《随堂优化训练》2011年八年级数学上册 第十四章 14.2 第3课时 求一次函数解析式课件 人教新课标版
- 格式:ppt
- 大小:387.50 KB
- 文档页数:10
yb=______b=______b=______广东省珠海市八年级数学上册 第十四章 一次函数 14.2.2 一次函数图像随堂练习(2) 人教新课标版归纳1:一次函数y=kx+b (k ≠0)的图象是一条________,作一次函数y=kx+b 的图象可以用_________法,即过点(___,0)和(0,____),作一条直线即可。
探究2:在同一平面直角坐标系中作下列一次函数的图像(两点法):y=2x+1 y=2x-1 y=-2x+1 y=-2x-1解:x …… …… y=2x+1 …… …… y=2x-1………… y=-2x+1 …… …… y=-2x-1 …………k 的值b 的值 经过的象限y=2x+1 k= b= y=2x-1 k= b= y=-2x+1 k= b= y=-2x-1k=b=归纳2:直线y=kx+b (k ≠0)中,k ,b 决定着直线的位置.①k>0,b>0⇔直线经过_______象限; ②k>0,b<0⇔直线经过_______象限;③k<0,b>0⇔直线经过_______象限; ④k<0,b<0⇔直线经过_______象限. 探究3:图象的位置与k 、b 值的关系。
543 2 1 -5 x4 3 2 1O y43 2 15 x4 3 2 1O yb=______b=______K_______0(填>,<,=) K_______0(填>,<,=)归纳3:直线y=kx+b 的图象与y 轴交点的纵坐标就是______(k/b )的值.14.2.2 一次函数的图像(2)——随堂练习 11月19日 A 1.在直角坐标系中,画一次函数y=-3x+3的图象时,通常过点______和_____画一条直线. 2.直线y=2x-3 ,其中k=___,b=____,直线经过_______象限,y 随x 的增大而________.与x 轴的交点是(__,___),与y 轴的交点是(___,___).B 1.观察一次函数y=kx+b 图象判断常数k 与b 的取值范围(填>、<、=)。
第十四章 一次函数课题:14.1.1 变量一、基础练习1.如图,△ABC 底边BC 上的高是6厘米,当三角形的顶点C•沿底边所在直线向点B 移动时,三角形的面积发生了变化.⑴在这个变化过程中,常量、变量各是什么?⑵如果三角形的底边长为x (厘米),那么三角形的面积y (厘米)可以表示为什么?⑶当底边长从12•厘米变化到3•厘米时,•三角形的面积从_____•厘米2,•变化到_____厘米2. 2.婴儿在6个月、1周岁、2周岁时体重分别大约是出生时的2倍,3倍,4倍,6周岁、10周岁时体重分别约是1周岁时的2倍,3倍.⑴上述的哪些量在发生变化?年龄刚出生 6个月 1周岁 2周岁 6周岁 10周岁体重/千克⑶根据表格中的数据,说一说,儿童从出生到10•周岁之间体重是怎样随年龄增长而变化的?3.如图,圆锥的底面半径是2厘米,当圆的高由小到大变化时,•圆锥的体积也随之发生了变化. ⑴在这个变化过程中,常量、变量各是什么?⑵如图圆锥的高为h (厘米),那么圆锥的体积V (厘米)与h (厘米)•的关系式是怎样的呢? ⑶当高由1厘米变化到10厘米时,圆锥的体积变化范围是多少?二、拓展探究某花园护栏是直径为80CM 的半圆形条钢组合而成,且每增加一个半圆形条钢,护栏长度增加a CM(a >0).设半圆形条钢的个数为x (x 为正整数),护栏总长度为y CM.⑴当60=a 时,用含x 的式子表示y 为 ;其中变量是 ,常量是 ; ⑵若护栏总长度为3380CM ,则当60=a 时,所用半 圆形条钢的个数为 ,当50=a 时,所用半圆形条钢的个数为 ;⑶若护栏总长度不变,则当60=a 时,所用半圆形条钢的个数为n 个;当50=a 时,所用半圆形条钢的个数为)(k n +个;则k n 、之间的关系式为 . 三、难点透释在不同的研究过程中,变量和常量可以转换.例如,在vt s =中,当v 为常量时,变量为t s 、;当t 为常量时,变量为v s 、.常量可以是数字,也可以是数值不变的字母.课题:14.1.2 函数(1)一、基础练习1.1~6个月的婴儿生长发育得非常快,他们的体重y (克)和月龄x (月)的关系可以用y=a+700x 来表示,其中a 是婴儿出生时的体重,一个婴儿出生时的体重是3500克,请用2.一辆汽车以30千米/时的速度行驶,则行驶的路程s (千米)与行驶的时间t (•时)的函数关系式是 ,其中t 的取值范围是 .3.周长为12的等腰三角形,底边长y 与腰长x 之间的函数关系式是 ,其中自变量x 的取值范围是 .4.已知函数15+=x y 中,当5-=x 时,y 的对应值为( ). A.6 B.5 C.-4 D.-55.函数y=1||x x-中自变量x 的取值范围是( ).A.x ≠0B.x>0C.x ≠1D.x<06.在下列关系中,y 不是x 的函数的是( )A.0=+x yB.x y 2=C.x y 2=D.422+=x y7.等腰△ABC 的顶角为x ,底角为y.⑴写出y 与x 的关系式;⑵当y 取45°~89°的一个确定值时,相应的x 确定吗?⑶本问题中x 可以看成是y 的函数吗?⑷写出y 的取值范围.二、拓展探究某市出租车的计价规定如下:当行驶路程小于3千米时,乘车费用都是5元(即起步价5元),再加2元燃油附加费;当行驶路程大于或等于3千米时,超过3千米的部分按每0.5千米收费0.9元,再加2元燃油附加费.⑴请写出乘车费用y (元)与行驶路程x (千米)之间的函数关系;⑵按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整,小赵一次乘车后付费12元,请你确定小赵这次乘车路程x 的取值范围.三、难点透释注意:①函数值的唯一性,对于自变量的每一个取值,因变量都有对应值,而且这个对应值只有一个;②确定自变量的取值范围时,既要关系式有意义,又要符合实际意义.课题:14.1.3函数的图像(1)一、基础练习1.如图是物体的抛射图,其中s 表示物体与抛射点之间的水平距离,h•表示物体的高度.⑴这个图象反映了变量 与变量 之间的关系.高度H 有 值与之对应,即高度h 可看成距离s 的函数.2.如图所示,记录了甲、乙两名运动员在一次赛跑中路程s (米)与时间t (秒)的关系,那么可以知道:①这是一次 米赛跑;②甲乙两人先到达终点的是 ;③这次赛跑中甲的速度为,乙的速度为 .3.星期天,小明去朋友家借书,他离家的距离y如图所示,根据图像信息,下列说法正确的是( )A.小明去时的速度大于回家的速度B.小明在朋友家停留了10分钟C.小明去时所花的时间少于回家时所花的时间。
广东省珠海市八年级数学上册 第十四章 一次函数 14.3.2一次函数与二元一次方程(组)随堂练习 人教新课标版(B )巩固训练1.用图象法解方程组10,3436.x y x y +=⎧⎨+=⎩ 由①得y=-x+10,由②得y=-34x+9.在同一直角坐标系中画出这两个函数的图象(如图),观察图象知,•函数y=-x+10和y=-34x+9的图象的交点坐标是_______,即x=____,y=____是方程___________的解,也是方程______________的解,所以方程组10,3436.x y x y +=⎧⎨+=⎩解是________. 2.若直线y=2x +n 与y=mx-1相交于点(1,-2),则( ). A .m =12,n=-52 B .m=12,n=-1 C .m=-1,n=-52 D .m=-3,n=-32 (C)拓展提升1、如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-22、直线kx-3y=8,2x+5y=-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-214.3.3一次函数与二元一次方程(组)——课后作业(A )基础练习1.若一次函数y ax b =+和y cx d =+在同一坐标系内的图象的交点坐标是(2,-3),则方程组⎩⎨⎧+=+=d cx y b ax y 的解是( )A .23x y =⎧⎨=⎩B .23x y =⎧⎨=-⎩C .32x y =-⎧⎨=⎩D .23x y =-⎧⎨=⎩2.如果直线y=3x+6与y=2x-4交点坐标为(a ,b ),则x a y b=⎧⎨=⎩是方程组_______的解( •)A .3624y x y x -=⎧⎨+=-⎩B .3624y x y x -=⎧⎨-=⎩C .3634x y x y -=⎧⎨-=⎩D .3624x y x y -=-⎧⎨-=-⎩3.如图,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程,.y ax b y kx =+⎧⎨=⎩的解是________. (B )巩固训练1.解方程组157x y x y +=⎧⎨-=⎩解为________,则直线y=-x+15和y=x-7的交点坐标是________.•2.一次函数y=3x+7的图象与y 轴的交点在二元一次方程 -2x+•by=•18•上,则b=_______.3、如图,已知直线1:23l y x =+,直线2:5l y x =-+,直线1l 、2l 分别交x 轴于B 、C 两点,1l 、2l 相交于点A 。
广东省珠海市八年级数学上册 第十四章 一次函数 14.1.3函数的图象随堂练习(1)人教新课标版2.小明一出校门先加速行驶,然后匀速行驶一段后,在距家门不远的地方开始减速,最后停下.3.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,•过了一段时间,汽车到了下一个车站,乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,则图中近似地刻画出汽车在这段时间内的速度变化情况的是( )(B )提高训练1.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,•那么可以知道:①这是一次________米赛路;②甲、乙两人先到达终点的是_________;•③在这次赛跑中甲的速度为________,乙的速度为________.2.如图所示,表示的是某航空公司托运行李的费用y (元)与托运行李的质量x (千克)的关系,由图中可知行李的质量只要不超过_________千克,•就可以免费托运. 3.汽车的速度随时间变化的情况如图11-1-11所示: ①这辆汽车的最高时速是多少?②汽车在行驶了多长时间后停了下来,停了多长时间?③汽车在第一次匀速行驶时共用了几分钟?速度是多少? 在这段时间内,它走了多远?BCDA图6(C )拓展提升1.如图5所示,OA 、BA 分别表示甲、乙两名学生运动的路程 与时间的关系图象,图中s 和t 分别表示运动路程和时间, 根据图象判断快者的速度比慢者的速度每秒快( ) A.2.5m B.2m C. 1.5m D.1m14.1.3函数的图象(1)——课后作业A (基础练习)1、如图所示,分别给出了变量x 与y 之间的对应关系,y 不是x 的函数的图象是( )2.某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排工人装箱,若每小时装产品150件,未装箱的产品数量为y ,•生产时间为t ,那么y 与t 的大致图象只能是图中的( )3、张大伯去散步,从家走了20min ,到离家900m 的阅报亭看了10min 报纸后,用了10min 返回到家,如图表示张大伯离家时间与距离之间的关系是( )4.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶.下面是行驶路程s(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是( ).))))(B )提高训练1.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t(小时)之间的函数关系的图象如图7所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发0.5小时;(4) 相遇后,甲的速度小于乙的速度;(5)甲乙两人同时到达目的地.其中符合图象的描述的说法有_______.(填序号)2.甲、乙两人赛跑,路程s 与时间t 的关系如图8所示,那么可以知道:(1)这是一次________m 赛跑;(2)甲、乙两人中先到达终点的是____;(3)乙在这次赛跑中的速度为____m/s.3.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可能在哪里?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?(C )拓展提升1、如图10是小陈同学骑自行车上学的路程与时间的关系图象,请你根据图象描述他上学路上的情况.(新知预习)1.对于一个函数,如果把自变量x和函数y•的每对对应值分别作为点的________坐标与_________坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的_________.2.一种豆子每千克售2元,写出豆子的总售价y(元)与所售豆子的数量x(千克)之间的函数关系式,画出这个函数的图象.小红是这样解答的:y(元)与x(千克)之间的函数关系式为y=2x.列表得:在平面直角坐标系中,描出以下各点(1,),(2,),(3,),…,用平滑的曲线连结描出各点的坐标,即得到y=2x的图象(画坐标系表示)。
14.1整式的乘法一.选择题1.若x+m与x+3的乘积中不含x的一次项,则m的值为()A.0 B.1 C.3 D.﹣32.计算(a2)3的结果是()A.a5B.a6C.a8D.3 a23.下列计算正确的是()A.b2b2=b8B.x2+x4=x6C.a3a3=a9D.a8a=a94.若(3x+a)(3x+b)的结果中不含有x项,则a、b的关系是()A.ab=1 B.ab=0 C.a﹣b=0 D.a+b=05.若a m=8,a n=16,则a m+n的值为()A.32 B.64 C.128 D.2566.计算:a2(﹣a)3的结果正确的是()A.﹣a5B.a5C.﹣a6D.a67.计算:(﹣x2y)3,结果正确的是()A.﹣B.﹣C.﹣D.8.若M=(a+3)(a﹣4),N=(a+2)(2a﹣5),其中a为有理数,则M、N的大小关系是()A.M>N B.M<N C.M=N D.无法确定9.下列计算错误的是()A.=x2+5x+4 B.=m2+m﹣6C.=y2+9y﹣20 D.=x2﹣9x+1810.如果(x﹣2)(x+3)=x2+px﹣q,那么p、q的值是()A.p=1,q=﹣6 B.p=5,q=6 C.p=1,q=6 D.p=5,q=﹣6 二.填空题11.﹣2xy2(﹣3x3y)2=.12.化简:(2x﹣y)(x+3y)=.13.若x+3y=4,则2x8y=.14.计算:[﹣3a2(﹣ab)3]3=.15.如果(x+3)(x+a)=x2﹣2x﹣15,则a=.三.解答题16.计算:(2a)2﹣a×3a+a2.17.计算:(2a2)3﹣a4a2﹣(a3)218.已知9a n﹣6b﹣2﹣n与﹣2a3m+1b2n的积与25a4b是同类项,求m﹣n的值.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)=,(5,125)=,(﹣,)=,(﹣2,﹣32)=.(2)令(4,5)=a,(4,6)=b,(4,30)=c,试说明下列等式成立的理由:(4,5)+(4,6)=(4,30).参考答案与试题解析一.选择题1.【解答】解:(x+m)(x+3)=x2+(m+3)x+3m,∵乘积中不含x的一次项,∴m+3=0,∴m=﹣3.故选:D.2.【解答】解:(a2)3=a6.故选:B.3.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、不是同底数幂的乘法指数不能相加,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.4.【解答】解:(3x+a)(3x+b)=9x2+3bx+3ax+ab=9x2+3(a+b)x+ab,∵(3x+a)(3x+b)的结果中不含有x项,∴a+b=0,∴a、b的关系是a+b=0;故选:D.5.【解答】解:∵a m=8,a n=16,∴a m+n=a m×a n=8×16=128.故选:C.6.【解答】解:a2(﹣a)3=﹣a5.故选:A.7.【解答】解:(﹣x2y)3=﹣x6y3.故选:C.8.【解答】解:∵M﹣N=(a+3)(a﹣4)﹣(a+2)(2a﹣5)=a2﹣a﹣12﹣2a2+a+10=﹣a2﹣2≤﹣2<0,∵M<N.故选:B.9.【解答】解:A、结果是x2+5x+4,正确,故本选项不符合题意;B、结果是m2+m﹣6,正确,故本选项不符合题意;C、结果是y2﹣y﹣20,错误,故本选项符合题意;D、结果是x2﹣9x+18,正确,故本选项不符合题意;故选:C.10.【解答】解:∵(x﹣2)(x+3)=x2+x﹣6,又∵(x﹣2)(x+3)=x2+px+q,∴x2+px+q=x2+x﹣6,∴p=1,q=﹣6.故选:C.二.填空题(共5小题)11.【解答】解:﹣2xy2(﹣3x3y)2=﹣2xy29x6y2=﹣18x7y4.故答案为:﹣18x7y4.12.【解答】解:原式=2x2+6xy﹣xy﹣3y2=2x2+5xy﹣3y2.故答案为:2x2+5xy﹣3y2.13.【解答】解:∵x+3y=4,∴原式=2x+3y=24=16.故答案为:16.14.【解答】解:[﹣3a2(﹣ab)3]3=(3a2a3b3)3=27a15b9.故答案为:27a15b9.15.【解答】解:(x+3)(x+a)=x2+(a+3)x+3a=x2﹣2x﹣15,可得a+3=﹣2,解得:a=﹣5.故答案为:﹣5.三.解答题(共4小题)16.【解答】解:原式=4a2﹣3a2+a2=2a2.17.【解答】解:原式=8a6﹣a6﹣a6=6a6.18.【解答】解:∵9a n﹣6b﹣2﹣n与﹣2a3m+1b2n的积与25a4b是同类项,∴,解得:.∴m﹣n=2﹣3=.19.【解答】解:(1)∵32=9,53=125,(﹣)4=,(﹣2)5=﹣32,∴(3,9)=2,(5,125)=3,(﹣,)=4,(﹣2,﹣32)=5,故选:2,3,4,5;(2)令(4,5)=a,(4,6)=b,(4,30)=c,则4a=5,4b=6,4c=30,∵5×6=30,∴4a×4b=4c,∴4a+b=4c,∴a+b=c,∴(4,5)+(4,6)=(4,30).14.2乘法公式一.选择题1.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x+y)(y﹣2x)C.(2x+y)(x﹣2y)D.(﹣x+y)(x﹣y)2.已知(x+y)2=7,(x﹣y)2=3,则x2+y2=()A.58 B.29 C.10 D.5 3.下列运算正确的是()A.a3﹣a2=a B.(a﹣b)2=a2﹣b2C.a3•a2=a5D.(2a+1)(2a﹣1)=2a2﹣14.下列算式能用平方差公式计算的是()A.(3a+b)(3b﹣a)B.(﹣1)(﹣﹣1)C.(x﹣y)(﹣x+y)D.(﹣a﹣b)(a+b)5.已知M=3(22+1)(24+1)(28+1)(216+1),则M的个位为()A.1 B.3 C.5 D.76.若(2a+b)2=(2a﹣b)2+()成立,则括号内的式子是()A.4ab B.﹣4ab C.8ab D.﹣8ab7.若x﹣y=2,x2+y2=4,则x2016+y2016的值是()A.4 B.20162C.22016D.420168.下列各式是完全平方式的是()A.16x2﹣4xy+y2B.m2+2mn+2n2C.9a2﹣24ab+16b2D.9.下列运算中,正确的是()A.a6÷a2=a3B.(ab)3=a3b3C.2a+3a=5a2D.(2a+b)(2a﹣b)=2a2﹣b210.如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b2二.填空题11.已知x﹣y=﹣3,x+y=2,则x2﹣y2的值为.12.若m﹣n=6,且m+n=4,则m2﹣n2=.13.计算:(3x+7y)(3x﹣7y)=.14.用四张一样大小的长方形纸片拼成一个正方形ABCD,如图所示,它的面积是75,其中AE=3,空白的地方是一个正方形,那么这个小正方形的周长为.15.如图,两个正方形边长分别为a、b,如果a+b=7,ab=13,则阴影部分的面积为.三.解答题16.如图①所示是一个长为2m,宽为2n的长方形,沿虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①;方法②;(3)观察图②,直接写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系;(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,求(a﹣b)2的值.17.如图,点M是AB的中点,点P在MB上.分别以AP,PB为边,作正方形APCD和正方形PBEF,连结MD和ME.设AP=a,BP=b,且a+b=10,ab=20.求图中阴影部分的面积.18.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,图②是边长为m﹣n的正方形.(1)请用图①中四个小长方形和图②中的正方形拼成一个大正方形,画出示意图(要求连接处既没有重叠,也没有空隙);(2)请用两种不同的方法列代数式表示(1)中拼得的大正方形的面积;(3)请直接写出(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系;(4)根据(3)中的等量关系,解决如下问题:若a+b=6,ab=4,求(a﹣b)2的值.19.发现与探索你能求(x﹣1)(x2019+x2018+x2017+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;…由此我们可以得到:(x﹣1)(x2019+x2018+x2017+…+x+1)=.请你利用上面的结论,完成下面两题的计算:(1)32019+32018+32017+…+3+1;(2)(﹣3)50+(﹣3)49+(﹣3)48+…+(﹣3).参考答案与试题解析一.选择题1.【解答】解:=﹣(x+y)2,不能用平方差公式进行计算;=﹣(2x+y)(2x﹣y),能用平方差公式进行计算;不能用平方差公式进行计算;=﹣(x﹣y)2,不能用平方差公式进行计算.故选:B.2.【解答】解:已知等式整理得:(x+y)2=x2+y2+2xy=7①,(x﹣y)2=x2+y2﹣2xy=3②,①+②得:2(x2+y2)=10,则x2+y2=5,故选:D.3.【解答】解:A、两项不是同类项,不能合并,故本选项错误;B、根据完全平方公式,得(a﹣b)2=a2﹣2ab+b2,故本选项错误;C、a3a2=a5,故本选项正确;D、根据平方差公式,得(2a+1)(2a﹣1)=4a2﹣1,故本选项错误.故选:C.4.【解答】解:选项A:没有两项完全相同,也没有两项属于相反数,故不能用平方差公式计算;选项B:和﹣是相反数,﹣1和﹣1是相同项,故可以用平方差公式计算;选项C:x与﹣x是相反数,﹣y与y也是相反数,故不能用平方差公式计算;选项D:﹣a和a是相反数,﹣b和b也是相反数,故不能用平方差公式计算;综上,只有选项B符合题意.故选:B.5.【解答】解:M=3(22﹣1)(22+1)(24+1)(28+1)(216+1)÷(22﹣1)=(24﹣1)(24+1)(28+1)(216+1)=(28﹣1)(28+1)(216+1)=(216﹣1)(216+1)=232﹣1∵21、22、23、24、25、…,个位分别是2、4、8、6、2、…,∴232的个位上是6,∴M的个位为5.故选:C.6.【解答】解:设括号内的式子为A,则A=(2a+b)2﹣(2a﹣b)2=4a2+4ab+b2﹣(4a2﹣4ab+b2)=8ab.故选:C.7.【解答】解:∵(x﹣y)2=x2﹣2xy+y2=22=4,x2+y2=4,∴﹣2xy=0,即xy=0,∴要么x=0;要么y=0,当x=0时,y=﹣2,∴x2016+y2016=0+(﹣2)2016=22016;当y=0时,x=2,∴x2016+y2016=22016+0=22016;故选:C.8.【解答】解:A、不是完全平方式,故本选项错误;B、不是完全平方式,故本选项错误;C、是完全平方式,故本选项正确;D、不是完全平方式,故本选项错误;故选:C.9.【解答】解:A、原式=a4,不符合题意;B、原式=a3b3,符合题意;C、原式=5a,不符合题意;D、原式=4a2﹣b2,不符合题意,故选:B.10.【解答】解:图1阴影部分的面积等于a2﹣b2,图2梯形的面积是(2a+2b)(a﹣b)=根据两者阴影部分面积相等,可知=a2﹣b2比较各选项,只有D符合题意故选:D.二.填空题(共5小题)11.【解答】解:∵x﹣y=﹣3,x+y=2,∴x2﹣y2=(x+y)(x﹣y)=﹣3×2=6,故答案为:﹣6.12.【解答】解:∵m2﹣n2=(m+n)(m﹣n),m﹣n=6,且m+n=4,∴m2﹣n2=(m+n)(m﹣n)=6×4=24,故答案为24.13.【解答】解:(3x+7y)(3x﹣7y)=9x2﹣49y2;故答案为:9x2﹣49y2.14.【解答】解:∵正方形ABCD的面积是75,∴AB=5,∵AE=3,∴BE=2,∴空白小正方形的边长3﹣2=,∴小正方形的周长为4;故答案为4;15.【解答】解:根据题意得:=a2﹣b(a﹣b)=a2﹣ab+b2=[(a+b)2﹣2ab]当a+b=7,ab=13时,S阴影﹣ab=5.故答案为:5三.解答题(共4小题)16.【解答】解:(1)根据拼图可得,阴影部分是边长为(m﹣n)的正方形,故答案为:m﹣n;(2)方法①,从大正方形中减去四个小长方形的面积,即:(m+n)2﹣4mn,方法②根据正方形的面积公式直接表示小正方形的面积为(m﹣n)2,故答案为:①(m+n)2﹣4mn,②(m﹣n)2;(3)由(2)知,(m+n)2﹣(m﹣n)2=4mn;(4)由于(a﹣b)2=(a+b)2﹣4ab,又∵a+b=8,ab=5,∴(a﹣b)2=64﹣20=44.17.【解答】解:∵a+b=10,ab=20,∴S阴影部分=S正方形APCD+S正方形BEFP﹣S△AMD﹣S△MBE=a2+b2﹣a()﹣b()=a2+b2﹣=(a+b)2﹣2ab﹣=100﹣40﹣=100﹣40﹣25=35.18.【解答】解:(1)如图所示;(2)方法1:大正方形的边长为(m+n),因此面积为:(m+n)(m+n)=(m+n)2;方法2:大正方形的面积等于各个部分的面积和,即边长为(m﹣n)的正方形的面积与4个长为m,宽为n的长方形的面积和,即(m﹣n)2+4mn;(3)(m+n)2=(m﹣n)2+4mn;(4)(a﹣b)2=(a+b)2﹣4ab=62﹣4×4=36﹣16=20.19.【解答】解:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;…由此我们可以得到:(x﹣1)(x2019+x2018+x2017+…+x+1)=x2020﹣1;故答案为:x2020﹣1;(1)原式=(3﹣1)(32019+32018+32017+…+3+1)×=(32020﹣1);(2)原式=(﹣3﹣1)[(﹣3)50+(﹣3)49+(﹣3)48+…(﹣3)+1]×(﹣)﹣1 =﹣×[(﹣3)51﹣1]﹣1=+﹣1=.14.3《因式分解》一.选择题.1.下列由左到右的变形,属于因式分解的是( )A.(x+2)(x-2)=x2-4B.x2+4x+4=x(x+4)+4C.ax2-4a=a(x2-4)D.x2+3-4x=(x-1)(x-3)2.分解因式-4x2y+2xy2-2xy的结果是 ( )A.-2xy(2x-y+1)B.2xy(-2x+y)C.2xy(-2xy+y-1)D.-2xy(2x+y-1)3.下列因式分解正确的是( )A.x2-xy+x=x(x-y)B.ax2-9=a(x+3)(x-3)C.x2-2x+4=(x-1)2+3D.a3+2a2b+ab2=a(a+b)24.把多项式m2(a-2)+m(2-a)分解因式正确的是 ( )A.(a-2)(m2+m)B.m(a-2)(m+1)C.m(a-2)(m-1)D.(2-a)(m2+m)5.代数式(a-3b)2-4(a-3b)c+4c2可以写成 ( )A.(a-3b+3c)2B.(a-3b-2c)2C.(a+3b+2c)2D.(a+3b-2c)26. 若a为实数,则a2(a2-1)-a2+1的值( )A.非正数B.恒为正数C.恒为负数D.非负数7.多项式①4x2-x;②(x-1)2-4(x-1);③1-x2;④-4x2-1+4x,分解因式后,结果中含有相同因式的是( )A.①和②B.③和④C.①和④D.②和③8.若x2+kx+20能在整数范围内因式分解,则k可取的整数值有( )A.2个B.3个C.4个D.6个二.填空题.9.因式分解:mn2-9m=____.10. 若ab=3,a-2b=5,则a2b-2ab2的值是_ ___.11.如图,长宽分别为a,b的长方形的周长为14,面积为10,则a3b+ab3的值为____.12. 已知(2x-21)(3x-7)-(3x-7)·(x-13)可因式分解为(3x+a)(x+b),其中a,b均为整数,则a+3b=____.13. 多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是__.14. 若9x2+kxy+4y2是完全平方式,则k=__.三.解答题.15. 已知m+n=3,求2m2+4mn+2n2-6的值.16.分解因式:(a-b)2-4(a-b-1).17. 若|x-m|+=0,把多项式x2n-y2m分解因式(用m,n表示).18.(1)化简:(a-b)2+(b-c)2+(c-a)2;(2)利用(1)题的结论,且a=2 018x+2 019,b=2 018x+2 020,c=2 018x+2 021,求a2+b2+c2-ab-bc-ca的值.19.请阅读以下材料,并解决相应的问题:材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子,在解某些特殊方程时,使用换元法常常可以达到转化与化归的目的,例如在求解一元四次方程x4-2x2+1=0时,令x2=t,则原方程可变为t2-2t+1=0,解得t=1,从而得到原方程的解为x=±1.材料二:杨辉三角形是中国数学史上的一个伟大成就,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.它呈现了某些特定系数在三角形中的一种有规律的几何排列.如图为杨辉三角形:(1)利用换元法解方程:(x2+3x-1)2+2(x2+3x-1)=3;(2)在杨辉三角形中,按照由上至下、从左到右的顺序观察,设a n是第n行的第2个数(其中n≥4),b n是第n行的第3个数,c n是第(n-1)行的第3个数.请利用换元法因式分解:4(b n-a n)·c n+1.《因式分解》知识点复习能力提升专题练(解析版)一.选择题.1.下列由左到右的变形,属于因式分解的是( D)A.(x+2)(x-2)=x2-4B.x2+4x+4=x(x+4)+4C.ax2-4a=a(x2-4)D.x2+3-4x=(x-1)(x-3)2.分解因式-4x2y+2xy2-2xy的结果是 ( A)A.-2xy(2x-y+1)B.2xy(-2x+y)C.2xy(-2xy+y-1)D.-2xy(2x+y-1)3.下列因式分解正确的是( D)A.x2-xy+x=x(x-y)B.ax2-9=a(x+3)(x-3)C.x2-2x+4=(x-1)2+3D.a3+2a2b+ab2=a(a+b)24.把多项式m2(a-2)+m(2-a)分解因式正确的是 ( C)A.(a-2)(m2+m)B.m(a-2)(m+1)C.m(a-2)(m-1)D.(2-a)(m2+m)5.代数式(a-3b)2-4(a-3b)c+4c2可以写成 ( B)A.(a-3b+3c)2B.(a-3b-2c)2C.(a+3b+2c)2D.(a+3b-2c)26. 若a为实数,则a2(a2-1)-a2+1的值( D)A.非正数B.恒为正数C.恒为负数D.非负数7.多项式①4x2-x;②(x-1)2-4(x-1);③1-x2;④-4x2-1+4x,分解因式后,结果中含有相同因式的是( D)A.①和②B.③和④C.①和④D.②和③8.若x2+kx+20能在整数范围内因式分解,则k可取的整数值有( D)A.2个B.3个C.4个D.6个二.填空题.9.因式分解:mn2-9m=__m(n-3)(n+3)__.10. 若ab=3,a-2b=5,则a2b-2ab2的值是_ 15___.11.如图,长宽分别为a,b的长方形的周长为14,面积为10,则a3b+ab3的值为__290__.12. 已知(2x-21)(3x-7)-(3x-7)·(x-13)可因式分解为(3x+a)(x+b),其中a,b均为整数,则a+3b=__-31___.13. 多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是-4x414. 若9x2+kxy+4y2是完全平方式,则k=__±12 .三.解答题.15. 已知m+n=3,求2m2+4mn+2n2-6的值.【解析】2m2+4mn+2n2-6=2(m+n)2-6.∵m+n=3,∴2(m+n)2-6=2×32-6=12.16.分解因式:(a-b)2-4(a-b-1).【解析】原式=(a-b)2-4(a-b)+4=(a-b-2)2.17. 若|x-m|+=0,把多项式x2n-y2m分解因式(用m,n表示). 【解析】由|x-m|+=0,可得x=m,y=n,x2n-y2m=m2n-n2m=mn(m-n).18.(1)化简:(a-b)2+(b-c)2+(c-a)2;(2)利用(1)题的结论,且a=2 018x+2 019,b=2 018x+2 020,c=2 018x+2 021,求a2+b2+c2-ab-bc-ca的值.【解析】(1)原式=a2-2ab+b2+b2-2bc+c2+c2-2ac+a2=2a2+2b2+2c2-2ab-2ac-2bc.(2)原式=(2a2+2b2+2c2-2ab-2ac-2bc)=[(a-b)2+(b-c)2+(c-a)2],∵a=2 018x+2 019,b=2 018x+2 020,c=2 018x+2 021,∴原式=×[(-1)2+(-1)2+22]=3.19.请阅读以下材料,并解决相应的问题:材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子,在解某些特殊方程时,使用换元法常常可以达到转化与化归的目的,例如在求解一元四次方程x4-2x2+1=0时,令x2=t,则原方程可变为t2-2t+1=0,解得t=1,从而得到原方程的解为x=±1.材料二:杨辉三角形是中国数学史上的一个伟大成就,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.它呈现了某些特定系数在三角形中的一种有规律的几何排列.如图为杨辉三角形:(1)利用换元法解方程:(x2+3x-1)2+2(x2+3x-1)=3;(2)在杨辉三角形中,按照由上至下、从左到右的顺序观察,设a n是第n行的第2个数(其中n≥4),b n是第n行的第3个数,c n是第(n-1)行的第3个数.请利用换元法因式分解:4(b n-a n)·c n+1.【解析】(1)令t=x2+3x-1,则原方程变为:t2+2t=3,解得:t=1或者t=-3,当t=1时,x2+3x-1=1,解得:x=或x=,当t=-3时x2+3x-1=-3,解得:x=-1或x=-2,∴方程的解为:x=或x=或x=-1或x=-2.(2)根据杨辉三角形的特点得出:a n=n-1,b n=,c n=,∴4(b n-a n)·c n+1=(n-1)(n-4)(n-2)(n-3)+1=(n2-5n+4)(n2-5n+6)+1=(n2-5n+4)2+2(n2-5n+4)+1=(n2-5n+5)2.。
人教版八年级上册数学全册同步测试随堂检测(含答案解析)人教版八年级上册数学《第十一章三角形》全单元同步测试(含答案解析)11.1 与三角形有关的线段基础闯关全练拓展训练1.已知等腰△ABC的底边BC=8,且|AC-BC|=2,那么腰AC的长为( )A.10或6B.10C.6D.8或62.已知三角形两边的长分别是4和10,则此三角形的周长可能是( )A.19B.20C.25D.303.已知三角形三边的长分别为1、2、x,则x的取值范围在数轴上表示为( )4.如果a,b,c为三角形的三边长,且(a-b)2+(a-c)2+|b-c|=0,则这个三角形是.5.已知a、b、c为△ABC的三边长,b、c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.能力提升全练拓展训练1.三角形两边之和为8,第三边上的高为2,面积大于5,则第三边a的范围是( )A.2<a<8B.5<a<8C.2<a<5D.不能确定2.一个三角形3条边长分别为x cm、(x+1)cm、(x+2)cm,它的周长不超过39 cm,则x的取值范围是.3.一个等腰三角形的周长为9,三条边长都为整数,则等腰三角形的腰长为.4.已知a,b,c是三角形的三边长.(1)化简:|b+c-a|+|b-c-a|-|c-a-b|-|a-b+c|;(2)在(1)的条件下,若a,b,c满足a+b=11,b+c=9,a+c=10,求这个式子的值.三年模拟全练拓展训练1.(2018浙江义乌月考,10,★★☆)边长为整数,周长为20的三角形个数是( )A.4B.6C.8D.122.(2017山东泰安新泰中考模拟,16,★★★)已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形个数为( )A.4B.6C.8D.103.(2018天津西青区期末,21,★★★)如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形,……(1)完成下表:6(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.五年中考全练拓展训练1.(2016江苏盐城中考,8,★★☆)若a、b、c为△ABC的三边长,且满足|a-4|+-=0,则c的值可以为( )A.5B.6C.7D.82.(2016贵州安顺中考,5,★★☆)已知实数x,y满足|x-4|+-=0,则以x,y的值为两边长的等腰三角形的周长是( )A.20或16B.20C.16D.以上答案均不对3.若a、b、c为三角形的三边,且a、b满足-+(b-2)2=0,则第三边c的取值范围是.核心素养全练拓展训练1.如图,用四个螺丝钉将四条不可弯曲的木条钉成一个木框,不计螺丝钉大小,其中相邻两螺丝钉间的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝钉间的距离的最大值为( )A.6B.7C.8D.102.不能构成三角形的三条整数长度的线段的长度和的最小值为1+1+2=4;若四条整数长度的线段中,任意三条不能构成三角形,则该四条线段的长度和的最小值为1+1+2+3=7;……,依此规律,若八条整数长度的线段中,任意三条不能构成三角形,则该八条线段的长度和的最小值为.11.1 与三角形有关的线段答案基础闯关全练拓展训练1.A ∵|AC-BC|=2,∴AC-BC=±2,∵等腰△ABC的底边BC=8,∴AC=10或6.故选A.2.C 设第三边的长为x,∵三角形两边的长分别是4和10,∴10-4<x<10+4,即6<x<14.则三角形的周长L满足20<L<28,只有C选项中25符合题意.3.A ∵三角形的三边长分别是x,1,2,∴x的取值范围是1<x<3,故选A.4.答案等边三角形解析∵(a-b)2+(a-c)2+|b-c|=0,∴a-b=0,a-c=0,b-c=0,∴a=b,a=c,b=c,∴a=b=c,∴这个三角形是等边三角形.5.解析∵(b-2)2+|c-3|=0,∴b-2=0,c-3=0,解得b=2,c=3,∵a为方程|a-4|=2的解,∴a-4=±2,解得a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴△ABC的周长为2+2+3=7,△ABC是等腰三角形.能力提升全练拓展训练1.B ∵三角形两边之和为8,第三边为a,∴a<8,∵第三边上的高为2,三角形的面积大于5,∴a>5,∴5<a<8,故选B.2.答案1<x≤12解析∵一个三角形的3条边长分别是x cm,(x+1)cm,(x+2)cm,它的周长不超过39 cm,∴解得1<x≤12.3.答案3或4解析设腰长为x,则底边长为9-2x.∵9-2x-x<x<9-2x+x,∴2.25<x<4.5,∵三边长均为整数,∴x可取的值为3或4.4.解析(1)∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,∴原式=|(b+c)-a|+|b-(c+a)|-|c-(a+b)|-|(a+c)-b|=b+c-a+a+c-b-a-b+c+b-a-c=2c-2a.(2)∵a+b=11①,b+c=9②,a+c=10③,∴由①-②,得a-c=2④,由③+④,得2a=12,∴a=6,∴b=11-6=5,c=10-6=4.当a=6,b=5,c=4时,原式=2×4-2×6=-4.三年模拟全练拓展训练1.C 8个,分别是:(9,9,2),(8,8,4),(7,7,6),(6,6,8),(9,6,5),(9,7,4),(9,8,3),(8,7,5).故选C.2.D ①当5是最大的边长时,可能的情况有3、4、5;4、4、5;3、3、5;4、2、5,共四种情况.②当5是第二大的边长时,可能的情况有2、5、6;3、5、7;3、5、6;4、5、6;4、5、7;4、5、8,共六种情况.所以共有10个三角形.故选D.3.解析(1)62(2)共连接了8个点.(3)1+2+3+…+(n+1)=[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=(n+1)(n+2).故填(n+1)(n+2).五年中考全练拓展训练1.A ∵|a-4|+-=0,∴a-4=0,b-2=0,∴a=4,b=2,则4-2<c<4+2,即2<c<6,故选A.2.B 根据题意得--解得(1)若4是腰长,则三角形的三边长为4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为4、8、8,能组成三角形,周长为4+8+8=20.故选B.3.答案1<c<5解析由题意得,a2-9=0,b-2=0,解得a=3,b=2,∵3-2=1,3+2=5,∴1<c<5.核心素养全练拓展训练1.B 已知相邻两螺丝钉间的距离依次为2、3、4、6,故可将4根木条的长看作2、3、4、6.①选5(2+3=5)、4、6作为三边长,5-4<6<5+4,能构成三角形,此时两个螺丝钉间的最大距离为6;②选7(3+4=7)、6、2作为三边长,6-2<7<6+2,能构成三角形,此时两个螺丝钉间的最大距离为7;③选10(4+6=10)、2、3作为三边长,2+3<10,不能构成三角形,此种情况不成立;④选8(6+2=8)、3、4作为三边长,3+4<8,不能构成三角形,此种情况不成立.综上所述,任意两个螺丝钉间的距离的最大值为7.故选B.2.答案54解析1+1+2+3+5+8+13+21=54.11.2 与三角形有关的角基础闯关全练拓展训练1.三角形的一个外角与它相邻的内角相等,而且等于与它不相邻的两个内角中的一个角的3倍,则这个三角形各内角的度数是( )A.45°,45°,90°B.36°,72°,72°C.25°,21°,134°D.30°,60°,90°2.如图,AD是△ABC的高,BE是△ABC的角平分线,BE、AD相交于点F,已知∠BAD=40°,则∠BFD= .3.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB= .4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?能力提升全练拓展训练1.直角三角形的两锐角平分线相交所成的角的度数是( )A.45°B.135°C.45°、135°D.以上答案均不对2.如图,在△ABC中,∠A=80°,∠B=60°,将△ABC沿EF对折,点C落在C'处.如果∠1=50°,那么∠2= .3.在△ABC中,AB=AC=4 cm,BD为AC边上的高,∠ABD=30°,则∠BAC的度数为.三年模拟全练拓展训练1.(2018广东深圳期末,6,★★☆)在△ABC中,∠A=∠B+∠C,∠B=2∠C-6°,则∠C的度数为( )A.90°B.58°C.54°D.32°2.(2018河北唐山迁安期末,13,★★☆)如图,在△ABC中,∠ABC=62°,BD是角平分线,CE是高,BD与CE相交于点O,则∠BOC的度数是( )A.118°B.119°C.120°D.121°3.(2018海南保亭校级月考,7,★★☆)一个三角形的一个内角等于另外两个内角的和,这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.何类三角形不能确定4.(2018福建莆田第二十五中学月考,15,★★★)如图,△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )A.19.2°B.8°C.6°D.3°五年中考全练拓展训练1.(2016山东莱芜中考,5,★☆☆)如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是( )A.76°B.81°C.92°D.104°2.(2017四川德阳中考,6,★★☆)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )A.15°B.20°C.25°D.30°核心素养全练拓展训练1.在△ABC和△DEF中,∠A=40°,∠E+∠F=70°.将△DEF放置在△ABC上,使得∠D的两条边DE、DF分别经过点B、C.(1)当将△DEF按图1放置在△ABC上时,∠ABD+∠ACD= °;(2)当将△DEF按图2放置在△ABC上时,①请求出∠ABD+∠ACD的大小;②能否将△DEF摆放到某个位置,使得BD、CD同时平分∠ABC和∠ACB?直接写出结论: (填“能”或“不能”).2.(1)如图1,把△ABC沿DE折叠,使点A落在点A'处,试探索∠1+∠2与∠A的关系(不必证明);(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠,使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.11.2 与三角形有关的角答案基础闯关全练拓展训练1.D 根据题意知,与这个外角相邻的内角等于180°÷2=90°,∵这个外角等于与它不相邻的两个内角中的一个角的3倍,∴90°÷3=30°,又90°-30°=60°,∴这个三角形各内角的度数是30°,60°,90°.2.答案65°解析∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=40°,∴∠ABC=50°,∵BE是△ABC的角平分线,∴∠FBD=25°,在△FBD中,∠BFD=180°-90°-25°=65°.3.答案72°解析由题意可得∠DAE=∠BAC-(90°-∠C),又∠BAC=2∠B,∠B=2∠DAE,∴90°-2∠B=∠B,则∠B=36°,∴∠BAC=2∠B=72°,∴∠ACB=180°-36°-72°=72°.4.解析(1)∠ACD=∠B,理由如下:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B.(2)△ADE是直角三角形.∵在Rt△ABC中,∠C=90°,∴∠B+∠A=90°.又D,E分别在AC,AB上,且∠ADE=∠B,∴∠ADE+∠A=90°,∴△ADE是直角三角形.(3)∠A+∠D=90°.∵∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∴∠ABC+∠A=∠ABC+∠DBE=∠DBE+∠D=90°,∴∠A+∠D=90°.能力提升全练拓展训练1.C 如图,∠ABC+∠BAC=90°,AD、BE分别是∠BAC和∠ABC的平分线,∴∠OAB+∠OBA=(∠BAC+∠ABC)=45°,∴∠AOE=∠OAB+∠OBA=45°,∴∠AOB=135°, ∴直角三角形两锐角的平分线相交所成的角的度数是45°、135°,故选C.2.答案30°解析∵∠A+∠B+∠C=180°,∠CEF+∠CFE+∠C=180°,∴∠CEF+∠CFE=∠A+∠B=80°+60°=140°,由翻折的性质得,2(∠CEF+∠CFE)+∠1+∠2=180°×2,∴2×140°+50°+∠2=360°,解得∠2=30°.故答案为30°.3.答案60°或120°解析当∠A是锐角时,如图1,∵BD是高,∴∠BAC=90°-∠ABD=90°-30°=60°;当∠BAC是钝角时,如图2,∠BAD=90°-∠ABD=90°-30°=60°,则∠BAC=180°-∠BAD=180°-60°=120°.故答案是60°或120°.三年模拟全练拓展训练1.D ∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.2.D ∵CE是高,∴∠BEC=90°,∴∠OCB=90°-∠ABC=90°-62°=28°,∵BD是角平分线,∴∠OBC=∠ABC=×62°=31°,∴∠OBC+∠OCB=31°+28°=59°.在△OBC 中,由三角形内角和定理可得∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°-(∠OBC+∠OCB)=180°-59°=121°,故选D.3.A 三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和与它相邻的外角是相等的,且外角和与它相邻的内角互补,所以有一个内角一定是90°,故这个三角形是直角三角形.故选A.4.D ∠BA1C+∠A1BC=∠A1CD,2∠A1CD=∠ACD=∠BAC+∠ABC,所以2(∠BA1C+∠A1BC)=∠BAC+∠ABC,即2∠BA1C+2∠A1BC=∠BAC+∠ABC,而2∠A1BC=∠ABC,所以2∠BA1C=∠BAC.同理,可得2∠BA2C=∠BA1C,2∠BA3C=∠BA2C,2∠BA4C=∠BA3C,2∠BA5C=∠BA4C, 所以∠BA5C=∠BA4C=∠BA3C=∠BA2C=∠BA1C=∠BAC=96°÷32=3°.故选D.五年中考全练拓展训练1.A ∵∠A=46°,∠C=74°,∴∠ABC=180°-46°-74°=60°.∵BD平分∠ABC,∴∠DBC=30°.∴∠BDC=180°-30°-74°=76°.故选A.2.B ∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°-∠ABC=90°-50°=40°,∴∠DAC=∠BAC-∠BAD=60°-40°=20°.故选B.核心素养全练拓展训练1.解析(1)210.(2)①在△ABC中,∠A=40°,∴∠ABC+∠ACB=140°,在△DEF中,∠E+∠F=70°,∴∠D=110°,∴∠BCD+∠CBD=180°-∠D=70°,∴∠ABD+∠ACD=(∠ABC+∠ACB)-(∠BCD+∠CBD)=70°.②能.2.解析(1)∠1+∠2=2∠A.(2)由(1)∠1+∠2=2∠A,得2∠A=130°,∴∠A=65°.∵BI平分∠ABC,CI平分∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,∴∠BIC=180°-(∠IBC+∠ICB)=180°-°∠=90°+×65°=122.5°.(3)∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,∠FHG+∠A=180°,∴∠BHC=∠FHG=180°-∠A,由(1)知∠1+∠2=2∠A,∴∠A=(∠1+∠2),∴∠BHC=180°-(∠1+∠2).11.3 多边形及其内角和基础闯关全练拓展训练1.(2017山东临沂中考)一个多边形的内角和是外角和的2倍,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形2.(2017江苏南京中考)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D= °.3.如图,正五边形FGHIJ的顶点在正五边形ABCDE的边上,若∠1=20°,则∠2= .能力提升全练拓展训练1.在四边形ABCD中,若∠A与∠C之和等于四边形外角和的一半,∠B比∠D大15°,则∠B的度数等于( )A.150°B.97.5°C.82.5°D.67.5°2.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数为( )A.90°B.180°C.270°D.360°3.如果一个多边形的所有内角从小到大排列起来,恰好依次增加相同的度数,且最小内角的度数为100°,最大内角的度数为140°,那么这个多边形是边形.三年模拟全练拓展训练1.(2018福建南平三中期中,7,★★☆)已知一个多边形的最小的外角是60°,其余外角依次增加20°,则这个多边形的边数为( )A.6B.5C.4D.32.(2018辽宁抚顺新宾期中,16,★★☆)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为°.五年中考全练拓展训练1.(2017山东莱芜中考,7,★★☆)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A.12B.13C.14D.152.(2016四川广元中考,5,★★☆)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3=( )A.90°B.180°C.120°D.270°核心素养全练拓展训练将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需个正五边形( )A.6B.7C.8D.911.3 多边形及其内角和答案基础闯关全练拓展训练1.C 设所求多边形边数为n,由题意得(n-2)·180°=360°×2,解得n=6.则这个多边形是六边形.故选C.2.答案425解析∵∠1=65°,∴∠AED=115°,∴∠A+∠B+∠C+∠D=(5-2)×180°-∠AED=425°,故答案为425.3.答案52°解析正五边形的每一个内角为(5-2)×180°÷5=108°,∴∠AFG=180°-∠1-∠GFJ=180°-20°-108°=52°,∴∠AGF=180°-∠A-∠AFG=180°-108°-52°=20°,∴∠2=180°-∠AGF-∠FGH=180°-20°-108°=52°.能力提升全练拓展训练1.B ∵∠A与∠C之和等于四边形外角和的一半,四边形的外角和为360°,∴∠A+∠C=180°,∴∠B+∠D=360°-(∠A+∠C)=180°①,∵∠B比∠D大15°,∴∠B-∠D=15°②,①+②得2∠B=195°,∴∠B=97.5°.2.D 如图,∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠4=∠G+∠H,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.3.答案六解析设多边形的边数为n,则=180·(n-2),解得n=6.故这个多边形为六边形.三年模拟全练拓展训练1.C ∵多边形的外角和等于360°,多边形的最小的外角是60°,∴这个多边形的边数<=6,当边数为3时,60°+80°+100°<360°,不合题意;当边数为4时,60°+80°+100°+120°=360°,符合题意;当边数为5时,60°+80°+100°+120°+140°>360°,不合题意.故选C.2.答案95解析∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=100°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°-50°-35°=95°,∴∠D=360°-100°-70°-95°=95°.故答案为95.五年中考全练拓展训练1.C 根据题意,得(n-2)·180°=360°×2+180°,解得n=7.则这个多边形的边数是7,七边形的对角线条数为=14,故选C.2.B 如图,分别延长线段AB,DC,∵AB∥CD,∴∠4+∠5=180°,∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=180°.故选B.核心素养全练拓展训练B 五边形的内角和为(5-2)·180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°-108°×3=360°-324°=36°,360°÷36°=10,∵已经有3个正五边形,10-3=7,∴完成这一圆环还需7个正五边形.人教版八年级上册数学《第十二章全等三角形》全单元同步测试3课时(含答案解析)12.1 全等三角形基础闯关全练拓展训练1.如图,已知△ABC≌△DCB,AB=10,∠A=60°,∠ABC=80°,那么下列结论中错误的是( )A.∠D=60°B.∠DBC=40°C.AC=DBD.BE=102.如图所示,△ABC≌△EDF,DF=BC,AB=ED,AE=20,AF=5,则AC的长为.3.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数;(2)求CE的长.4.如图,△ABF≌△CDE,∠B和∠D是对应角,AF和CE是对应边.(1)写出△ABF和△CDE的其他对应角和对应边;(2)若∠B=30°,∠DCF=40°,求∠EFC的度数;(3)若BD=10,EF=2,求BF的长.能力提升全练拓展训练1.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为( )A.3B.4C.5D.3或4或52.如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x-2,2x-1,3,若这两个三角形全等,则x= .3.若A(2,0),B(0,4),C(2,4),D为坐标平面内一点,且△ABC与△ACD全等,则D点的坐标为.三年模拟全练拓展训练1.(2017内蒙古赤峰宁城期末,7,★☆☆)如图,在△ABC中,∠A=30°,∠ABC=50°,∠ACB=100°.若△EDC≌△ABC,且A、C、D在同一条直线上,则∠BCE=( )A.20°B.30°C.40°D.50°2.(2017河南周口太康期中,12,★★☆)已知△ABC≌△DEF,BC=EF=5 cm,△ABC的面积是20 cm2,那么△DEF中EF边上的高是cm.3.(2018吉林四平伊通期末,16,★★★)如图,A、C、N三点在同一直线上,在△ABC中,∠A∶∠ABC∶∠ACB=3∶5∶10,若△MNC≌△ABC,则∠BCM∶∠BCN= .五年中考全练核心素养全练拓展训练1.长为1的一根绳恰好可围成两个三边长都不相等的全等三角形,则其中一个三角形的最长边x的取值范围为( )A.≤x<B.≤x<C.<x<D.<x<2.如图,△ABE≌△EDC,E在BD上,AB⊥BD,B为垂足.(1)试问:AE和EC相等吗?AE和CE垂直吗?(2)分别将图中的△ABE绕点E按顺时针方向旋转,分别画出满足下列条件的图形并说出此时△ABE与△EDC中相等的边和角.①使AE与CE重合;②使AE与CE垂直;③使AE与EC在同一直线上.12.1 全等三角形答案基础闯关全练拓展训练1.D ∵∠A=60°,∠ABC=80°,∠A+∠ABC+∠ACB=180°,∴∠ACB=40°,∵△DCB≌△ABC,∴∠D=∠A=60°,∠DBC=∠ACB=40°,BD=AC,故A,B,C正确,故选D.2.答案15解析∵△ABC≌△EDF,DF=BC,AB=ED,AE=20,AF=5,∴AC=EF,EF=AE-AF=20-5=15,∴AC=15.3.解析(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°-42°=138°.(2)∵△ABE≌△ACD,∴AB=AC=9,AE=AD=6,∴CE=AC-AE=9-6=3.4.解析(1)其他对应角:∠BAF和∠DCE,∠AFB和∠CED;其他对应边:AB和CD,BF和DE.(2)∵△ABF≌△CDE,∠B=30°,∴∠D=∠B=30°,∵∠DCF=40°,∴∠EFC=∠D+∠DCF=30°+40°=70°.(3)∵△ABF≌△CDE,∴BF=DE,∴BF-EF=DE-EF,∴BE=DF,∵BD=10,EF=2,∴DF=BE=4,∴BF=BE+EF=4+2=6.能力提升全练拓展训练1.B ∵△ABC≌△DEF,∴EF=BC.∵AB=2,AC=4,∴4-2<BC<4+2,即2<BC<6,又由已知得EF的长为整数,∴EF=BC=3或4或5,又∵△DEF的周长为偶数,所以EF=4.故选B.2.答案 3解析∵△ABC与△DEF全等,∴3x-2=7且2x-1=5,此时x=3,或3x-2=5且2x-1=7,此时不存在满足条件的x.故答案为3.3.答案(4,4)或(0,0)或(4,0)解析如图所示,仅D1(4,4),D2(0,0),D3(4,0)满足题意.三年模拟全练拓展训练1.A ∵△EDC≌△ABC,∴∠DCE=∠ACB=100°.∵A、C、D在同一条直线上,∴∠ACD=180°,∴∠BCE=∠ACB+∠DCE-∠ACD=20°.2.答案8解析∵△ABC≌△DEF,BC=EF=5 cm,△ABC的面积是20 cm2,∴BC·h=20(h为△ABC中BC边上的高),∴h=8 cm,则△DEF中EF边上的高是8 cm.3.答案1∶4解析∵∠A∶∠ABC∶∠ACB=3∶5∶10,∠A+∠ABC+∠ACB=180°,∴∠A=30°,∠ABC=50°,∠ACB=100°.∵△MNC≌△ABC,∴∠N=∠ABC=50°,∠M=∠A=30°,∴∠MCA=∠M+∠N=80°,∴∠BCM=20°,∠BCN=80°,∴∠BCM∶∠BCN=1∶4.五年中考全练核心素养全练拓展训练1.C 由题意可得两个三角形的周长相等,且为.设三角形中除最长边x外,另外两边为y,z,则x+y+z=,∵y+z>x,∴x<,又x>y,x>z,∴x>.综上可得<x<,故选C.2.解析(1)AE和EC相等且垂直.∵△ABE≌△EDC,∴AE=EC,∠A=∠CED,∵AB⊥BD,∴∠A+∠AEB=90°,∴∠CED+∠AEB=90°,∴∠AEC=180°-90°=90°,∴AE⊥CE.(2)如图所示,相等的边有AB=ED,AE=EC,BE=DC;相等的角有∠BAE=∠DEC,∠ABE=∠EDC,∠AEB=∠ECD.12.2 三角形全等的判定基础闯关全练拓展训练1.如图(1)所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD.(1)求证:GF=GE;(2)若将△DEC的边EC沿AC方向移动,变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.2.如图,Rt△ABC中,AC=7 cm,BC=3 cm,CD为斜边AB上的高,点E从点B出发沿直线BC以2 cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)求证:∠A=∠BCD;(2)点E运动多长时间时,CF=AB?并说明理由.能力提升全练拓展训练1.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形与已知三角形不一定全等的是( )A.两条边长分别为4,5,它们的夹角为βB.两个角是β,它们的夹边长为4C.三条边长分别是4,5,5D.两条边长是5,它们的夹角是β2.已知△ABC中,AB=7,AC=4,AD是BC边上的中线,则AD长的范围是.3.(2018山西期中)问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC 于点D,可知:∠BAD=∠C(不需要证明);特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;归纳证明:如图3,点B、C分别在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为.三年模拟全练拓展训练1.(2018河北秦皇岛抚宁期末,6,★★☆)根据已知条件,能画出唯一△ABC的是( )A.AC=4,AB=5,BC=10B.AC=4,AB=5,∠B=60°C.∠A=50°,∠B=60°,AB=2D.∠C=90°,AB=52.(2018安徽月考,15,★★☆)如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE 于点D,下面四个结论:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD-BE=DE.其中正确的结论是.(把所有正确结论的序号都写在横线上)3.(2018陕西西安莲湖月考,22,★★☆)如图,在△ABC中,AC=BC,D是AB上的一点,AE⊥CD于点E,BF⊥CD于点F,若CE=BF,AE=EF+BF.试判断直线AC与BC的位置关系,并说明理由.五年中考全练拓展训练1.(2016湖南永州中考,9,★★☆)如图,点D、E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,再添加以下的哪个条件仍不能..判定△ABE≌△ACD的是( )A.∠B=∠CB.AD=AEC.BD=CED.BE=CD2.(2016山东济宁中考,12,★★☆)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H.请你添加一个适当条件: ,使△AEH≌△CEB.3.(2016河北中考,21,★★☆)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(9分)(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.核心素养全练拓展训练1.如图,点A的坐标为(8,0),点B为y轴的负半轴上的一个动点,分别以OB,AB 为直角边在第三、第四象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度为( )A.2B.3C.4D.随点B的运动而变化2.在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,∠DCE= 度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).12.2 三角形全等的判定 基础闯关全练 拓展训练1.解析 (1)证明:∵DE ⊥AC,BF ⊥AC, ∴∠DEF=∠BFE=90°.∵AE=CF,∴AE+EF=CF+EF,即AF=CE. 在Rt △ABF 和Rt △CDE 中,∴Rt △ABF ≌Rt △CDE(HL), ∴BF=DE.在△BFG 和△DEG 中, ∵ ∠ ∠∠ ∠∴△BFG ≌△DEG(AAS), ∴GF=GE. (2)结论依然成立. 理由:∵DE ⊥AC,BF ⊥AC,∴∠BFA=∠DEC=90°.∵AE=CF, ∴AE-EF=CF-EF,即AF=CE.在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,∵∠∠∠∠∴△BFG≌△DEG(AAS),∴GF=GE.2.解析(1)证明:∵CD⊥AB,∠ACB=90°,∴∠A+∠ACD=90°,∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)如图,当点E在射线BC上移动时,若E移动5 s,则BE=2×5=10(cm),∴CE=BE-BC=10-3=7(cm).∴CE=AC.在△CFE与△ABC中,∠∠∠∠∴△CFE≌△ABC,∴CF=AB.当点E在射线CB上移动时,若E移动2 s,则BE'=2×2=4(cm),∴CE'=BE'+BC=4+3=7(cm),∴CE'=AC.在△CF'E'与△ABC中,∠∠∠∠°∴△CF'E'≌△ABC,∴CF'=AB.综上,当点E在直线CB上移动5 s或2 s时,CF=AB.能力提升全练拓展训练1.D A符合三角形全等的判定定理SAS,能判定两三角形全等,故本选项不符合题意;B符合三角形全等的判定定理ASA,能判定两三角形全等,故本选项不符合题意;C符合三角形全等的判定定理SSS,能判定两三角形全等,故本选项不符合题意.故选D.2.答案 1.5<AD<5.5解析如图,延长AD至E,使DE=AD,∵D是BC的中点,∴BD=CD.在△ADC和△EDB中,∠∠∴△ADC≌△EDB(SAS),∴AC=EB.∵AC=4,∴EB=4.∴7-4<AE<7+4,∴3<2AD<11,∴1.5<AD<5.5.3.解析特例探究:证明:∵CF⊥AE,BD⊥AE, ∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,又∠MAN=90°,∠BAD+∠CAF=90°,∴∠ABD=∠CAF.在△ABD和△CAF中,∵∠∠∠∠∴△ABD≌△CAF(AAS).归纳证明:证明:∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA.在△ABE和△CAF中,∵∠∠∠∠∴△ABE≌△CAF(ASA).拓展应用:∵△ABC的面积为15,CD=2BD,∴△ABD的面积是×15=5,由上证出△ABE≌△CAF,∴△ACF与△BDE的面积之和等于△ABE与△BDE的面积之和,即等于△ABD的面积5,故答案为5.三年模拟全练拓展训练1.C 若想画出唯一的△ABC,只需找出给定条件能证出与另一三角形全等即可.A.AC+AB=4+5=9<10=BC,三边不能组成三角形,A不正确;B.∵AC=4,AB=5,∠B=60°,SSA不能证出两三角形全等,∴AC=4,AB=5,∠B=60°不能确定唯一的三角形,B不正确;C.∵∠A=50°,∠B=60°,AB=2,ASA能证出两三角形全等,∴∠A=50°,∠B=60°,AB=2能确定唯一的三角形,C正确;D.∵∠C=90°,AB=5,缺少证明两三角形全等的条件,∴∠C=90°,AB=5不能确定唯一的三角形,D不正确.故选C.2.答案①②④解析如图,∵AD⊥CE,BE⊥CE,∴∠BEF=∠ADF=∠ADC=90°.又∵∠BFE=∠AFD, ∴∠ABE=∠BAD,故①正确.∵∠ACB=90°,∴∠1+∠2=90°.∵∠ADC=90°,∴∠2+∠CAD=90°.∴∠1=∠CAD.又∠E=∠ADC=90°,BC=AC,∴△CEB≌△ADC(AAS),故②正确.由△CEB≌△ADC,得CE=AD,BE=CD,∴AD-BE=CE-CD=DE,故④正确.∵∠ACB=90°,∴BC⊥AC,∴AB>AC.∵AD⊥CE,∴AC>AD,∴AB>AD.又∵CE=AD,∴AB>CE,故③错误,因此填①②④.3.解析AC⊥BC,理由如下:∵CE=BF,AE=EF+BF,CF=EF+CE,∴AE=CF.在△ACE和△CBF中,∴△ACE≌△CBF(SSS),∴∠CAE=∠BCF.在Rt△ACE中,∵∠CAE+∠ACE=90°, ∴∠ACE+∠BCF=90°,∴AC⊥BC.五年中考全练拓展训练1.D 选项A,∠A=∠A,AB=AC,∠B=∠C,所以△ABE≌△ACD(ASA),正确;选项B,AE=AD,∠A=∠A,AB=AC,所以△ABE≌△ACD(SAS),正确;选项C,由BD=CE及AB=AC可得AD=AE,因为AE=AD,∠A=∠A,AB=AC,所以△ABE≌△ACD(SAS),正确;选项D,BE=CD,AB=AC,∠A=∠A,SSA不能判定两个三角形全等,故选D.2.答案AE=CE(或HE=BE或AH=CB或∠BAC=45°)解析∵AD⊥BC,CE⊥AB,∴∠AEH=∠CEB=∠ADB=90°,∴∠B+∠EAH=∠B+∠ECB=90°,∴∠EAH=∠ECB.∴添加条件AE=CE或∠BAC=45°,可根据“ASA”判定△AEH≌△CEB,添加条件AH=CB或HE=BE,可根据“AAS”判定△AEH≌△CEB.3.解析(1)证明:∵BF=EC,∴BF+FC=EC+CF,即BC=EF.又∵AB=DE,AC=DF,∴△ABC≌△DEF.(2)AB∥DE,AC∥DF.理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE.∴AB∥DE,AC∥DF.核心素养全练拓展训练1.C 如图,作EN⊥y轴于N,∵∠BOA=∠ABE=90°,∴∠OBA+∠NBE=90°,∠OBA+∠OAB=90°, ∴∠NBE=∠BAO.在△ABO 和△BEN 中, ∠ ∠∠ ∠∴△ABO ≌△BEN(AAS), ∴OB=NE,又∵OB=BF,∴BF=NE. 又∠OBF=∠FBP=∠BNE=90°,∴在△BFP 和△NEP 中, ∠ ∠ ∠ ∠∴△BFP ≌△NEP(AAS),∴BP=NP,又∵点A 的坐标为(8,0),∴BN=OA=8, ∴BP=NP=4,故选C.2.解析 (1)∵∠BAD+∠DAC=90°,∠DAC+∠CAE=90°, ∴∠BAD=∠CAE.在△BAD 和△CAE 中,∠ ∠∴△BAD ≌△CAE(SAS), ∴∠B=∠ACE,∵∠B+∠ACB=90°. ∴∠DCE=∠ACE+∠ACB=90°, 故答案为90. (2)①α+β=180°.证明:∵∠BAD+∠DAC=α,∠DAC+∠CAE=α, ∴∠BAD=∠CAE.在△BAD 和△CAE 中,∠∠∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠B+∠ACB=180°-α,∴∠DCE=∠ACE+∠ACB=180°-α=β,∴α+β=180°.②作出图形,如图所示,α=β.12.3 角的平分线的性质基础闯关全练拓展训练1.如图,△ABC的三边AB、BC、AC的长分别为12,18,24,O是△ABC三条角平分线的交点,则S△OAB∶S△OBC∶S△OAC=( )A.1∶1∶1B.1∶2∶3C.2∶3∶4D.3∶4∶52.如图,PM⊥OA,PN⊥OB,垂足分别为点M,N,PM=PN,∠BOC=30°,则∠AOB= .3.如图,在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E.若BC=5 cm,DC=4 cm,则△DEB的周长为cm.4.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=15,且BD∶DC=3∶2,则D到边AB的距离是.能力提升全练拓展训练1.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB,垂足为E.若PE=3,则两平行线AD与BC间的距离为( )A.3B.5C.6D.不能确定2.如图,已知DB⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF= .3.如图,已知∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,求∠EAB 的度数.三年模拟全练拓展训练1.(2018江苏无锡宜兴期中,16,★★☆)如图,在△ABC中,AB=10,AC=8,O为△ABC 角平分线的交点,若△ABO的面积为20,则△ACO的面积为.2.(2018河北邯郸期末,19,★★☆)如图所示,已知△ABC的周长是20,BO、CO分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.3.(2018吉林延边安图期末,21,★★☆)如图,AB=AC,BD=CD,DE⊥AB,点E为垂足,DF⊥AC,点F为垂足,求证:DE=DF.(7分)五年中考全练拓展训练1.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10B.7C.5D.42.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°3.(在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.核心素养全练拓展训练1.如图,在四边形ABCD中,∠A=90°,AD=8,对角线BD⊥CD,P是BC边上一动点,连接DP.若∠ADB=∠C,则DP长的最小值为.2.三条公路l1,l2,l3两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路的距离相等,问可供选择的地方有多少处?请画出图形并在图中找出来.12.3 角的平分线的性质基础闯关全练拓展训练1.C ∵O是△ABC三条角平分线的交点,AB、BC、AC的长分别为12,18,24,∴S△S△OBC∶S△OAC=AB∶CB∶AC=12∶18∶24=2∶3∶4.故选C.OAB∶2.答案60°解析∵PM⊥OA,PN⊥OB,PM=PN,∴∠AOC=∠BOC=30°,∴∠AOB=60°.3.答案 5解析∵CD平分∠ACB,DE⊥BC,∠A=90°,∴DE=DA.在Rt△CDE和Rt△CDA中,∴Rt△CDE≌Rt△CDA,∴CE=CA,∴△DEB的周长=BE+BD+DE=BE+BD+DA=BE+BA=BE+AC=BE+CE=BC=5 cm.4.答案 6解析∵BC=15,BD∶DC=3∶2,∴CD=6.∵∠C=90°,AD平分∠BAC,∴D到边AB的距离=CD=6.能力提升全练拓展训练1.C 如图,作PF⊥AD于F,PG⊥BC于G,∵AP是∠BAD的平分线,PF⊥AD,PE⊥AB,∴PF=PE=3,∵BP是∠ABC的平分线,PE⊥AB,PG⊥BC,∴PG=PE=3,∴两平行线AD与BC间的距离为PF+PG=6.2.答案150°解析∵DB⊥AE于点B,DC⊥AF于点C,且DB=DC, ∴AD平分∠BAC,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∴∠DGF=∠CAD+∠ADG=20°+130°=150°.3.解析如图,过点E作EF⊥AD交AD于F,∵DE平分∠ADC,EC⊥DC,EF⊥DA,且E是BC的中点,∴CE=EB=EF,又∵∠B=∠AFE=90°,∴AE平分∠DAB,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°-35°=55°, ∴∠CDA=110°,∵∠B=∠C=90°,∴DC∥AB,∴∠CDA+∠DAB=180°,∴∠DAB=70°,∴∠EAB=35°.三年模拟全练拓展训练1.答案16解析∵点O是△ABC三条角平分线的交点,∴点O到AB,AC的距离相等,∴△AOB与△AOC面积的比=AB∶AC=10∶8=5∶4.∵△ABO的面积为20,∴△ACO的面积为16.2.答案30解析如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵BO、CO分别平分∠ABC和∠ACB,∴OE=OD,OF=OD,∴OE=OF=OD=3,∵△ABC的周长是20,OD⊥BC于D,且OD=3,∴S△ABC=×AB·OE+×BC·OD+×AC·OF=×(AB+BC+AC)×3=×20×3=30.3.证明在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF.五年中考全练拓展训练1.C 作EF⊥BC于F,∵BE平分∠ABC,ED⊥BA,EF⊥BC,∴EF=DE=2,∴S△BC·EF=×5×2=5,故选C.BCE=2.B ∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确;∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°-∠BAO-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=×(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;由BD、CD分别是∠ABC和∠ACE的平分线易证AD是△ABC的外角平分线,∴∠DAC=×(180°-70°)=55°,故D选项正确.3.答案4∶3解析如图,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E、F,由角平分线的性质可得DE=DF,∵S△ABD=AB·DE,S△ACD=AC·DF,===,即S△ABD∶S△ACD=4∶3.∴△△核心素养全练拓展训练1.答案8解析根据垂线段最短知,当DP⊥BC时,DP的长度最小.∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,∴当DP⊥BC时,AD=DP,又AD=8,∴DP长的最小值为8.2.解析先将实际问题转化为数学模型,要求超市到三条公路的距离相等,先观察△ABC的内部,实际上就是在△ABC内找一个点,使它到△ABC的三边的距离相等,这个点应该是△ABC的三条(或两条)角平分线的交点,但除此以外,还应考虑是否还有其他的点也符合要求,因为三条公路都是用直线来表示的,且三角形的互为同旁内角的两个外角的平分线的交点满足到三角形三边所在直线的距离相等,所以在△ABC 的外部也存在满足题意的点.如图,(1)作出△ABC的两个内角的平分线,取其交点为O1;(2)作出△ABC所有外角(6个外角)的平分线,取其交点分别为O2,O3,O4,故满足条件的修建点有4处,即O1,O2,O3,O4处.。
◆随堂检测1、一次函数的图象经过点A(-2,-1),且与直线y=2x-1平行,则此函数解析式为2、如图1直线AB 对应的函数表达式为3、已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________.4、药品研究所开发一种搞菌新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图2所示,则当1≤x≤6时,y 的取值范围是( ) A.83≤y≤6411 B.6411≤y≤8 C.83≤y≤8 D.8≤y≤16 5、一次函数y=kx+b 的图象如图所示,看图3填空: (1)当x=0时,y=_________;当x=______时,y=0. (2)k=__________,b=__________.(3)当x=5时,y=________;当y=30时,x=________. ◆典例分析例题:为缓解用电紧张,某电力公司为鼓励节约用电,制定了新的电费标准。
每月用电在50度以内的,一度电0.5元,超出部分按1元每度收费。
应缴电费用y (元)表示,用电量用x (度)表示。
(1)列出函数关系 (2)画出图象分析:此题中当自变量在不同的取值范围中函数关系不相同,需要分别写出函数表达式。
诸如出租车计费、电话包月计费、分段收取水电费、个人所得税收缴等等情景中,需根据不同的自变量取值范围写出不同的函数关系式,这样的函数称作分段函数。
写分段函数表达式时,注意把相应的自变量取值范围写在函数解析式的后面的括号内。
解:函数关系式为⎩⎨⎧>-+≤≤=) 50 x ( )50(2550)x (0 5.0x x y◆课下作业●拓展提高1、一次函数y=-2x+b与x轴交于(4,0),则它与y轴的交点为。
2、某班同学在探究弹簧的长度跟外力的变化关系时,实验记录得到的相应数据如下表:砝码的质量x(克) 0 50 100 150 200 250 300 400 500指针位置y(厘米) 2 3 4 5 6 7 7.5 7.5 7.5 则y关于x的函数图象是( ).3、某音像出租店,出租影片的收费标准是两天之内还租金1.5元,超过两天之后,多一天多收1元(不足一天按一天计)。