圆的基本题型
- 格式:doc
- 大小:265.00 KB
- 文档页数:8
2.4.1圆的标准方程(基础知识+基本题型)知识点一 确定圆的几何要素确定一个圆的最基本的要素是圆心和半径,当圆心位置与半径大小确定后,圆就唯一确定了.从集合的角度理解圆(1)圆的定义在平面内,到定点的距离等于定长的点的集合,定点叫做圆心,定长叫做半径.(2)确定一个圆的条件在平面直角坐标系中,圆心为(,)A a b ,半径长为(0)r r >的圆上的点M 的集合就是集合{|||}P M MA r ==.知识点二 圆的标准方程1.圆的标准方程的推导如图所示,设圆上任意一点(,)M x y ,圆心A 的坐标为(,)a b ,由||MA r =r =,等式两边平方得222()()x a y b r -+-=.①若点(,)M x y 在圆上,易知点M 的坐标满足方程①;反之,若点(,)M x y 的坐标适合方程①,则点M 在圆上,我们把方程222()()x a y b r -+-=称为圆心为(,)A a b ,半径长为(0)r r >的圆的标准方程.确定圆的标准方程的条件(1)圆的标准方程中有三个参数a ,b ,r ,其中实数对(,)a b 是圆心的坐标,能确定圆的位置;正数r 表示圆的半径,能确定圆的大小.(2)已知圆的圆心坐标和圆的半径,即可写出圆的标准方程,反之,已知圆的标准方程,即可写出圆的圆心坐标和圆的半径.2.几种常见的特殊位置的圆的方程1.圆的标准方程的推导圆的标准方程为222()()x a y b r-+-=,圆心为(,)A a b,半径长为r.设所给点为00(,)M x y,则点M与圆的位置关系及判断方法如下:(系来判断.(2)判断点与圆的位置关系时,还可将点的坐标代入圆的标准方程的左边,与半径的平方比较大小.考点一:圆的标准方程例1.求满足下列条件的各圆的方程:(1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上;(3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++= 【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||CB =,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C - ∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++= 又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r = ∴所求圆的方程是()()228325x y -++=.例2 已知圆过两点(3,1)A ,(1,3)B -,且它的圆心在直线320x y --=上,求此圆的标准方程.解:方法1:设所求圆的标准方程为222()()x a y b r -+-=.依题意,有222222(3)(1)(1)(3)320a b r a b r a b ⎧-+-=⎪--+-=⎨⎪--=⎩,即22222262102610320a b a b r a b a b r a b ⎧+--=-⎪++-=-⎨⎪--=⎩,解得22410a b r ⎧=⎪=⎨⎪=⎩.故所求圆的标准方程为22(2)(4)10x y -+-=.方法2:直线AB 的斜率311132k -==---, 所以线段AB 的垂直平分线m 的斜率为2.线段AB 的中点的横坐标和纵坐标分别为3112x -==,1322y +==. 因此直线m 的方程为22(1)y x -=-即20x y -=.又因为圆心在直线320x y --=上,所以圆心是这两条直线的交点.联立方程,得20320x y x y -=⎧⎨--=⎩,解得24x y =⎧⎨=⎩.设圆心为C ,所以圆心坐标为(2,4),又因为半径长||r CA ==所以所求圆的标准方程为22(2)(4)10x y -+-=.方法3:设圆心为C .因为圆心C 在直线320x y --=上,所以可设圆心C 的坐标为(,32)a a -.又因为||||CA CB =2a =.所以圆心为(2,4),半径长||r CA ==.故所求圆的标准方程为22(2)(4)10x y -+-=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x ―a)2+(y ―b)2=r 2;(2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.考点二:点与圆的位置关系例3.判断点M (6,9),N (3,3),Q (5,3)与圆(x ―5)2+(y ―6)2=10的位置关系.【答案】M 在圆上 N 在圆外 Q 在圆内【解析】 ∵圆的方程为(x ―5)2+(y ―6)2=10,分别将M (6,9),N (3,3),Q (5,3)代入得(6―5)2+(9―6)2=10,∴M 在圆上;(3―5)2+(3―6)2=13>10,∴N 在圆外;(5―5)2+(3―6)2=9<10,∴Q 在圆内.【总结升华】点与圆的位置关系,从形的角度来看,设圆心为O ,半径为r ,则点P 在圆内⇔|PQ|<r ;点P 在圆上⇔|PQ|=r ;点P 在圆外⇔|PO|>r .从数的角度来看,设圆的标准方程为(x ―a)2+(y ―b)2=r 2,圆心为A (a ,b ),半径为r ,则点M (x 0,y 0)在圆上⇔(x 0―a)2+(y 0―b)2=r 2;点M (x 0,y 0)在圆外⇔(x 0―a)2+(y 0―b)2>r 2;点M (x 0,y 0)在圆内⇔(x 0―a)2+(y 0―b)2<r 2.例4 已知点(1,2)A 在圆C :222()()2x a y a a -++=的内部,求实数a 的取值范围. 解:因为点A 在圆的内部,所以222(1)(2)2a a a -++<.所以250a +<,52a <-.所以a 的取值范围是5|2a a ⎧⎫<-⎨⎬⎩⎭. 总结:利用已知点与圆的位置关系确定圆中的参数的值或取值范围时,可直接将点的坐标代入圆的标准方程,依据点与圆的位置关系,得出方程或不等式,求解即可.例5 已知两点1(3,8)P 和2(5,4)P ,求以线段12P P 为直径的圆的标准方程,并判断点(5,3)M ,(3,4)N ,(3,5)P 是在圆上、在圆内、还是在圆外.解:设圆心(,)C a b ,半径长为r .因为点C 为线段12P P 的中点,所以3542a +==,8462b +==,即圆心坐标为(4,6)C .又由两点间的距离公式,得1||r CP =所求圆的标准方程为22(4)(6)5x y -+-=.分别计算点M ,N ,P 到圆心C 的距离:||CM =>||CN =,||CP =所以点点M 在此圆外,点N 在此圆上,点P 在此圆内.。
中考题中常考的圆的六种解题策略第一种场景:遇到弦。
轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.当圆的题目中出现弦的知识点的时候,我们需要迅速联想到弦相关的定理和一些性质,比如垂径定理、弦心距、勾股定理等.例1.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.【分析】(1)根据两平行弦所夹的弧相等,得到弧PC=弧BD,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.【解答】(1)证明:∵PD∥CB,∴弧PC=弧BD,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r²=(r﹣8)²+12²,解方程得:r=13.所以⊙O的直径为26.【点评】本题考查的是垂径定理,(1)题根据平行弦所夹的弧相等,等弧所对的圆周角相等,等角对等边,可以证明两条线段相等.(2)题根据垂径定理得到CE=12,然后在直角三角形中用勾股定理求出半径,再确定圆的直径.当出现直径的条件时,我们也要快速联想圆心角、圆周角等性质,进而构造等腰三角形、直角三角形等图形,从而求解后面的问题。
例2.如图,在⊙O中,将弧BC沿弦BC所在直线折叠,折叠后的弧与直径AB相交于点D,连接CD.(1)若点D恰好与点O重合,则∠ABC=______ °;(2)延长CD交⊙O于点M,连接BM.猜想∠ABC与∠ABM的数量关系,并说明理由.【分析】(1)根据折叠的性质和圆周角定理解答即可;(2)作点D关于BC的对称点D',利用对称的性质和圆周角定理解答.【解答】(1)∵由折叠可知:∠OBC=∠CBD,∵点D恰好与点O重合,∴∠COD=60°,∴∠ABC=∠OBC=12∠COD=30°;故答案为:30;(2)∠ABM=2∠ABC,理由如下:作点D关于BC的对称点D',连接CD',BD',∵对称,∴∠DBC=∠D'BC,DC=D'C,连接CO,D'O,AC,∴∠AOC=2∠ABC,∠D'OC=2∠D'BC,∴∠AOC=∠D'OC,∴AC=D'C,∵DC=D'C,∴AC=DC,∴∠CAD=∠CDA,∵AB是直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,设∠ABC=α,则∠CAD=∠CDA=90°-α,∴∠ACD=180°﹣∠CAD﹣∠CDA=2α,即∠ACD=2∠ABC,∵∠ABM=∠ACD,∴∠ABM=2∠ABC.切线的定义是:一直线若与一圆有且只有一个交点,那么这条直线就是圆的切线。
(一) 直击高考题一、选择题1.(辽宁理,4)已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为A.22(1)(1)2x y ++-=B. 22(1)(1)2x y -++=C.22(1)(1)2x y -+-=D. 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可.【答案】B2.(重庆理,1)直线1y x =+与圆221x y +=的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离 【解析】圆心(0,0)为到直线1y x =+,即10x y -+=的距离1222d ==,而2012<<,选B 。
【答案】B3.(重庆文,1)圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .22(2)1x y +-=B .22(2)1x y ++=C .22(1)(3)1x y -+-=D .22(3)1x y +-=解法1(直接法):设圆心坐标为(0,)b ,则由题意知2(1)(2)1o b -+-=,解得2b =,故圆的方程为22(2)1x y +-=。
解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为22(2)1x y +-= 解法3(验证法):将点(1,2)代入四个选择支,排除B ,D ,又由于圆心在y 轴上,排除C 。
【答案】A4.(上海文,17)点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是 ( ) A.22(2)(1)1x y -++= B.22(2)(1)4x y -++= C.22(4)(2)4x y ++-= D.22(2)(1)1x y ++-= 【解析】设圆上任一点为Q (s ,t ),PQ 的中点为A (x ,y ),则⎪⎪⎩⎪⎪⎨⎧+-=+=2224t y s x ,解得:⎩⎨⎧+=-=2242y t x s ,代入圆方程,得(2x -4)2+(2y +2)2=4,整理,得:22(2)(1)1x y -++=【答案】A5. (上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或2【解析】当k =3时,两直线平行,当k ≠3时,由两直线平行,斜率相等,得:kk --43=k -3,解得:k =5,故选C 。
关于圆的题型归纳和解题技巧
一、关于圆形的题型归纳
1. 圆的概念:一种特殊的平面图形,具有圆心、半径和圆周的性质,由起点和终点构成的曲线,其形状和位置完全由圆心和半径控制。
2. 圆的性质:圆的面积等于圆的半径的平方乘以π,即S=πr2;圆的周长等于圆的半径乘以2π,即C=2πr。
3. 圆的分类:根据圆的形状可分为完全圆形,半圆形,四分圆形,椭圆形等。
4. 关于圆的极角:圆的极角为起点和终点之间的夹角;对任意一点在圆上,该点到圆心的距离称为该点的弦长,而连接该点和圆心的射线称为该点的极角,极角单位为度(°)。
5. 关于圆的直径、弦、弧、圆心角:直径是圆的最长的一条线段,其中任意两点到圆心的距离相等;弦是圆的一部分,由圆的两个端点和圆心连接而成的线段;弧是圆的一部分,由圆的两个端点和圆周连接而成的曲线;圆心角是两个弦的夹角,其角度值等于圆周长除以圆的直径所得到的结果。
二、解题技巧
1. 关于圆的题目一般都是关于坐标图形的,因此,解题的步骤就应当是确定坐标,然后根据坐标去求圆的性质,比如求圆心、半径、圆周等。
2. 在求解圆的性质时,可以利用两点定理、勾股定理等几何知
识,先求出圆上的点与点之间的距离,然后求出圆的半径,再根据圆的性质求其他的信息。
3. 在处理相关问题时,要掌握好圆的各项性质,不要忘记极角、直径、弦以及圆心角的概念,以免出现误解圆的基本性质,从而出现差错。
4. 针对求圆面积或圆周长的题目,要熟悉圆的性质,圆面积为πr2,圆周长为2πr,因此,只要计算出圆的半径,就可以得出答案。
圆的基本性质习题
一、圆的有关概念的辨析
1、下列说法中,正确的个数有()
(1)直径是弦,但弦不一定是直径;(2)半圆是弧,但弧不一定
是直径;
(3)半径相等的两个半圆是等弧;(4)一条弦把圆分成两段弧中,
至少有一段优弧。
A. 1个
B. 2个
C. 3个
D. 4个
二、利用圆的半径相等进行计算或证明
1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为
16cm2,则该半圆的半径为().
A.B.9cm C.D.
三、垂径定理的应用
“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,间径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,求直径CD的长.”
四、圆心角、弧、弦、弦心距之间关系的应用
如图,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB
于M,DN⊥AB于N.求证:.
五、圆的知识在实际生活中的应用
如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据,于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20cm,BD=200cm,且AB,CD与水平地面都是垂直的,根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?
六、圆中的分类讨论问题
1、已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、
CD间的距离.
2、已知△ABC内接于⊙O,AB=AC,半径OB=5cm,圆心O到BC的距离
为3cm,则AB的长为______cm.。
初中圆题型总结近几年的中考数学试题中,圆的相关概念和性质通常以填空题和选择题的形式出现,并占有10分至15分左右的分值。
综合性问题则以计算证明的形式考查,如垂径定理、圆周角、切线的判定与性质等。
此外,将圆的知识与其他知识点如代数函数、方程等相结合作为中考压轴题也很常见。
圆的实际应用题、阅读理解题和探索存在性问题仍然是热门考题,需要引起注意。
下面将就近年来圆的热点题型举例解析。
一、圆的性质及重要定理的考查基础知识链接:(1)垂径定理;(2)同圆或等圆中的圆心角、弦、弧之间的关系;(3)圆周角定理及推论;(4)圆内接四边形性质。
例1】(江苏镇江)如图,AB为⊙O直径,CD为弦,且CD⊥AB,垂足为H。
1)证明:E为弧ADB的中点,其中CE为OC的平分线,OE与⊙O相交于点E。
2)如果⊙O的半径为1,CD=3,求O到弦AC的距离,并填空:此时圆周上存在一个点到直线AC的距离为____。
解析】(1)根据垂径定理,OE∥CD。
又因为CD⊥AB,所以∠AOE=∠BOE=90°。
又因为OC=OE,所以∠E=∠OCE。
又因为∠OCE=∠DCE,所以∠E=∠DCE。
因此,OE∥CD且OE=CD/2,所以E为弧ADB的中点。
2)根据勾股定理,CH=CD=3,所以OH=√(1^2-(3/2)^2)=√(1/4)=1/2.由于∠COB=60°,所以∠BAC=30°。
作OP⊥AC于P,则OP=OA=1/2.因此,O到弦AC的距离为1/2.又因为∠BAC=30°,所以圆周上存在一个点到直线AC的距离为3.点评】此题综合考查了利用垂径定理和勾股定理及锐角三角函数求解问题的能力。
在解题过程中,需要添加辅助线构造与定理相关的基本图形,如圆心到弦的距离。
在解有关弦心距半径有关问题时,常常添加的辅助线是连半径或作出弦心距,将垂径定理和勾股定理结合起来解题。
例2】(安徽芜湖)如图,已知点E是圆O上的点,B、C分别是劣弧AD的三等分点,且∠BOC=46°,求∠AED的度数。
圆的基本性质及应用题型1. 圆的定义和基本术语圆是平面上所有到一个固定点的距离都相等的点的集合。
固定点称为圆心,到圆心的距离称为半径。
在圆上任意取两个点,将它们和圆心连线,得到的线段称为弦。
若弦通过圆心,则称其为直径,直径等于2倍的半径。
若弦和圆心不重合,则称其为弧。
2. 圆的基本性质2.1 圆的周长和面积圆的周长称为圆周,用C表示,圆的面积用S表示。
圆周的计算公式为:C = 2πr,其中r为圆的半径。
圆的面积计算公式为:S = πr^2,其中r为圆的半径。
2.2 弧长和扇形面积从圆上截取的弧,可以计算其长度,称为弧长。
弧长的计算公式为:L = 2πr * (θ/360°),其中θ为弧所对的圆心角的度数。
另外,可以从圆上截取一个扇形,扇形的面积为扇形的弧长与圆周的比例乘以圆的面积。
扇形的面积计算公式为:A = (θ/360°) * πr^2,其中θ为扇形的圆心角的度数。
3. 圆的应用题型3.1 弧长和扇形面积的应用例题1:一个半径为5cm的圆,截取一个占据1/4的扇形,请计算该扇形的面积和弧长。
解答:已知半径r = 5cm,圆心角θ = 360° / 4 = 90°。
根据扇形的面积计算公式可知,A = (90°/360°) * π * 5^2 = 6.25π cm^2。
根据弧长的计算公式可知,L = 2π * 5 * (90°/360°) = 5π cm。
所以该扇形的面积为6.25π cm^2,弧长为5π cm。
3.2 圆的周长和面积的应用例题2:一个圆的周长为20cm,请计算该圆的面积。
解答:已知圆周长为20cm,根据圆周的计算公式可知,C = 2πr = 20 cm。
由此可算得圆的半径r = 10/π cm ≈ 3.18 cm。
根据圆的面积计算公式可知,S = πr^2 = π * (10/π)^2 = 100/π cm^2。
初中数学圆的题型
初中数学中关于圆的题型有很多,以下是一些常见的题型:
1. 圆的定义与性质:考查学生对圆的定义、性质的理解和掌握情况,包括圆心、半径、直径、圆周率等基本概念。
2. 圆的周长与面积:考查学生计算圆的周长和面积的能力,需要掌握圆周长和面积的公式,并能够灵活运用。
3. 圆与直线的位置关系:考查学生判断圆与直线位置关系的能力,包括相交、相切、相离等不同情况。
4. 圆与圆的位置关系:考查学生判断两个圆的位置关系的能力,包括外离、相交、内含等不同情况。
5. 圆的切线:考查学生判断一条直线是否为圆的切线的能力,需要掌握切线的定义和性质。
6. 圆的弧长与扇形面积:考查学生计算弧长和扇形面积的能力,需要掌握弧长和扇形面积的公式,并能够灵活运用。
7. 圆与坐标系:考查学生将圆与坐标系相结合的能力,需要掌握圆在坐标系中的表示方法,并能够进行相关的计算。
以上是一些常见的初中数学中关于圆的题型,希望对你有所帮助。
关于圆的题型归纳和解题技巧
一、圆的题型归纳
1. 直线与圆的位置关系:直线与圆可以相切、相交、外切、内切。
2. 圆的性质:取点到圆心的距离相等;圆两点到圆心的连线,长度相等,角度相等;圆周上的点,到圆心两条连线的比值相等。
3. 圆心角:圆心角及其扇形的面积,与圆上两点的距离有关。
4. 关于圆的全等:两个半径相等的圆,它们的圆心角两端的线段的角度也相等;重心相等的圆,它们的圆心角也是相等的。
5. 关于圆的切线:圆上的点到圆心连线,为切线;圆上两点连线为切线;任一点到圆心的连线与任一点到圆上另外一点的连线的夹角为切线。
二、解题技巧
1. 图形分析法:根据题意绘制出合理的几何图形,对圆形的部分应尽量详细地描绘出来,综合分析各个部分的相互关系,以此判断圆形的计算结果。
2. 数字分析法:根据数据来分析圆形的特性,比如圆的半径是给定的,那么可以根据圆的性质和圆心角来推算其他参数的值;又如圆心角的角度是已知的,则可以推算出其它参数的值。
3. 结论法:圆周上的点,所到圆心的连线的比值都是相同的;圆心角的扇形面积和它的的圆心角的角度有关。
这些基本性质可以在解题中灵活地运用,通过比较不同扇形的面积来判断其可行的解,从
而推断出解题的具体值。
中考数学圆题型大归纳
中考数学中关于圆的题型涵盖了很多内容,主要涉及圆的性质、圆的面积与周长、相交定理等方面。
下面对中考数学中常见的圆题型进行大归纳:
一、圆的性质题型:
1. 圆的基本概念:圆的半径、直径、周长、面积等概念的理解和计算;
2. 圆心角与弧度的关系:圆心角的大小和对应弧的关系,以及圆心角的计算;
3. 圆内接四边形:正方形、矩形、菱形等图形的性质及相关计算;
4. 圆的切线与切点:切线的性质、切线与半径的关系,以及切点的判定方法。
二、圆的面积与周长题型:
1. 圆的面积计算:根据圆的半径或直径计算圆的面积;
2. 圆的周长计算:根据圆的半径或直径计算圆的周长;
3. 圆与多边形的面积比较:圆与正方形、正三角形等图形的面积比较和计算;
4. 圆的面积与周长的关系:圆的面积与周长的计算及应用。
三、圆的相交定理题型:
1. 同弧的圆周角:同弧的圆周角的性质和计算方法;
2. 圆的相交性质:相交弧的关系、相交角的计算等;
3. 圆的切线定理:圆的切线与切点的性质、切线长度的计算方法;
4. 圆的交点的计算:两个圆的交点的计算和判定方法。
以上是中考数学中关于圆的题型的大致分类和内容归纳,希望对你的学习有所帮助。
在备考中考数学的过程中,重点理解圆的基本性质和计算方法,灵活运用各种定理和公式,多做相关的练习题目,扎实掌握圆的相关知识,相信你一定能在考试中取得优异的成绩。
祝你学业有成,考试顺利!。
圆的基本题型聚焦一、圆的性质的考查基础知识链接:(1)垂径定理;(2)同圆或等圆中的圆心角、弦、弧之间的关系. 【例1】(江苏镇江)如图,AB 为⊙O 直径,CD 为弦,且CD AB ⊥,垂足为H . (1)OCD ∠的平分线CE 交⊙O 于E ,连结OE .求证:E 为弧ADB 的中点; (2)如果⊙O 的半径为1,CD =, ①求O 到弦AC 的距离;②填空:此时圆周上存在 个点到直线AC 的距离为12.【解析】(1)OC OE =,E OCE ∴∠=∠又OCE DCE ∠=∠,E DCE ∴∠=∠. O E C D∴∥. 又CD AB ⊥,90AOE BOE ∴∠=∠=. E ∴为弧ADB 的中点. (2)①CD AB ⊥,AB 为⊙O的直径,CD =,12CH CD ∴==. 又1OC =,2sin 1CH COB OC ∴∠===. 60COB ∴∠=, 30BAC ∴∠=.作OP AC ⊥于P ,则1122OP OA ==. ②3.【点评】 本题综合考查了利用垂径定理和勾股定理及锐角三角函数求解问题的能力.运用垂径定理时,需添加辅助线构造与定理相关的“基本图形”.几何上把圆心到弦的距离叫做弦心距,本题的弦心距就是指线段OD 的长.在圆中解有关ABDO CH弦心距半径有关问题时,常常添加的辅助线是连半径或作出弦心距,把垂径定理和勾股定理结合起来解题.如图,⊙O 的半径为r ,弦心距为d ,弦长a 之间的关系为2222a r d ⎛⎫=+ ⎪⎝⎭.根据此公式,在a 、r 、d 三个量中,知道任何两个量就可以求出第三个量.平时在解题过程中要善于发现并运用这个基本图形.【例2】 (安徽芜湖)如图,已知点E 是圆O 上的点, B 、C 分别是劣弧AD 的三等分点, 46BOC ∠=, 则AED ∠的度数为 .【解析】由B 、C 分别是劣弧AD 的三等分点知,圆心角∠AOB=∠BOC=∠COD, 又46BOC ∠=,所以∠AOD=138º.根据同弧所对的圆周角等于圆心角的一半。
从而有AED ∠=69º. 点评 本题根据同圆或等圆中的圆心角、圆周角的关系。
二、直线与圆的位置关系的考查基础知识链接:1、直线与圆的位置关系有三种:⑴如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离.⑵如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切,此时这条直线叫做圆的切线,这个公共点叫做切点.⑶如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,此时这条直线叫做圆的割线,这两个公共点叫做交点. 2、直线与圆的位置关系的判定; 3、圆的切线的性质与判定。
【例3】(甘肃兰州)如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠. (1)求证:AE 是⊙O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长.【解析】(1)证明:连接OA ,DA 平分BDE ∠,BDA EDA ∴∠=∠.O A O D O D A O =∴∠=∠,.OAD EDA ∴∠=∠.CAA O A C E∴∥.A E D E⊥,9090AED OAE DEA∴∠=∠=∠=,.A E O A∴⊥.AE∴是⊙O的切线.(2)BD是直径,90BCD BAD∴∠=∠=.3060D B C B D C∠=∠=,,120BDE∴∠=.DA平分BDE∠,60BDA EDA∴∠=∠=.30ABD EAD∴∠=∠=.在Rt AED△中,90302AED EAD AD DE∠=∠=∴=,,.在Rt ABD△中,903024BAD ABD BD AD DE∠=∠=∴==,,.DE的长是1cm,BD∴的长是4cm.【点评】证明圆的切线,过切点的这条半径为必作辅助线.即经过半径的外端且垂直于这条半径的直线是圆的切线.【例4】(广东茂名)如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由.(3)当AB=5,BC=6时,求⊙O的半径.(4分)【解析】(1)在△ABC中,∵AB=AC,∴∠ABC=∠C.∵DE∥BC,∴∠ABC=∠E,∴∠E=∠C.又∵∠ADB=∠C,∴∠ADB=∠E.(2)当点D是弧BC的中点时,DE是⊙O的切线.理由是:当点D是弧BC的中点时,则有AD⊥BC,且AD过圆心O.又∵DE∥BC,∴AD⊥ED.∴DE是⊙O的切线.ECA(3)连结BO 、AO ,并延长AO 交BC 于点F , 则AF ⊥BC ,且BF =21BC =3. 又∵AB =5,∴AF =4.设⊙O 的半径为r ,在Rt △OBF 中,OF =4-r ,OB =r ,BF =3, ∴ r 2=32+(4-r )2解得r =825,∴⊙O 的半径是825. 【点评】 本题综合运用了等腰三角形的性质,圆的切线判定,解题最关键是抓住题中所给的已知条件,构造直角三角形,探索出不同的结论. 三、圆与圆的位置关系的考查基础知识链接: 如果两个圆没有公共点,那么就说这两个圆相离,如图(1)、(2)、(3)所示.其中(1)又叫做外离,(2)、(3)又叫做内含.(3)中两圆的圆心相同,这两个圆还可以叫做同心圆.如果两个圆只有一个公共点,那么就说这两个圆相切,如图(4)、(5)所示.其中(4)又叫做外切,(5)又叫做内切.如果两个圆只有两个公共点,那么就说这两个圆相交,如图(6)所示.【例5】 (甘肃兰州).如图是北京奥运会自行车比赛项目标志, 则图中两轮所在圆的位置关系是( )A .内含B .相交C .相切D .外离【解析】 图中的两圆没有公共点,且一个圆上的所有点都在另一个圆的外部,故两圆外离,选D.【点评】 圆与圆的位置关系有五种:外离、外切、相交、内切、内含.其关系可以用圆与圆的公共点的个数及点与圆的位置关系来判定, 也可以用数量关系来表示圆与圆的位置关系:如果设两圆的半径为 1r 、2r ,两圆的圆心距为d,则圆与圆的位置关系与数量关系如下表【例6】(赤峰市)如图(1),两半径为r 的等圆⊙O 1和⊙O 2相交于M N ,两点,且⊙O 2过点1O .过M 点作直线AB 垂直于MN ,分别交⊙O 1和⊙O 2于A B ,两点,连结NA NB ,.(1)猜想点2O 与⊙O 1有什么位置关系,并给出证明; (2)猜想NAB △的形状,并给出证明;(3)如图(2),若过M 的点所在的直线AB 不垂直于MN ,且点A B ,在点M 的两侧,那么(2)中的结论是否成立,若成立请给出证明.【解析】解:(1)2O 在1O 上证明:∵⊙O 2过点1O ,12O O r ∴=. 又⊙O 1的半径也是r ,∴点2O 在⊙O 1上. (2)NAB △是等边三角形 证明:MN AB ⊥,90NMB NMA ∴∠=∠=.BN ∴是⊙O 2的直径,AN 是⊙O 1的直径, 即2BN AN r ==,2O 在BN 上,1O 在AN 上.图(1)图(2)图(1)连结12O O ,则12O O 是NAB △的中位线. 1222AB O O r ∴==. A B B N A ∴==,则NAB △是等边三角形.(3)仍然成立.证明:由(2)得在⊙O 1中弧MN 所对的圆周角为60.在⊙O 2中弧MN 所对的圆周角为60.∴当点A B ,在点M 的两侧时,在⊙O 1中弧MN 所对的圆周角60MAN ∠=,在⊙O 2中弧MN 所对的圆周角60MBN ∠=,N A B∴△是等边三角形. 注:(2),(3)是中学生猜想为等腰三角形证明正确给一半分.【点评】相交两圆的连心线垂直平分公共弦,又且⊙O 2过点1O ,构建对称性知,⊙O 1过O 2,再证△NAB 是等腰三角形;(2)1是的基础上发散探究,具有一定的开放性.四、圆与多边形的计算考查基础知识链接:圆与正多边形的关系的计算; 2、弧长、扇形面积、圆锥侧面积全面积的计算.【例7】(赣州)小芳随机地向如图所示的圆形簸箕内撒了几把豆子,则豆子落到圆内接正方形(阴影部分)区域的概率是【解析】设圆的半径为1,则圆的面积为π,易算得正方形的边长为2,正方形面积为2,则豆子落到圆内接正方形(阴影部分)区域的概率是2π. 【点评】本题考查的是几何概率,解题的关键是圆与圆内接正方形的面积,根据古典概型,可转化为面积之比.【例8】(桂林)两同心圆,大圆半径为3,小圆半径为1, 则阴影部分面积为【解析】根据大、小圆的半径,可求得圆环的面积为8π,图中的阴影面积为圆环面积的一半4π.【点评】有关面积计算问题,不难发现,一些不规则的图形可转化为规则的图形计算,本题就较好的体现了转化方法和整体思想. 五、圆的综合性问题的考查基础知识链接:圆的有关知识与三角函数、一次函数、二次函数等综合应用。
【例8】(怀化)如图,在平面直角坐标系中,圆M 经过原点O ,且与x 轴、y 轴分别相交于()()8006A B --,、,两点. (1)求出直线AB 的函数解析式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数解析式;(3)设(2)中的抛物线交x 轴于D 、E 两点,在抛物线上是否存在点P ,使得ABC PDE S S ∆∆=101?若存在,请求出点P 的坐标;若不存在,请说明理由.【解析】(1)设AB 的函数表达式为.b kx y +=∵()(),6,0,0,8--B A ∴⎩⎨⎧=-+-=.6,80b b k ∴⎪⎩⎪⎨⎧-=-=.6,43b k∴直线AB 的函数表达式为364y x =--. (2)设抛物线的对称轴与⊙M 相交于一点,依题意知这一点就是抛物线的顶点C 。
又设对称轴与x 轴相交于点N ,在直角三角形AOB 中,.10682222=+=+=OB AO AB因为⊙M 经过O 、A 、B 三点,且为AB AOB ∴=∠,90⊙M 的直径,∴半径MA=5,∴N 为AO 的中点AN=NO=4,∴MN=3∴CN=MC-MN=5-3=2,∴C 点的坐标为(-4,2).设所求的抛物线为c bx ax y ++=2则⎪⎪⎩⎪⎪⎨⎧-=-=-=∴⎪⎪⎩⎪⎪⎨⎧=-+-=-=-.6,4,21.6,4162,42c b a c c b a a b ∴所求抛物线为21462y x x =--- (3)令,0.64212=---x x 得D 、E 两点的坐标为D (-6,0)、E (-2,0),所以DE=4. 又AC=∴=,54,52BC 直角三角形的面积.20545221=∙∙=∆ABC S假设抛物线上存在点()1,2010121101,±=∴∙=∙∙=∆∆y y DE S S y x p ABC PDE ,即使得.当.641;241±-=-=±-==x y x y 时,当时,故满足条件的存在.它们是()()()()12344,4,41,41P P P P -+-----.【点评】 本题是一次函数、二次函数与圆的综合性问题,解题的关键是抓住图形中的点的坐标,运用待定系数数的方法求出解析式;问题(3)结论一定,探究结论成立的探究,具有一定的开放性、探究性.。