⎨⎪⎧a =0,b =-1. ∴Q 点的坐标为(0,-1).设z =ba -1,则z 表示平面区域内的点(a ,b )与点P (1,0)连线的斜率.∵k PQ =1,由图可知z ≥1或z <-2,即ba -1∈(-∞,-2)∪[1,+∞).14.设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a 的取值范围; (2)求α+β的值.解 方法一(1)设x =cos θ,y =sin θ,则由题设知,直线l :3x +y +a =0与圆x 2+y 2=1有两个不同的交点A (cos α,sin α)和B (cos β,sin β). 所以原点O 到直线l 的距离小于半径1,即d =||0+0+a (3)2+12=|a |2<1,∴-2<a <2. 又∵α、β∈(0,2π),且α≠β.∴直线l 不过点(1,0),即3+a ≠0. ∴a ≠-3,即a ∈(-2,-3)∪(-3,2).(2)如图,不妨设∠xOA =α,∠xOB =-β,作OH ⊥AB ,垂足为H ,则∠BOH =α-β2.∵OH ⊥AB ,∴k AB ·k OH =-1.∴tan α+β2=33.又∵α+β2∈(0,2π),∴α+β=π3或α+β=7π3.方法二 (1)原方程可化为sin (θ+π3)=-a 2,作出函数y =sin (x +π3)(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎨⎧-1<-a2<1-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝⎛⎭⎫-1,32时,直线y =-a 2与三角函数y =sin(x +π3)的图象交于C 、D 两点,它们中点的横坐标为7π6,∴α+β2=7π6,∴α+β=7π3.当-2<a <-3,即-a 2∈⎝⎛⎭⎫32,1时,直线y=-a2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3,综上所述,α+β=π3或α+β=7π3.。
关于数形结合思想方法的认识作者:张立杰来源:《学周刊·下旬刊》2014年第11期数学思想是数学知识的灵魂,而数形结合思想在中学数学教学中占有重要地位,应用极为广泛,它几乎贯穿了整个中学数学教学的始终,因此它也越来越受到数学教师的重视。
一、对数形结合思想的认识数形结合思想是对数学问题规律的认识,是无数前人在多少年的数学研究和教学过程中总结出来的根本方法。
数与形是不可分离的,只有当它们共同存在时,才会使人更加方便地研究数学。
我国著名的数学家华罗庚说得好:“数缺形时少直觉,形少数时难入微”“数形结合百般好,隔裂分家万事非”,他还幽默地告诉大家不要“得意忘形”。
由此说明,在解决问题的过程中,数形结合是多么的重要。
(一)以“数”化“形”以数化形,实际上就是根据定理公理把有关数量的问题图形化,一般有以下的几种情况:应用平面几何知识解决问题,应用解析几何知识解决问题,应用立体几何知识解决问题。
有些数量是比较抽象的,不容易理解或者运算,例如无理数和一些复杂的有理数。
当我们在运算解题的过程中无法算出精确的结果时,就需要借助其他的工具来辅助运算,而这个工具就是图形。
而数和形在数学问题中是存在着某种相对应的关系的,我们就根据这些关系转化。
因此,在课堂上渗透数形结合思想时,教师可以适当地多准备一些类型题,让学生通过训练把和具体的数相对应的形找出来,再联系之前学过的知识,根据它们之间存在的数量关系解决问题。
(二)以“形”变“数”我们总说数学是抽象的,是因为它是由具体的事物中提取出来的关于量的方面的属性或关系,而数和形是量的最基本的两个概念。
大家都很清楚图形的特点,很直观,能够形象的表达出已知条件,有些小的结论更是显而易见。
学生面对复杂的图形,不能一见到图就脑袋疼,更加不能自暴自弃,一定要仔细观察图形的特点,发觉题目中隐含的条件或者结论,再联系之前学过的知识,准确地把图形数字化,最后对问题进行分析运算,这样理清了思路之后,做题才会更加舒畅,也大大地减少了做题的时间。
【精选三年经典试题(数学)】2014届高三全程必备《高频题型全掌握系列》21.数学方法:数形结合1.(2012·潍坊模拟)如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝ ⎛⎭⎪⎫32,12,当秒针从P 0(注:此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为( ) A .y =sin ⎝ ⎛⎭⎪⎫π30t +π6 B .y =sin ⎝ ⎛⎭⎪⎫-π60t -π6 C .y =sin ⎝ ⎛⎭⎪⎫-π30t +π6 D .y =sin ⎝ ⎛⎭⎪⎫-π30t -π3 选C 由题意可得,函数的初相位是π6,排除B 、D.又函数周期是60(秒)且秒针按顺时针旋转,即T =2π|ω|=60,所以|ω|=π30,即ω=-π30.2.(2012·全国)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =37.动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ).A .16B .14C .12D .10 解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为AB 的三等分点时,可得结果为6(如图1所示).可以猜想本题碰撞的结果应为2×7=14(如图2所示).故选B.答案 B3.(2012·西安质检)设a 是方程1x -log 2x =0的实数根,则有 ( ).A .a <0B .1<a <2C .0<a <1D .a >2解析 由题意可知,a 是函数y =1x与y =log 2x 交点的横坐标,作出图象即可得1<a <2.答案 B4.(2012·杭州高中月考)函数y =xa x|x |(0<a <1)的图象的大致形状是( ).解析 f (x )=⎩⎪⎨⎪⎧ a x ,x >0,-a x ,x <0,又0<a <1,故选D.答案 D5.(2013·龙岩质检)若偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x 2,则关于x 的方程f (x )=⎝ ⎛⎭⎪⎫110x 在⎣⎢⎡⎦⎥⎤0,103上根的个数是 ( ).A .1B .2C .3D .4 解析 由题意知f (x )是周期为2的偶函数,故当x ∈[-1,1]时,f (x )=x 2,画出f (x )的图象,结合y =⎝ ⎛⎭⎪⎫110x 的图象可知,方程f (x )=⎝ ⎛⎭⎪⎫110x 在x ∈⎣⎢⎡⎦⎥⎤0,103时有3个根,要注意在x ∈⎝⎛⎦⎥⎤3,103时方程无解.答案 C。
一元一次方程中的数形结合思想作者:吴强来源:《初中生世界·七年级》2014年第12期数形结合思想是重要的数学思想方法. 著名数学家华罗庚曾说:“数缺形时少直观,形少数时难入微.”在数学教学时,利用代数和几何的双面工具实现数与形的相互转化,可以揭示数学知识的本质,有利于我们准确掌握数学知识.一、用线形示意图解决行程问题线形示意图通常可以画成直线或环形图,用线段的长或曲线的长来表示某些量,并根据这些线段或曲线的长度关系列出方程. 许多行程问题中的数量关系可以用线形图表示.例1 A、B两地间的路程为360千米,甲车从A地出发开往B地,速度为72千米/小时,乙车从B地出发开往A地,速度为48千米/小时,两车同时出发,多少小时后两车相遇?【分析】可以画出线形示意图:根据线形示意图我们可以找到这个问题中数量之间的相等关系是:甲车行的路程+乙车行的路程=总路程.解:设两车同时出发后x小时相遇.根据题意,得72x+48x=360.解这个方程,得x=3.答:两车同时出发3小时后相遇.【点评】线形示意图具有直观性,可以清晰地反映事物的发展规律或变化趋势.线形示意图用线段表示数量,可根据线段的和或差找出相等关系.变式一:若甲车出发30分钟后乙车再出发,求乙车出发几小时后两车相遇.【分析】可以画出线形示意图:根据线形示意图我们可以找到这个问题中数量之间的相等关系是:甲车前30分钟行的路程+甲车30分钟后行的路程+乙车行的路程=总路程.解:设乙车出发x小时后两车相遇.30分钟=0.5小时.根据题意,得72(x+0.5)+48x=360.解这个方程,得x=2.7.答:乙车出发2.7小时后两车相遇.变式二:两车同时出发,几小时后两车相距60千米?【分析】两车相距60千米要注意分为相遇前相距60千米和相遇后相距60千米两种情况. 可以画出线形示意图:情况一:根据线形示意图我们可以找到这个问题中数量之间的相等关系是:甲车行的路程+乙车行的路程+60 km=总路程.情况二:根据线形示意图我们可以找到这个问题中数量之间的相等关系是:甲车行的路程+乙车行的路程-60 km=总路程.解:情况一:设两车同时出发x小时后两车在相遇前相距60千米.根据题意,得72x+48x+60=360.解这个方程,得x=2.5.情况二:设两车同时出发x小时后两车在相遇后相距60千米.根据题意,得72x+48x-60=360.解这个方程,得x=3.5.答:两车同时出发,2.5小时或者3.5小时后两车相距60千米.二、用圆形示意图解决工程问题画圆形示意图时,用整个圆的面积表示工作量1. 先画一个圆,再画圆的几条半径,把圆分成几个扇形,用扇形面积来表示有关工作量.例2 用甲、乙、丙三部抽水机从矿井里抽水,单独用一部抽水机抽尽,用甲需要24小时,用乙需要30小时,用丙需要40小时,现甲、丙同抽了6小时后,乙机加入,问从开始到结束,一共用了多少小时才能把井里的水抽完?【分析】可以画出圆形示意图:根据圆形示意图我们可以找到这个问题中数量之间的相等关系是:甲、丙合作时完成的工作量+乙机加入后甲、乙、丙完成的工作量=总工作量.工程中的等量关系是:工作量=工作效率×工作时间.如果把全部工作量看作1,那么甲单独抽水1小时完成全部工作量的,乙单独抽水1小时完成全部工作量的,丙单独抽水1小时完成全部工作量的.解:设从开始到结束,一共用了x小时才能把井里的水抽完.根据题意,得+×6+++×(x-6)=1.解这个方程,得x=12.答:从开始到结束,一共用了12小时才能把井里的水抽完.【议一议】解上述问题时,小明列出的方程是+×x+×(x-6)=1. 你能说出它的意义吗?【点评】圆形示意图可以表示出各部分数量和总体的关系.数与图形作为数学这门学科的两种重要载体与表达工具,彼此之间有着内在的本质联系,对充分认识数学内涵有着重要作用. 数形结合思想便是对数与形之间联系的形象表达,它作为一种重要的解题思想,在初中数学中有着重要的应用.(作者单位:江苏省常州外国语学校)。
思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。